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Abstract

Prediction models for multivariate spatio-temporal
functions in geosciences are typically developed
using supervised learning from attributes collected
by remote sensing instruments collocated with the
outcome variable provided at sparsely located sites.
In such collocated data there are often large tem-
pora gaps due to missing attribute values at sites
where outcome labels are available. Our objectiveis
to develop more accurate spatio-temporal predictors
by using enlarged collocated data obtained by im-
puting missing attributes a time and locations
where outcome labels are available. The proposed
method for large gaps estimation in space and time
(called LarGEST) exploits tempora correlation of
attributes, correlations among multiple attributes
collected at the same time and space, and spatial
correlations among attributes from multiple sites.
LarGEST outperformed aternative methods in
imputing up to 80% of randomly missing observa-
tions a a synthetic spatio-temporal signal and a a
model of fluoride content in a water distribution
system. LarGEST was aso applied for imputing
80% of nonrandom missing values in data from one
of the most challenging Earth science problems re-
lated to aerosol properties. Using such enlarged data
apredictor of aerosol optical depth isdevel oped that
was much more accurate than predictors based on
aternative imputation methods when tested rigo-
rously over entire continental USin year 2005.

1 Introduction

Applicability of many existing data analysis methods that
assume fairly complete data is limited by the presence of a
large fraction of missing values (gaps) in data. These gaps are
often large among spatio-tempora observations by remote
sensing instruments due to the presence of clouds, malfunc-
tions of remote sensing instruments and noise. Although
many sound statistical methods exist for imputation of
missing values (e.g. multiple imputation [Rubin et al, 1987])
most of existing methods are not applicable when gaps in
data are very large. To address large gaps in surveys, data
mining alternatives were proposed that exploit similarity
information from shared neighbors[Ayuyev et al, 2009].

In multivariate spatio-temporal data analysis problems of
natura systems in the presence of large gaps three kinds of
correlation could be potentialy exploited. These opportuni-
ties consist of temporal correlation of attributes, correlations
among multiple attributes collected at the same time and
space, and spatia correlations among attributes collected at
multiple sites. Although many methods were proposed that
take advantage of one or two of these aspects, |ess work was
devoted to taking into consideration al three kinds of corre-
lations simultaneously. Exploiting these correlations to im-
pute large gaps in multivariate spatio-temporal data to de-
velop more accurate supervised prediction models is the
objective of our study.

Our work is motivated by the multivariate spatio-temporal
prediction task of largeinterest in geosciences called Aerosol
Optica Depth (AOD) retrieval. AQOD retrieval data is ob-
tained by integrating remote sensing observations with large
gaps from multiple sources and with multiple kinds of cor-
relation among attributes. In this application 19 rea value
satellite-based attributes were derived from multi-spectral
images obtai ned once per day for the entire Earth by MODIS
instrument on Terra satellite [Modis, 2011]. We use such
satellite data provided at a4km*4km grid covering the entire
continental US in year 2005 (illustrated for two days at Fig-
ure 1 for a 36km*36km region). Although MODIS provides
daily coverage of amost entire Earth, al 19 attributes are
missing at nodes corresponding to locations where it was
cloudy at time of the satellite overpass and such events are
very common. Real valued AOD outcome variable is meas-
ured from ground at asmall number of AERONET locations
[Aeronet, 2011]. Dueto high cost of such ground-based data
collection, in year 2005 only 33 AERONET sites were
available in the entire continental US. The objective of AOD
retrieval is to use spatio-temporaly collocated MODIS
attributes and AERONET outcomes to build an accurate
AOD predictor that can estimate AOD value from satellite
atributes. In this application one of the main chalengesisa
small number of spatio-temporally collocated MODIS ob-
servations and AERONET AOD outcomes. In particular, in
year 2005 for the entire Continental US there were only 805
spatio-temporal events where both satellite and ground-based
data were available. Using the method proposed in this ar
data were available. Using the method proposed in this ar-
ticle, This set is enlarged about five times to 4112 cases by
imputing missing MODIS attributes by exploiting correla-
tions among 19 attributes collected at a single node of the



grid, spatial correlations of attributes observédha same
day at neighboring 80 nodes in 4x4km grid, and temalp
correlations over multiple days. This allowed comstion of
much more accurate AOD retrievals as will be disedsin
the results section.
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Figure 1. Integration of 19 MODIS attributes at 4km*4km gail
grid with AOD outcome at a ground-based AERONETiata
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The rest of the paper is organized as follows. fEhated
work is briefly reviewed in Section 2. The proposedthod
for modeling multivariate spatio-temporal data iegented
in Section 3 together with an algorithm for estimatmiss-
ing observation. Evaluation results of the proposedhod
on both synthetic and real data sets are repant&ection 4.
Section 5 provides the conclusion of our study.

2 Related Work

Many of the existing spatio-temporal data analysethods

assume that data is complete or almost completis. d$t

sumption is violated in many spatio-temporal agglmns.
For estimation of missing values in multiple tineziss, a

instead of temporal) can also be applied to linetarpola-
tion and to DynaMMo imputations. Such versions wi# w
call T-Linear and T-DynaMMo methods.

Previous work [Radosavljeviet al 2010] in developing
data-driven AOD retrieval methods using spatio-terafy
collocated satellite and ground based observa{@msmshown
at Figure 1) was simply removing the missing obstons.
The hypothesis explored in this study is that tbeusacy of
previously developed AOD predictors can be improsied
nificantly by estimating the missing attributes ahdn train
predictors on the data set consisting of both oleskand
imputed attributes.

3 Methodology

Given a multivariate spatio-temporal data (a mul-
ti-dimensional sequence and bunch of neighborind- mu
ti-dimensional sequences), there are three typeowtla-
tions: temporal correlation of each dimension, correlation
among multiple dimensions collected at the same tamd
space, and spatial correlations from neighboritgssiOur
goal is to exploit all three kinds of correlatidnsestimate the
missing values, and then build an accurate modefumi
enlarged data with imputed values. We first propose
models to recover the missing values.

3.1 Modeling correlations in a single sequence

In this section we describe how to model tempooaiagtation
of each dimension and correlations among multijpheed-
sions from a multivariate sequence. We build a gbdistic
model to estimate the missing values conditionedobn
served values by exploiting these two types ofaiation.
Assume that an m-dimensional sequense = {Xx,

dynamic Bayesian model called DynaMMo was recently<z--Xx} Of length N is given, where vector, observed at

developed to simultaneously exploit temporal smoesis of
each series and their correlations gtial, 2009]. Although
very effective for estimating missing values in wolging
time series, DynaMMo is less applicable to rematessg
where data is collected at multiple spatially clated loca-
tions where multiple correlated time series arecole at
each location and individual series have temparatinuity.
For imputing incomplete spatial data, one of thesimo

successful practical methods is to use multivaiigtrpola-
tion by empirical orthogonal functions [Becketsal, 2003].
In this singular value decomposition (SVD) basethdm-
putation approach that we will simply call EOF, sinng)
values are initially replaced by an unbiased guess the
missing values were interpolated incrementally sng
truncated orthogonal functions of SVD decomposition
reconstruction and repeating the process whileaging the
number of component functions. A limitation of E@&sed
data imputation is that it exploits only spatiatretations in
data which is a problem when long continuous gags a
present in spatio-temporal data. An applicatiofc®fF to a
transposed matrix that we will call T-EOF is proposas a
practical way to address such larger gaps in déadra-

the ri" time tick of sequence (n =1,...,N) is a m-dimensio
multivariate Gaussian. For each m-dimensional ofagen
of vectorx, we introduce a Gaussian latent variablesuch
that there is a linear dependence with a Gaussiae be-
tween eaclx, andz, defined asx, =Cz, +V,, whereC is
the parameter matrix and~ N(v|0,X) is the Gaussian
noise with mean of zero and variancexf
We also define a linear dependence with Gaussi@eno

between two adjacent latent variablgs, and z, corres-
ponding to two successive observatiof.; and X,

as z, =Az,,+w, , where A is the parameter and
w ~ N(w | 0,") is the Gaussian noise with mean of zero and

variance ofr .
Therefore, the emission and transition distributtam be
written as

p(x, [z,)=N(x, |Cz, X) )
p(z,12,.)=N(z, | Az, I') (2)
The initial latent variable; also has a Gaussian distribu-
tion which can be written as
(3)

P(z,) = N(z, |pe,Vy)

shovet al, 2006]. The same technique of using a transposedhere 4 is the initial state oz; and v, is the variance.

data to catch a different aspect of correlationdata (spatial

Lete ={A T, C, X, p,,V,} be the parameters of thaod-



el. Therefore, the joint probability gives is
P(X,Z 10)= p(z, |n,,V,)O

r!ptn knlAr p)(n ¢ncz

n=

(4)

Our model is different to the traditional Kalmantéi
-based model, since we allow missing values tot éxithe
observationX. We define a Missing Index Matrikto indi-
cate the missing values. Each entryl a$ defined as

0 wherX, is missin
1 otherwise

For learning the model, we define the expectatibthe
complete-data log likelihood as

Q(eieold) = Ez|e A [In p(X,Z |9!| )] (6)

(®)

pa

old

tion of posterior distribution of latent variabl@he details of
inference in the Kalman Filter-based model are tauifor
lack of space (for more details see [Bistebpl, 2006]).

Then, we use the updatedto recalculate the new para-
meters in the next EM iteration. We repeat thiscpdure
until convergence. The estimation for missing valoan be
automatically obtained once the model is learned.

3.2 Modeling spatial correlations from neighbors

In this section, we describe how to explore spattatela-
tions among neighboring sites. We build a probabilistic
model among multivariate sequengeand its neighboring
observations to estimate the missing values sonditioned
on the observed values in neighboring sites.

Given a multivariate sequen&g letL; = {li1, li,...,Iin} (i
=1,...m) be the"l dimension ofX, where }, (N =1,...,N) is a

First, we initialize each missing valug in data sequence gjngje value of the observation in tiedimension at the'h
(wherel  =0) using simple linear interpolation from the tjme-step. Assuming that has observations kheighboring

values wherg o 20 at the same time. Then, we apply thelocations, we definel ) ={1 V| D .. I P} as the b

EM algorithm to maximize the equation (6). By extegy
the equation (6) by substituting(X,z |8) using the cor-
responding part from equation (4) and (1)-(3), we g

1 1 Ty -1
Q(0,0,,) = _E In|V,| _Ez|em1 [E (z,=1o) Vo (Z,-n)]
(7

N-1 13 S
——5 NIT =By, [EZ @, ~Az,,) T (2, - Az,,)]
n=2

N
—%In |2 |-E,p, [EZ (X, —Cx,) ™ (x, —Cx, )]+ const
n=1

dimension ofX’s j" (j = 1,...K) neighboring locations. Our
objective is to impute the missing value in eaghoy ex-
ploiting the spatial correlation among L;

and(LL"| j =1,...,k}. In order to learn such spatial correla-
tion, for each dimensiorL; of X and corresponding

LD ={1,9,1,9,...,1, 7} form X’s neighbors, we define
0Y ={0",0,..,0"} as the wunion ofL; and
(L] j=1,.,k}, whereo @ ={I 1. @1 @ .1 ®}(n =

whereconst is the term which is not dependent on any part of-:----N) are the values of th_@ idimension ofX and its
parameter® .We take the derivatives of equation (7) with neighboring locations at thé'ime-step. For each observa-
respect to each part of parameeand then set them to zero. tion o ’, we define a Gaussian latent variaple~ N (0,w)

We get the parameters updates as follows:

n,™ = E[z] (8)
V, ™ =E[z,z2/1-Hz]H /] %)
A™ =3 Elz,2,,' DY Hz,7., D™ (10)
n=2 n=2
new — 1 J T new
r _mnz;{E[znzn ] -A E anzn"] (11)
-E[B"]B™ +B™E[z,,2,, [(A™)"}

C™ = (X x,Elz, D Hz,zD ™ (12)
= %;{xnxn -C"™Hz] x," (13)

_ Xn E [ZnT ]CneN + CneWE[Zn ZnT ]( CnsN)T}
At the end of each M step, we update the missihgevé,
(when | . 0) using

E[X,,12,0,I]=C™[E[Z,,] (whenl  =0) (14)
Calculating the updated parameters requires tlezdante
in E step of the marginal distributiop(z | X ,0) for hidden
latent variables given the data. The inferencenslarly to
the one in Kalman Filter-based model, since thesimis

(n = 1,...,N). Each pair of nodes/d, o "’} represents a
linear-Gaussian latent variable model for the patéir mul-
tivariate observation. However, the latent varial{g} are
treated as independent to each other. Hence, tlissiem
distribution is

p©," 1y,)=N(o,” | DL, @) (15)

Then, we can build a probabilistic graphical motiel
each dimension oK to exploit the spatial correlation be-
tween each.; and its correspondifg )| j =1,...,k} from
neighboring locationd.et y ={w, D, ¢ be the parameters of
the model. Then, the joint distribution can be teritas:

PO YIN=[] Py )] PO Iy, v) (8

Therefore, maximizing the complete data log likett is
equivalent to maximizing:

N N N N 1 oA
In([] P[] PO 1Yo 7)== I IW =2 2y, w7y, 17

N L1 S
_Eln |¢’|_ZE 0."-by, Y¢' 0,"-D0,)
n=1

We take the derivatives of equation (17) with respe
tow, D andg respectively, and set them to zero. The up-

values are updated at the end of each M step. Vigly ap dated parameters are computed as

forward-backward message passing to calculatexppecta-



w == 3 E(y, [0, )EY, Io") (18)
n=1
N N
D™ =Y 0, "E(y," [0, )T E(, o EW, 1oy (19)
n=1 n=1

dew =%i(on(i) - D" EE(yn |0n(i)))|:(0n - D EE(yn I Q](i) ))T (20)

In order to get the optimal parameters which mazéequ-
ation (17) in the presence of missing observatifmseach
dimension ofX we maintain another Missing Index Matrix

|<i)where|(‘)pq =Qindicates a missing value Qj“)pq. We
initialize the each missing value using linear iptéation
from values where®@  # 0in the neighboring observations.

Then, we calculate new parameters using equat®y(gD)

and use them to estimate the missing values as

E[O e 1 Y, 7, 101=D™ [E[Y,, , [0 ,,“] (whenl ©_ =0) (21)

After imputing the missing values using eq. (21¢, use the
new data to estimate new parameters in the negtive. By
repeating this process of estimating parametersnaasing
values until converging, we can get the optimaapweters of
the model and the final estimation of missing valukfter

updating the missing values tn<”pq for each dimension of
X, we can get the estimatxd

3.3 Learning algorithm

In order to estimate the missing values by exptp&eh three
types of correlation, we propose the LarGEST atbori
(shown in Algorithm 1) which simultaneously leartvgo
models described in Sections 3.1 and 3.2.

First, we initialize all model parameters and éll the
missing values by linear interpolation from theued of
spatial neighbors. Then, we apply an Extended Hafiea
Maximization algorithm which works as follows.

In the E-step, we estimate the posterior distrdyuti

X — set of multivariate spatio-temporal sequences
with missing values

O 0 }— multivariate observations including

neighbors for each dimension Xf
| —Missing value Index Matrix foX

Input s:

| D _Mmissing value Index Matrix folO @
Outputs: X" — sequences with estimated values

0, y— model parameters

Initialize X" with X
Estimate missing values ¥I"" using linear interpolation
Initialize model parameters
Do
E-step: Estimate posterior distributiop(z | X ,9) of
Model 1 using forward-backward message passing.
M-step: Maximize expectation of log likelihood (Model 1)
0™ — argmaxQ 0 ;
Estimate missing values using Model 1:
for p, g DO
updatg"®" ,q whenl =0 using equation (14)

Initialize { O™ __ } with X" and {O"}
Maximize log-likelihood (Model 2 for each dimension):

™ — argmaxinp O® ., Y i
Estimate missing values using Model 2
for p, g DO
updatEO nalnew)
Xnew: { o(i) }
Until converge
Return X"™" @ , andy
Algorithm 1. LarGEST algorithm.

() whenl ,=0 using eq. (21)

4 Experimental Results

The proposed LarGEST method for imputation of laggps
in data is compared experimentally with Linear, ByO
and EOF methods. In addition, LarGEST is also coetgbto
the same three methods when used on transposeathta

E(Z |X ,0)0f Model 1 which will be used when we maximize such results are annotated as T-Linear, T-DynaMMd a
t

e expectation of log likelihood in M-step (usieguations
(8) -- (13)). After getting the updated parametsriodel 1,
we can estimate the missing values using Moddlte data
with updated missing values from Model 1 is useelstiimate
the parameters of Model 2. We can re-estimate tissing
values after learning the parameters of Model 2 Opdated
data with updated missing values estimated by Madeill
be the input data of E-step of next iteration tlrwate the
posterior distribution of Model 1. We repeat thisgedure of
training two models interactively until convergence

Our combining algorithm has a wide generality. Baby,
we can replace Model 1 and Mode2 with any kindpydra-
priate training methods which can estimate missialgies.
This can help greatly if changing the proposed rwde

some more appropriate models when some domain knowt.1

ledge is known about the data.

After imputing the missing values in multivariatpas
tio-temporal data, we then build a predictor onagged
collocated spatio-temporal data. In the next sactie
compare results of predictors trained on enlargathset
generated by LarGEST and by alternative methods.

T-EOF. Brief descriptions of six alternative medkoare
provided in Section 2.

Our evaluation is performed on three datasetsaéasing
complexity. In the first task (Section 4.1) theesijve was to
compare LarGEST to alternatives for imputing 590086
missing values in a fairly simple function. In Sent4.2 this
is followed by imputing 80% of missing values imere
challenging problem of Floride estimation whereasnailar
data was used as a testbed in an earlier studst fli 2009].
Finally, in Section 4.3 effects of data imputatipnLarGEST
and alternatives were compared at a grant challpradgem
of spatio-temporal regression for Aerosol AOD ¢l
from data with about 80% of missing values in lilaites.

Imputation of small versus large gaps

The synthetic two dimensional temporal data (X,fof) a
certain location is generated as< =sint)*5 and
Y =sin( + 7/ 2)*5. At four neighboring locations two di-
mensional data is generated by shifting the fitst data by
0.5 0.3, -0.3and -0.5 respectively.



The mean square error (MSE) of imputation by LarGES
and six alternatives was compared when 5% to 96f6ata
were missing randomly (see Figure 2). In data iratiorm
experiments with small fraction (less than 25%nuo$sing

values inserted completely at random, LarGEST alhd a

alternative methods estimated missing values fairgll.
However, LarGEST was clearly the best choice a®ain
interpolation had problems when the missing valwese
located near the top or the bottom of the signaijevVEOF
had problems where four neighbors were missing yd
naMMo had some errors at high curvature sections.

11
—+— DynaMMo
—e— T-DynaMMo
—B— LarGEST
—6&— EOF
—— Linear
—— T-EOF
—+— T-Linear

N
1S

Mean Square Error

= 4 L L L L L
25% 35% 45% 55% 65% 75% 85% 95%
Fraction of Missing Values

Figure 2. Estimated error (MSE) for imputing 5% to 90% of
missing values on synthetic data.
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Figure 3. Mean square error of data imputation on Fluodde
with 80% of missing values.

ground based Aerosol data introduced in Section 1. Ra-
diances from the MODIS instrument (19 attributeggrahe
entire continental US in year 2005 obtained at 4k grid
following a procedure from a previous study [Khetnal,
2009] were spatio-temporally integrated with grotnraged
AOD data at 33 AERONET sites [Aeronet, 2011] based
the nearest 4km*4km region and withi#i30 minutes of
satellite passing the corresponding AERONET sitataD
containing both attributes and AOD values consiste805
examples. AOD values observed from ground at 33
AERONET sites were also available at an additichaD7
events, but in these cases all 19 sattelite-bat#ulses were

When large fraction of data was missing LarGEST exmissing. Missing attributes at these 80% cases ingrated

ploited well all three kinds of correlations in daimulta-
neously while alternative imputation methods resiilin
much larger error. When extremely large fractioB%8and
90%) of data was missing, all methods performedyb&ar
a large fraction of missing values accuracy wasrawed
when the number of neighbors was increased. Resithisa
larger number of neighbors are omitted on syntrdsdia for
lack of space, but this effect will be shown in 88t 4.3 on
real life remote sensing Aerosol data.

4.2 Imputation of 80% gaps in Fluoride data

by LarGEST relaying on spatial correlations withetldge
observations at up to 80 neighbors at 4kmx4km gsidvell
as on temporal correlations among 330 daily obsiens
Six alternative methods used in Section 4.1 wese applied
for attributes imputation at 3,307 events.

A feed-forward neural network model with a singiéden
layer of 10 nodes was trained on enlarged dataistorg of
examples with actual and those with imputed attabuThis
choice was based on the best predictors from pus\studies
[Radosavljevicet al, 2010]. Experiments were performed by
partitioning 805 examples from 33 sites where ladtiibutes

The Fluoride dataset is produced by EPANET 2 whichand AOD values are available in 33 disjoint subbated on

models the water quality behavior in a distributjoiping

systems. In a given network of water distributioipimg

system, EPANET simulates the contents of Fluorider @
certain period [EPA, 2011]. Data used in our experits are
generated assuming a piping system of 36 nodedatieau
over 10 days in 15 minutes increments. For ouegrEents
at a certain node and at its three neighboring s.ode ex-
tracted two attributes over 960 time steps. The#p &f this
data was removed completely at random from eadiwof
attributes at each of 4 nodes retaining 192 vaphegseach
attribute at each site. The objective was to eddni®36
missing values at two time series observed at drtbese
nodes. The mean square error (MSE) of this estimdiy

LarGEST and alternative methods are shown at Figure

4.3 Spatio-temporal regression of Aerosol data
with 80% of imputed attributes

Experiments were conducted on integrated satelfite

sites and using 32 subsets together with 3,307tiaddl
examples whose attributes are imputed for traimingeural
network model which is tested on the remaining sitiata.
This is repeated in 33-cross validation experimettgys
keeping a different site for testing. The qualifytioe ob-
tained predictors was compared using two measwks f
lowing a protocol practiced by geoscience commufiitg-
dosavljevic et al, 2010]. To evaluate impact of spatial
neighborhood size on imputation quality, in LarGE®T
putation we considering nearest 8, 24, 48 and &fhhering
observations in 4kmx4km grid shown at Figure 1. sEhe
methods we will call LarGESTS8, LarGEST24, LarGEST48
and LarGEST8O0, respectively.

The first quality measure we used is R-square. When
comparing several predictors on a fixed test segela
R-square scores correspond to more accurate predidthe
results obtained by a predictor trained on datauien by
LarGEST80, and by nine alternative methods are shiow



Figure 4. In addition, we also show the accuracy gfre-
dictor obtained on 805 examples without data impataand
we call this model Original. The results obtairgdLarG-
EST80 were more accurate than alternatives andritégn
any previously reported accuracy of AOD retrieval.

0.75

LarGEST80

LarGEST48
T-DynaMvo

0.7F

0.651

0.6

R-square

0.551

0.5F

Figure 4. R-square accuracy of AOD retrieval in US for
year 2005using data with 80% of imputed values

Fraction

Figure 5. Fraction of successful AOD retrievals in US
for year 2005 when using 80% imputed values (LarG i
the figure means LarGEST )

Another measure that we used is introduced by akros
scientists who regard the retrieved AOD acceptébtbe
following boundary conditions on the retrieval aegisfied
|y, —t, k& 0.05+ 0.1 where yis retrieved AOD value and t
is the corresponding true AOD value. Based on Ibloisn-
dary, we measured fraction of successful predistiefined
as FRAC = (I / N)*100%, where | is the number of predic-
tions satisfying the stated boundary and N is oked humber
of predictions. Fraction of successful AOD retrisvaf
seven regression models based on data imputedri®BESAT
and six alternatives as well as data that is npuiled at all
(called Original) are shown at Figure 5. LarGEST8garly
outperformed all alternative methods in both messur

Both Figure 4 and Figure 5 show that LarGEST penfxt
better when including attributes from larger numibmdr
neighboring grids. All 80 neighbors used in LarGBST
model were within the range of 36km (see Figure/iich is
considered to be a range of AOD spatial correlatioteed,
including spatial information from even more digtandes
was not beneficial (results omitted for the laclspéce).

5 Conclusion

In the proposed method, two probabilistic modelsrewe
proposed, and learned interactively by an Exterigguec-
tation Maximization algorithm to exploit simultanesy all
three types of correlation for multivariate spatoaporal
data imputation. The imputation results on chaliegg
problems with 80% of missing values provide evidetiat
in the presence of long continuous gaps LarGESThaaket
can estimate missing values more accurately thgamnal
tives. The aerosol optical depth retrieval resoltgained
using training data enlarged by LarGEST-based iatprts
were not only better than the results obtainedraining a
predictor trained on data imputed using alternatiathods,
but were also more accurate than any previouslgldeed
method for AOD retrieval from satellite data.
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