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Abstract—Identifying informative biomarkers from a large 
pool of candidates is the key step for accurate prediction of an 
individual’s health status. In clinical applications traditional 
static feature selection methods that flatten the temporal data 
cannot be directly applied since the patient’s observed clinical 
condition is a temporal multivariate time series where different 
variables can capture various stages of temporal change in the 
patient’s health status . In this study, in order to identify 
informative genes in temporal microarray data, a margin 
based feature selection filter is proposed.  The proposed 
method is based on well-established machine learning 
techniques without any assumptions about the data 
distribution. The objective function of temporal margin-based 
feature selection is defined to maximize each subject's 
temporal margin in its own relevant subspace. In the objective 
function, the uncertainty in calculating nearest neighbors is 
taken into account by considering the change in feature 
weights in each iteration. A fixed-point gradient descent 
method is proposed to solve the formulated objective function. 
The experimental results on both synthetic and real data 
provide evidence that the proposed method can identify more 
informative features than the alternatives that flatten the 
temporal data in advance. 

Keywords- high dimensional; temporal data; feature 
selection; margin; multivariate time series data 

I.  INTRODUCTION 
The major challenges in analyzing microarray data is 

dealing with small-sample high-dimensional data where the 
number of biomarkers used as features is typically much 
larger than the number of labeled subjects. Performing 
feature selection methods as a preprocessing step to identify 
informative biomarkers is a  common way to address this 
problem. It is often followed by a classification method on 
selected genes to predict the health status of an individual. 

However, there is often interest in the analysis of 
dynamic biological processes with data from DNA gene 
expression microarray chips instead of analyzing static gene 
expression data. In order to predict an individual's health 
status, it is very helpful to analyze such high dimensional 
gene expression data that varies with time. Besides the 
traditional challenge of curse of dimensionality, another 
challenge of analyzing dynamic biological processes is that 

the data gathered is temporal. Therefore, the data records for 
each individual are multivariate time series. However, 
traditional feature selection methods cannot handle such 
multivariate time series data. The most straightforward 
method is to apply some techniques to flatten the temporal 
data, and then perform traditional feature selection methods 
in the flattened data.  

In this study, we proposed a feature selection filter that 
can directly select informative features from temporal high-
dimensional biomarkers. We defined a temporal margin for 
each subject based on a measure of distance between two 
multivariate time series data from two different subjects. The 
objective function of the proposed selection method is to 
maximize each subject's temporal margin in its own relevant 
subspace. We also take into account the uncertainty in 
calculating nearest neighbors because the feature weights 
change in each iteration, and it is hard to calculate nearest 
neighbors for a multivariate time series data. We applied 
fixed-point gradient ascent to solve the optimization problem 
and get the optimal weight for each gene. Genes with large 
weights are selected to build the prediction model to predict 
the health status of each individual. The experimental results 
show that our method outperforms the alternatives, which 
apply traditional feature selection methods after flattening 
the temporal multivariate gene expression data. Convergence 
theorem of the proposed method is also presented. 

II. RELATED WORK 
Feature selection methods can be broadly categorized 

into filtering models [1] and wrapper models [2]. Filtering 
methods separate the feature selection from the learning 
process, whereas wrapper methods combine them. The main 
drawback of wrapper methods is their computational 
inefficiency. 

There are three widely used kinds of filtering methods. In 
[3, 5] a margin-based method is proposed as a feature-
weighting algorithm that is a new interpretation of a 
RELIEF-based method [4]. The method in [5] is an online 
algorithm that solves a convex optimization problem with a 
margin-based objective function. 

Markov Blanket-based methods [1, 6, 7] perform feature 
selection by searching an optimal set of features using 
Markov Blanket approximation.  The method proposed at [6] 
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approximates the Markov Blanket by applying a Grow-
Shrink process and then removing the feature whose Markov 
Blanket can be found in the rest of features. Method [7] 
searches Markov Blanket after learning the structure of the 
Bayesian network.  

Dependence estimation-based methods use the Hilbert-
Schmidt Independence Criterion as a measure of dependence 
between the features and the labels [8]. The key idea in this 
method is that good features should maximize such 
dependence. However, all these methods assume that the 
data is static without varying on time. They cannot be 
applied in temporal gene expression data that is the main 
problem of this study. 

Several feature-learning methods [9, 10] have recently 
been proposed to handle the temporal gene expression data, 
without imputing missing values in advance. However, those 
two methods are different from the proposed method in this 
study, since those methods treat the records for an individual 
at different time steps independently, which will result in 
loss of temporal information among the data. All those 
works project the data to another space and learn features 
from the new space (factors or principal component). Those 
methods are actually methods for dimension reduction, 
rather than feature selection. Due to this, we will not 
compare our method with them in this study. 

The method proposed in this study extends our feature 
ranking method addressing the similar problem [13]. 
Previously, we measured nearest neighbors in the original 
space and did not update them while updating the feature 
weights. Both aspects are generalized here. In addition, our 
method proposed in [13] directly applies gradient descent 
optimization, which cannot guarantee  convergence to a 
global solution, whereas a globally optimized solution is 
guaranteed when using the methods proposed here.  

III. PROPOSED METHOD 

Let 1},{ ,...,1 ±×ℜ⊂= ×
=

iTn
Niii YXD  be the data set with N 

individuals. Tin
i

×ℜ∈X  represents n observed biomarkers 
(e.g. gene expression data) for individual i measured at Ti 
time steps. }1,1{ −∈iY  represents the class label (e.g. health 
status) for individual i. Let )(r

iX be the rth column of Xi that 
corresponds n biomarkers measured at time tr. 

We will first define the measure of distance between 
multivariate time series data of two subjects, and then 
present the temporal margin based on the distance measure 
as well as the objective function of proposed feature 
selection method and algorithm for solving the 
corresponding optimization problem. 

A. Measure Distance Among Multivariate Time Series 
Given Xi, and Xj corresponding to the observed 

biomarkers measured at different time steps for individual i 
and individual j, respectively, the distance (we call Temporal 
distance, represented as Tdist) between two multivariate time 
series Xi and Xj is defined as: 
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where Ti and Tj are the number of time steps of individual i 
and individual j, respectively; )(r

iX  is the vector consists of 
biomarkers measured at time steps r for individual i; )(s

iX  is 
the vector of biomarkers measured at time steps s for 
individual j; for any two vectors v and z, function d(v, z) can 
be any kind of distance function. To keep the notation 
simple, we defined ),( zvd  as the Manhattan distance 
between two vectors. 

B. Maximize Temporal Margin With Uncertainty 
Given an instance, the margin of a hypothesis is the 

distance between the hypothesis and the closest hypothesis 
that assigns an alternative label [4]. For a given instance Xi, 
we find two nearest neighbors for Xi, one with the same class 
label (called nearhit), and the other with different class label 
(called nearmiss). The hypothesis-margin of a given instance 
Xi in data set D is defined as: 
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In margin-based feature selection, we scale the feature by 

assigning a non-negative weight vector w, and then choose 
the features with large weights that maximize the margin. 
One idea is to then calculate the margin in weighted feature 
space rather than the original feature space, since the nearest 
neighbor in the original feature space can be completely 
different from the one in the weighted feature space. 
Therefore, we define the instance margin for each instance 
Xi from D in a weighted feature space as: 
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which is equivalent to: 
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where TM and TH are the number of time steps of 
nearmiss(Xi) and nearhit(Xi), respectively; for each instance 
Xi, the corresponding i�  is defined as: 
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where || ⋅  is the element-wise absolute operator. 
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One possible problem may exist in the current definition 
of instance margin. The nearest neighbors we calculate for 
each instance might not be the real nearest neighbors, since 
we calculate the nearest neighbor for each instance in the 
weighted space that changes each time when the weights get 
updated. To solve this problem, we take into account the 
uncertainty of calculating nearest neighbors when calculating 
instance margins. We calculate the uncertainty of each 
instance being the nearest neighbor of xn. The uncertainty is 
evaluated by standard Gaussian kernel estimation with kernel 
width of �. Specifically, we define the uncertainty that an 
instance xi with the same class label as xn can be the nearest 
hit neighbor of xn as: 
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Similarly, the uncertainty that an instance xi with a 
different class label from xn can be the nearest miss neighbor 
of xn is defined as: 
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Please note that distance in equations (6) and (7) denotes 
the distance between xn and xi in weighted space determined 
by weight vector w. Finally, by checking the uncertainty of 
each instance to be the nearest neighbor of xn, we define our 
final temporal margin with uncertainty as the expectation 
of the instance margin of xn, which can be written as: 
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As we mentioned before, our temporal margin 
incorporates the uncertainty in calculating two nearest 
neighbors (E�n).  

We already define the instance margin for each subject 
Xn. Therefore, we can define the temporal margin of the 
entire data D that has N subjects as the sum of all instance 
margins, which can be written as: 
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The feature weights can be learned by solving an 
optimization problem that maximizes the uncertainty margin 
of data D. This optimization problem can be represented as: 
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We followed logistic regression formulation framework. 

In order to avoid huge values in weight vector w, we add a 
normalization condition 1|| || θ≤w . Therefore, we can rewrite 
the optimization problem as: 
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The above formulation is called nonnegative garrote. We 

can rewrite the formulation as: 
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For each solution to (12), there is a parameter �, 

corresponding to the obtained � in (12), which gives the 
same solution in (11). Formulation (12) is actually the 
optimization problem with 1�  regularization. The benefits of 

adding the 1�  penalty have been well studied [12] and it is 

shown that the 1�  penalty can effectively handle sparse data 
and huge amounts of irrelevant features. 

C. Feature Selection Algorithm 
In this section we will introduce our feature selection 

method, which solves the optimization problem introduced 
in Section 3.2. As we can see from (12), the optimization 
problem is convex if E�n is fixed. Fox a fixed E�n, (12) is a 
constrained convex optimization problem. However, it 
cannot be directly solved by gradient descent because of the 
nonnegative constraints on w. To handle this problem, we 
introduce a mapping function: 
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Therefore, the formulation (12) can be rewritten as: 
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By taking the derivative with respect to u, we obtain the 

following updated rule for u: 
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where � is learning rate, ⊗ is the Hadamard product, and 

nβE  is defined as: 
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However, E�n is determined by w so that (14) is not a 

convex problem. We use a fixed-point EM algorithm to find 
the optimal w. The proposed algorithm for Margin-based 
Feature Selection in Temporal Microarray data (we call it 
MSTM) is shown in Table 1. 

The MSTM algorithm starts by initializing the values of 
w to be 1. With such initialization, we can estimate the sn and 
E�n for each instance xn. Then, in each iteration, the weights 
vector w is updated by solving the optimization problem (14) 
with estimated values of sn and E�n in the previous iteration. 
We repeat the iteration until convergence. The MSTM 
algorithm requires pre-defined kernel width � and a 
regularization parameter �. We applied cross validation to 
select the values of parameters. 

TABLE I.  MSTM FEATURE SELECTION METHOD 

Input:       data set D = {(xi, yi)}i=1,...N 
                  kernel width � 
                  regularization parameter � 
Output:    feature weights w 
Initialization:      set w(0)=1, t = 1 
Do 
         Calculate E�n

(t) using w(t-1) and equation (8) 
         Update u(t) using updated rule in equation (15) 
         Update w(t) using u(t) using equation (13) 
        t = t + 1 
Until convergence  
 
To prove convergence of MSTM algorithm we will use 

the following theorem. 
Theorem 1 (Contraction Mapping Theorem). Let T: 

X�X be a contraction mapping on a complete metric space 
X. The sequence generated by xn=T(xn-1) for n = 1, 
2,3,…converges to unique limit x*, where x* is the fixed 
point of T (T(x*)=x*). In other words, there is a nonnegative 
real number r<1 such that 

1 1 0( *, ) ( , )
1

n

n
rd x x d x x

r
+ ≤

−  
Proof: See [12]. 
Based on this theorem we prove the following: 
Theorem 2. There exists �0 such that for any � > �0 the 

MSTM algorithm converges to a fixed unique solution w* 
when initial feature weights w(0) are nonnegative. 

The proof is following a similar schema as in [3]. Details 
are  omitted for lack of space. 

The complexity of the MSTM algorithm is O(TN2M) 
where T is the total number of iterations, N is the number of 
instances, and M is the number of features. Our experimental 
results show that the algorithm converges in a small number 
of iterations (less than 40). Therefore, the complexity of 
MSTM algorithm in real application is about O(N2M). Note 

that the MSTM algorithm is linear to the number of features, 
so the proposed method can handle a huge number of 
features. 

IV. EXPERIMENTS 
To characterize the proposed algorithm, we conducted 

large-scale experiments on both synthetic and 2 real flu data 
sets [9, 10]. All experiments of this study were performed on 
a PC with 3 GB of memory. We compared our proposed 
MSTM algorithm in temporal gene expression data with 
four traditional feature selection methods (the method 
proposed in [12] that we call BAHSIC, SIMBA [4], Relief 
[11] and FST [13]) after flattening temporal multivariate 
data into one single matrix. 

For the prediction method, we apply Nearest Neighbor 
classifier on all features and select features by different 
feature selection methods. We compare results on both 
synthetic data and real data. 

A. Results on Synthetic Data 
We generate synthetic data simulating 20 subjects. Each 

subject has 50-dimensional records at 20 different time steps. 
Each subject i is generated according the following process. 
We first generate 50-dimensional random data Xi for subject 
i at time step 1. Label Yi is complete decided by the first four 
features following )()( 4321 iiiiiY XXXX ∨∧∨= . We then 
generate records for subject i at other time steps using 
formula: ε+= ++ )1()1( t

i
t

i XX , where )
10

,0�(~ tε  is the Gaussian 

noise that is also a function of time steps. 
The results on synthetic data are shown in Figure 1 and 

Table II. Figure 1 shows the feature weights for each feature 
learned by our proposed MSTM and three alternatives. It 
clearly shows that our method assigns significantly larger 
weights to the first four features used to decide the Label 
than to most other features. Moreover, our method applied 
L1 regularization so that the feature weights learned are 
sparse (most of feature weights are tend to zero). 

Table II shows the results comparing our method to three 
alternatives (three alternatives are applied after flattening the 
temporal data). We choose the top 4 features selected by 
each method, and compare the number of features correctly 
selected among these top 4 features. Top 4 features means 4 
features with biggest feature weight.  We can see from Table 
II that our method included all 4 informative features in the 
top 4 features, whereas SIMBA hits 3, FST and Relief hits 
only 2. Our method outperforms alternatives on this 
synthetic data. We didn't apply BAHSIC on the synthetic 
data because BAHSIC is not feature weighting method. 

TABLE II.  NUMBER OF CORRECTLY SELECTED FEATURES AMONG 
TOP 4 FEATURES  

 Relief FST Simba MSTM 
# correct features 2 2 3 4 
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Figure 1. Feature weights learned on synthetic data. 

B. Results on Two Real Flu Datasets 
We first describe the data sets [9, 10] used in this section.  

Two challenge studies were performed with two groups of 
healthy human volunteers. One of these groups was exposed 
to H3N2 virus, and the other was exposed to H1N1 virus. 
The H1N1 and H3N2 studies were performed independently, 
with different subjects. In summary, H3N2 data consists of 
records for 17 subjects collected at 16 different time steps. 
H1N1 data consists of records for 24 subjects collected at 16 
different time steps.  For H3N2 and H1N1 gene expression 
data, the same 12,023 genes are considered for analysis for 
each subject at each time step. 

For the feature selection and learning-prediction process, 
we apply leave-one-out schema because of the low number 
of subjects in both data sets.  To avoid overfitting, in each 
iteration of leave-one-out schema, the training set is used to 
perform feature selection and learn the prediction model, and 
the one test subject is only touched in prediction process. We 
applied a Nearest Neighbor classifier to build the prediction 
model because it is easy to perform on multivariate temporal 
gene expression data sets. 

The results on H3N3 and H1N1 data sets are listed in 
Table III and Table IV.  Since the H1N1 data set is 
imbalanced data (8 negative subjects and 16 positive 
subjects). We report sensitivity, specificity, and balanced 
accuracy to evaluate the results from all methods. The 

balanced accuracy is the average of sensitivity and 
specificity. Balanced accuracy tends to decrease the chance 
that the classifier takes advantage of an imbalanced test set. 

The classification results on H3N3 and H1N1 are shown 
at the top sub-table of Table III and Table IV. We repeat 
experiments 20 times and report the mean ± std values for 
classification results (sensitivity, specificity, and balanced 
accuracy). We can see there that the accuracy of the 
predictor built on the features selected by our proposed 
MSTM method outperforms all alternatives including the 
predictor built on all features. This proves that our MSTM 
method selects more accurate features.   

Number of Selected features. The number of selected 
features from different methods is shown at the bottom sub-
table of Table III and Table IV. Our MSTM method can 
automatically select the optimal feature set by eliminating 
features with weight zero. MSTM selected 55 genes out of 
12,023 features on H3N3, and 27 genes out of 12,023 
features on H1N1. However, FST, Simba, BAHSIC and 
Relief cannot select the optimal feature set automatically, 
since they are all feature ranking methods. We report the 
number of top features where we get the highest accuracy for 
these three methods. The number of selected features is listed 
at the bottom of Table III and Table IV. Our method forces 
the weights of most irrelevant features to be zero, and it 
therefore selects much fewer features than the alternatives. 

3841000



TABLE III.            RESULTS ON H3N2 DATA 

 All feature BAHSIC Relief Simba FST MSTM 

Sensitivity 0.667 ± 0 0.735 ± 0.202 0.875 ± 0.063 0.882 ± 0.073 1.000 ± 0 1.000 ± 0 

Specificity 0.811 ± 0 0.582 ± 0.056 0.778 ± 0.118 0.763 ± 0.053 0.889 ± 0.130 0.922 ± 0.150 

Balanced_Accuracy 0.771 ± 0 0.659 ± 0.129 0.826 ± 0.065 0.823 ± 0.063 0.944 ± 0.064 0.961 ± 0.084 

(a) Classification Accuracy (mean ± std) 
 

BAHSIC Relief Simba FST MSTM 

217 154  135 50 55 
(b) Number of Selected Features 

TABLE IV.             RESULTS ON H1N1 DATA 

 All feature BAHSIC Relief Simba FST MSTM 

Sensitivity 0.938  ± 0 0.806 ± 0.052 1.000 ± 0 0.948 ± 0.003 1.000 ± 0 1.000 ± 0 

Specificity 0.125 ± 0 0.405 ± 0.131 0.500 ± 0.132 0.605 ± 0.163 0.750 ± 0.151 0.801 ± 0.131 

Balanced_Accuracy 0.531 ± 0 0.606 ± 0.092 0.750 ± 0.074 0.777 ± 0.085 0.875 ± 0.101 0.901 ± 0.065 
(a) Classification Accuracy (mean ± std) 

 
BAHSIC Relief Simba FST MSTM 

346 121 141 43 27 

(b) Number of Selected Features 

V. CONCLUSION 
We proposed a margin-based feature selection filter that 

can directly select a few informative genes from temporal 
high-dimensional gene expressions. For each subject, we 
define a temporal margin based on a measure of distance 
between two multivariate time series from other subjects. We 
take into account the uncertainty in calculating nearest 
neighbors by considering the updated weights in each 
iteration. The objective function of the proposed selection 
method is to maximize each subject's temporal margin in its 
own relevant subspace. The optimal weight for each feature 
is learned by solving this optimization problem.  
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