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Abstract—Identifying informative biomarkers from a large
pool of candidates is the key step for accurate prediction of an
individual’s health status. In clinical applications traditional
static feature selection methods that flatten the temporal data
cannot be directly applied since the patient’s observed clinical
condition is a temporal multivariate time series where different
variables can capture various stages of temporal change in the
patient’s health status . In this study, in order to identify
informative genes in temporal microarray data, a margin
based feature selection filter is proposed. The proposed
method is based on well-established machine learning
techniques without any assumptions about the data
distribution. The objective function of temporal margin-based
feature selection is defined to maximize each subject's
temporal margin in its own relevant subspace. In the objective
function, the uncertainty in calculating nearest neighbors is
taken into account by considering the change in feature
weights in each iteration. A fixed-point gradient descent
method is proposed to solve the formulated objective function.
The experimental results on both synthetic and real data
provide evidence that the proposed method can identify more
informative features than the alternatives that flatten the
temporal data in advance.

Keywords- high dimensional; temporal data; feature
selection; margin; multivariate time series data

L INTRODUCTION

The major challenges in analyzing microarray data is
dealing with small-sample high-dimensional data where the
number of biomarkers used as features is typically much
larger than the number of labeled subjects. Performing
feature selection methods as a preprocessing step to identify
informative biomarkers is a common way to address this
problem. It is often followed by a classification method on
selected genes to predict the health status of an individual.

However, there is often interest in the analysis of
dynamic biological processes with data from DNA gene
expression microarray chips instead of analyzing static gene
expression data. In order to predict an individual's health
status, it is very helpful to analyze such high dimensional
gene expression data that varies with time. Besides the
traditional challenge of curse of dimensionality, another
challenge of analyzing dynamic biological processes is that
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the data gathered is temporal. Therefore, the data records for
each individual are multivariate time series. However,
traditional feature selection methods cannot handle such
multivariate time series data. The most straightforward
method is to apply some techniques to flatten the temporal
data, and then perform traditional feature selection methods
in the flattened data.

In this study, we proposed a feature selection filter that
can directly select informative features from temporal high-
dimensional biomarkers. We defined a temporal margin for
each subject based on a measure of distance between two
multivariate time series data from two different subjects. The
objective function of the proposed selection method is to
maximize each subject's temporal margin in its own relevant
subspace. We also take into account the uncertainty in
calculating nearest neighbors because the feature weights
change in each iteration, and it is hard to calculate nearest
neighbors for a multivariate time series data. We applied
fixed-point gradient ascent to solve the optimization problem
and get the optimal weight for each gene. Genes with large
weights are selected to build the prediction model to predict
the health status of each individual. The experimental results
show that our method outperforms the alternatives, which
apply traditional feature selection methods after flattening
the temporal multivariate gene expression data. Convergence
theorem of the proposed method is also presented.

IL.

Feature selection methods can be broadly categorized
into filtering models [1] and wrapper models [2]. Filtering
methods separate the feature selection from the learning
process, whereas wrapper methods combine them. The main
drawback of wrapper methods is their computational
inefficiency.

There are three widely used kinds of filtering methods. In
[3, 5] a margin-based method is proposed as a feature-
weighting algorithm that is a new interpretation of a
RELIEF-based method [4]. The method in [5] is an online
algorithm that solves a convex optimization problem with a
margin-based objective function.

Markov Blanket-based methods [1, 6, 7] perform feature
selection by searching an optimal set of features using
Markov Blanket approximation. The method proposed at [6]
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approximates the Markov Blanket by applying a Grow-
Shrink process and then removing the feature whose Markov
Blanket can be found in the rest of features. Method [7]
searches Markov Blanket after learning the structure of the
Bayesian network.

Dependence estimation-based methods use the Hilbert-
Schmidt Independence Criterion as a measure of dependence
between the features and the labels [8]. The key idea in this
method is that good features should maximize such
dependence. However, all these methods assume that the
data is static without varying on time. They cannot be
applied in temporal gene expression data that is the main
problem of this study.

Several feature-learning methods [9, 10] have recently
been proposed to handle the temporal gene expression data,
without imputing missing values in advance. However, those
two methods are different from the proposed method in this
study, since those methods treat the records for an individual
at different time steps independently, which will result in
loss of temporal information among the data. All those
works project the data to another space and learn features
from the new space (factors or principal component). Those
methods are actually methods for dimension reduction,
rather than feature selection. Due to this, we will not
compare our method with them in this study.

The method proposed in this study extends our feature
ranking method addressing the similar problem [13].
Previously, we measured nearest neighbors in the original
space and did not update them while updating the feature
weights. Both aspects are generalized here. In addition, our
method proposed in [13] directly applies gradient descent
optimization, which cannot guarantee convergence to a
global solution, whereas a globally optimized solution is
guaranteed when using the methods proposed here.

III.  PROPOSED METHOD

Let D={X,,Y;},., v cR”" x+l be the data set with N
individuals. X, e R™" represents n observed biomarkers

(e.g. gene expression data) for individual i measured at 7;
time steps. Y, € {1,—1} represents the class label (e.g. health

status) for individual i. Let Xf’) be the " column of X; that

corresponds » biomarkers measured at time ¢,.

We will first define the measure of distance between
multivariate time series data of two subjects, and then
present the temporal margin based on the distance measure
as well as the objective function of proposed feature
selection method and algorithm for solving the
corresponding optimization problem.

A.  Measure Distance Among Multivariate Time Series

Given X; and X corresponding to the observed
biomarkers measured at different time steps for individual i
and individual j, respectively, the distance (we call Temporal
distance, represented as 7dist) between two multivariate time
series X and X; is defined as:
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where T; and T; are the number of time steps of individual i
and individual j, respectively; X" is the vector consists of

biomarkers measured at time steps r for individual i; X is

the vector of biomarkers measured at time steps s for
individual j; for any two vectors v and z, function d(v, z) can
be any kind of distance function. To keep the notation
simple, we defined d(v,z) as the Manhattan distance

between two vectors.

B.  Maximize Temporal Margin With Uncertainty

Given an instance, the margin of a hypothesis is the
distance between the hypothesis and the closest hypothesis
that assigns an alternative label [4]. For a given instance X,
we find two nearest neighbors for X;, one with the same class
label (called nearhit), and the other with different class label
(called nearmiss). The hypothesis-margin of a given instance
X, in data set D is defined as:

Lp(X;) = %(Tdist(Xi,nearmiss(X,»))

@

—Tdist(X;,nearhit(X;)))

In margin-based feature selection, we scale the feature by
assigning a non-negative weight vector w, and then choose
the features with large weights that maximize the margin.
One idea is to then calculate the margin in weighted feature
space rather than the original feature space, since the nearest
neighbor in the original feature space can be completely
different from the one in the weighted feature space.
Therefore, we define the instance margin for each instance
X, from D in a weighted feature space as:

pp(X;w)= %(Tdist(x,,nearmiss(x,») | w)

: A 3
—Tdist(X;,nearhit(X;) | w))
which is equivalent to:
T Tu
pPo(Xi |w)= ZZd(X ,nearmiss(X;) | w)
2T TVI r=1 s=1
T “

D> d(X\", nearhit(X;)" | w)

r=l s=1

2T TH

:wT'}I
where Ty, and Ty are the number of time steps of
nearmiss(X;) and nearhit(X;), respectively; for each instance
X, the corresponding B, is defined as:
T Tv

Z Z\ X —nearmiss(X;)® |

r=1 s=1

Bi=
2T; ><TM )

Ti Th

ZZ\ X\ — nearhit(X;)" |
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where || is the element-wise absolute operator.



One possible problem may exist in the current definition
of instance margin. The nearest neighbors we calculate for
each instance might not be the real nearest neighbors, since
we calculate the nearest neighbor for each instance in the
weighted space that changes each time when the weights get
updated. To solve this problem, we take into account the
uncertainty of calculating nearest neighbors when calculating
instance margins. We calculate the uncertainty of each
instance being the nearest neighbor of x,,. The uncertainty is
evaluated by standard Gaussian kernel estimation with kernel
width of o. Specifically, we define the uncertainty that an
instance x; with the same class label as x,, can be the nearest
hit neighbor of x,, as:

ZZd(x“) X, 1w/ o)

rlsl

2T Tw

Ze p(zr - ZZd(x“),(Xn)“Ww)/a)

M r=1s=1

Unearhit(xi | X,,W ) =

WherelSzSN,z;tn,y[
and1< /<N,y =y,

=Y

- . , (6
Similarly, the uncertainty that an instance x; with a

different class label from x, can be the nearest miss neighbor

of x,, is defined as:

dX,(X,)Y | w)/ o)
P T,,EE

(r)
;e p(ZT 7 ZZd(X

H r=1s=1

U,

(x; |x,,W )=

nearmiss

X)) | w)/ o)

where 1<i< N,y #y,

and IS j<SN,y, #y, (7)

Please note that distance in equations (6) and (7) denotes
the distance between x, and x; in weighted space determined
by weight vector w. Finally, by checking the uncertainty of
each instance to be the nearest neighbor of x,, we define our
final temporal margin with uncertainty as the expectation
of the instance margin of x,, which can be written as:

T
E, (x,|w)=w "Eg

where
T Ty
E; = Z U pearmiss (Xi | X5 W )'27’ 7 ZZ\ X}r>—nearmiss(xi)(“)\
i,when y,#y, [Reg Y o
T;
= Y Uncamin (i [%,,W ) T, ZZ|x<”—nearhzr(x 1 (8)
i,when y;=y, H r=ls=1
As we mentioned before, our temporal margin

incorporates the uncertainty in calculating two nearest
neighbors (Eg,).

We already define the instance margin for each subject
X.,. Therefore, we can define the temporal margin of the
entire data D that has N subjects as the sum of all instance
margins, which can be written as:

Pow =D Ep, (X, W)
n=1
The feature weights can be learned by solving an
optimization problem that maximizes the uncertainty margin
of data D. This optimization problem can be represented as:

)
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N
maxz E,, (x,, |w) subjecttow =0
w o=l (10)

We followed logistic regression formulation framework.
In order to avoid huge values in weight vector w, we add a
normalization condition || w ||,< & . Therefore, we can rewrite

the optimization problem as:

N
miﬂZlog(l +exp(-E, (x, |w)) subjectto w=0,||wl[;<é

W onml (11)
The above formulation is called nonnegative garrote. We
can rewrite the formulation as:

N
min 2. log(1+exp(-wE 5,) AW,

W n=l
subject to w =0 (12)
For each solution to (12), there is a parameter 6,
corresponding to the obtained A in (12), which gives the
same solution in (11). Formulation (12) is actually the

optimization problem with ¢, regularization. The benefits of
adding the /, penalty have been well studied [12] and it is

shown that the 7, penalty can effectively handle sparse data
and huge amounts of irrelevant features.

C.  Feature Selection Algorithm

In this section we will introduce our feature selection
method, which solves the optimization problem introduced
in Section 3.2. As we can see from (12), the optimization
problem is convex if Eg, is fixed. Fox a fixed Eg,, (12) is a
constrained convex optimization problem. However, it
cannot be directly solved by gradient descent because of the
nonnegative constraints on w. To handle this problem, we
introduce a mapping function:

f:w —=u, where w(i) =u(i)’, Vi=12,..M (13)
Therefore, the formulation (12) can be rewritten as:
y 2
mll’lz log(1+ exp(waﬂﬂ Y+ A ul,
W onel (14)

By taking the derivative with respect to u#, we obtain the
following updated rule for u:

Zexp( ZI.I Eﬁ)

n=1
N

1+26xp( Zu Eﬁ)
i (15)

where o is learning rate, ® is the Hadamard product, and
E n is defined as:

ue) =y _gq )®u
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However, Eg, is determined by w so that (14) is not a
convex problem. We use a fixed-point EM algorithm to find
the optimal w. The proposed algorithm for Margin-based
Feature Selection in Temporal Microarray data (we call it
MSTM) is shown in Table 1.

The MSTM algorithm starts by initializing the values of
w to be 1. With such initialization, we can estimate the s, and
Eg, for each instance x,. Then, in each iteration, the weights
vector w is updated by solving the optimization problem (14)
with estimated values of s, and Eg, in the previous iteration.
We repeat the iteration until convergence. The MSTM
algorithm requires pre-defined kernel width ¢ and a
regularization parameter A. We applied cross validation to
select the values of parameters.

TABLE L MSTM FEATURE SELECTION METHOD

Input:  data set D = {(x; )}t n
kernel width o

regularization parameter A

Output: feature weights w
Initialization:  set w(0)=1, t=1
Do

Calculate Eg," using w"" and equation (8)

Update # using updated rule in equation (15)
Update w' using u“ using equation (13)
t=t+1

Until convergence

To prove convergence of MSTM algorithm we will use
the following theorem.

Theorem 1 (Contraction Mapping Theorem). Let T:
X—X be a contraction mapping on a complete metric space
X. The sequence generated by x,=T(x,;) for n = I,
2,3,...converges to unique limit x* where x* is the fixed
point of T (T(x*)=x*). In other words, there is a nonnegative
real number r<I such that

d(x*, x,11) < r—d(xl,xo)

1-r

Proof: See [12].

Based on this theorem we prove the following:

Theorem 2. There exists o, such that for any o > o, the
MSTM algorithm converges to a fixed unique solution w"
when initial feature weights w” are nonnegative.

The proof is following a similar schema as in [3]. Details
are omitted for lack of space.

The complexity of the MSTM algorithm is O(7N°M)
where T is the total number of iterations, N is the number of
instances, and M is the number of features. Our experimental
results show that the algorithm converges in a small number
of iterations (less than 40). Therefore, the com]:Z)lexity of
MSTM algorithm in real application is about O(N°M). Note
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that the MSTM algorithm is linear to the number of features,
so the proposed method can handle a huge number of
features.

IV. EXPERIMENTS

To characterize the proposed algorithm, we conducted
large-scale experiments on both synthetic and 2 real flu data
sets [9, 10]. All experiments of this study were performed on
a PC with 3 GB of memory. We compared our proposed
MSTM algorithm in temporal gene expression data with
four traditional feature selection methods (the method
proposed in [12] that we call BAHSIC, SIMBA [4], Relief
[11] and FST [13]) after flattening temporal multivariate
data into one single matrix.

For the prediction method, we apply Nearest Neighbor
classifier on all features and select features by different
feature selection methods. We compare results on both
synthetic data and real data.

A. Results on Synthetic Data

We generate synthetic data simulating 20 subjects. Each
subject has 50-dimensional records at 20 different time steps.
Each subject i is generated according the following process.
We first generate 50-dimensional random data X; for subject
i at time step 1. Label Y; is complete decided by the first four
features following Y, =(X, vX,)A(X;VvX,) - We then
generate records for subject i at other time steps using
formula: XE”” = xﬁ”” + ¢, where £~N(O, % ) i the Gaussian

noise that is also a function of time steps.

The results on synthetic data are shown in Figure 1 and
Table II. Figure 1 shows the feature weights for each feature
learned by our proposed MSTM and three alternatives. It
clearly shows that our method assigns significantly larger
weights to the first four features used to decide the Label
than to most other features. Moreover, our method applied
L1 regularization so that the feature weights learned are
sparse (most of feature weights are tend to zero).

Table II shows the results comparing our method to three
alternatives (three alternatives are applied after flattening the
temporal data). We choose the top 4 features selected by
each method, and compare the number of features correctly
selected among these top 4 features. Top 4 features means 4
features with biggest feature weight. We can see from Table
II that our method included all 4 informative features in the
top 4 features, whereas SIMBA hits 3, FST and Relief hits
only 2. Our method outperforms alternatives on this
synthetic data. We didn't apply BAHSIC on the synthetic
data because BAHSIC is not feature weighting method.

TABLE I NUMBER OF CORRECTLY SELECTED FEATURES AMONG
Topr 4 FEATURES
Relief FST Simba MSTM
# correct features 2 2 3 4
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Figure 1. Feature weights learned on synthetic data.

B. Results on Two Real Flu Datasets

We first describe the data sets [9, 10] used in this section.
Two challenge studies were performed with two groups of
healthy human volunteers. One of these groups was exposed
to H3N2 virus, and the other was exposed to HINI virus.
The HINT and H3N2 studies were performed independently,
with different subjects. In summary, H3N2 data consists of
records for 17 subjects collected at 16 different time steps.
HINT1 data consists of records for 24 subjects collected at 16
different time steps. For H3N2 and HIN1 gene expression
data, the same 12,023 genes are considered for analysis for
each subject at each time step.

For the feature selection and learning-prediction process,
we apply leave-one-out schema because of the low number
of subjects in both data sets. To avoid overfitting, in each
iteration of leave-one-out schema, the training set is used to
perform feature selection and learn the prediction model, and
the one test subject is only touched in prediction process. We
applied a Nearest Neighbor classifier to build the prediction
model because it is easy to perform on multivariate temporal
gene expression data sets.

The results on H3N3 and HIN1 data sets are listed in
Table IIT and Table IV. Since the HINI data set is
imbalanced data (8 negative subjects and 16 positive
subjects). We report sensitivity, specificity, and balanced
accuracy to evaluate the results from all methods. The
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balanced accuracy is the average of sensitivity and
specificity. Balanced accuracy tends to decrease the chance
that the classifier takes advantage of an imbalanced test set.

The classification results on H3N3 and HIN1 are shown
at the top sub-table of Table III and Table IV. We repeat
experiments 20 times and report the mean + std values for
classification results (sensitivity, specificity, and balanced
accuracy). We can see there that the accuracy of the
predictor built on the features selected by our proposed
MSTM method outperforms all alternatives including the
predictor built on all features. This proves that our MSTM
method selects more accurate features.

Number of Selected features. The number of selected
features from different methods is shown at the bottom sub-
table of Table III and Table IV. Our MSTM method can
automatically select the optimal feature set by eliminating
features with weight zero. MSTM selected 55 genes out of
12,023 features on H3N3, and 27 genes out of 12,023
features on HINI. However, FST, Simba, BAHSIC and
Relief cannot select the optimal feature set automatically,
since they are all feature ranking methods. We report the
number of top features where we get the highest accuracy for
these three methods. The number of selected features is listed
at the bottom of Table III and Table IV. Our method forces
the weights of most irrelevant features to be zero, and it
therefore selects much fewer features than the alternatives.



TABLE IIL RESULTS ON H3N2 DATA
All feature BAHSIC Relief Simba FST MSTM
Sensitivity 0.667 0 0.735+£0.202 0.875 £ 0.063 0.882+0.073 1.000+0 1.000 +0
Specificity 0.811+0 0.582 £ 0.056 0.778 £0.118 0.763 £0.053 0.889£0.130 0.922 +0.150
Balanced Accuracy 0.771+0 0.659 £0.129 0.826 + 0.065 0.823 +0.063 0.944 + 0.064 0.961 + 0.084
(a) Classification Accuracy (mean =+ std)
BAHSIC Relief Simba FST MSTM
217 154 135 50 55
(b) Number of Selected Features
TABLE IV. RESULTS ON HIN1 DATA
All feature BAHSIC Relief Simba FST MSTM
Sensitivity 0.938 £0 0.806 + 0.052 1.000£0 0.948 +0.003 1.000+0 1.000 £ 0
Specificity 0.125+0 0.405£0.131 0.500 £0.132 0.605+0.163 0.750 £0.151 0.801 +0.131
Balanced Accuracy 0.531+0 0.606 + 0.092 0.750 £ 0.074 0.777 £ 0.085 0.875+0.101 0.901 £ 0.065
(a) Classification Accuracy (mean =+ std)
BAHSIC Relief Simba FST MSTM
346 121 141 43 27

(b) Number of Selected Features

V. CONCLUSION

We proposed a margin-based feature selection filter that
can directly select a few informative genes from temporal
high-dimensional gene expressions. For each subject, we
define a temporal margin based on a measure of distance
between two multivariate time series from other subjects. We
take into account the uncertainty in calculating nearest
neighbors by considering the updated weights in each
iteration. The objective function of the proposed selection
method is to maximize each subject's temporal margin in its
own relevant subspace. The optimal weight for each feature
is learned by solving this optimization problem.
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