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Abstract— Building prediction models for suggestive
knowledge from multiple sources dynamically is of great
interest from a clinical decision support point of view. This is
valuable in situations where the local clinical data repository
does not have sufficient number of records to draw conclusions
from. However, due to privacy concerns, hospitals are
reluctant to divulge patient records. Consequently, a
distributed model building mechanism that can use just the
statistics from multiple hospitals’ databases is valuable. Our
DIDT algorithm builds a model in that fashion. In this study,
using National Inpatient Sample (NIS) data for 2009, we
demonstrate that DIDT algorithm can be used to help
collaboratively build a better decision-making model in
situations where hospitals have small number of records that
are insufficient to make good local models. Based on 262
attributes used for model building, we showed that 9
collaborating hospitals each with less than 100 cases of
hospitalizations related to diabetes were able to achieve 9.9%
improvement in accuracies of hospitalization prediction
collectively using a distributed model as compared to relying
on local models developed on their own. When relying on local
risk prediction models for diabetes at these 9 hospitals, 159 of
357 patients were misclassified and prediction was impossible
for another 16 patients. Our integrated model reduced the
misclassification to 138 effectively providing accurate early
diagnostics to 37 additional patients. We also introduce the
concept of banding to improve DIDT algorithm so as to
logically combine multiple hospitals when large number of
hospitals is involved for reduction in cross-validation folds.
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prediction model; hospitalization risk prediction

I. INTRODUCTION

Applying data mining techniques to clinical domain data
can help with decision support systems and in identifying at
risk patients for targeted communications [1]. Since
medicine is “characterized by much judgmental knowledge”
[2], suggestions for decision-making are valuable to a
practitioner. Other prediction models of recent interest are
hospital readmission cost [3] and health insurance
underwriting [4]. In real life scenarios, the databases from
various hospitals are distributed geographically. There is
interest in building decision support systems that can harness
the power of collective intelligence from multiple hospitals
using the power of Internet [S]. Survey results have shown
that physicians are interested in such decision support
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systems [6]. Collecting data from all the distributed hospitals
to a central location is not practical due to privacy concerns
and regulatory implications. Hence, a distributed model
building mechanism is attractive. Since hospitals are
reluctant to divulge patient records to other institutions due
to legal and compliance issues, algorithms that can build
prediction models in a distributed environment using just the
statistics of the data are very useful. Furthermore, local
databases in some hospitals do not have sufficient number of
records of a certain diagnosis to garner intelligence from. In
these cases, mining the collective distributed space of similar
hospitals in a collaborative fashion can possibly lead to a
quite useful decision making model. For e.g., a particular
patient may be an outlier in the physician’s practice and so it
would help to obtain information relevant to diagnosis and
treatment from external hospitals. Another scenario is the
case of a patient with rare disease. The objective of our study
is to help draw conclusions on a certain diagnosis when local
samples are insufficient, using shared statistics from multiple
hospitals. A hypothesis explored in this study is that mining
the collective distributed data space of similar hospitals in a
collaborative fashion can possibly lead to developing a better
decision making model. Based on this premise, we identified
nine hospitals in the NIS (Nationwide Inpatient Sample)
2009 data set, each of which had less than 100 patient
records having diabetes mellitus without complications. For
those nine hospitals we built the local models and compared
them to the distributed model built using DIDT (Distributed
Id3-based Decision Tree) [7] algorithm. The distributed
model using just the statistics of data provided an
improvement of 9.9% in accuracy over average local model
accuracies. In Section II, we outline some of the salient
features of the NIS 2009 data set.

DIDT is a simple algorithm that produces a decision tree
identical to the one produced on an equivalent centralized
data aggregation. A decision tree [8] is a data structure that
represents the paths of traversals in a decision making
process for classification problems. 1d3 [9] is one of the
commonly used decision tree building algorithms. The
algorithm uses only statistics of data from the distributed
hospital databases. Thus it is a valuable tool in privacy
preserving distributed decision-making. DIDT has a built-in
mechanism to search the distributed databases using logical
constructs based on specified attributes of interest. This
search facility helps identify precisely the targeted data
instances from the distributed pool of databases. For e.g. if a
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patient with a specific set of symptoms and vital signs is an
outlier in the local database, these attributes of interest can be
used to seed the initial distributed search.

The equivalency of DIDT to centralized tree building is
theoretically provable. This means that the model built by
DIDT algorithm by learning from distributed data sets is
provably exact [10] with respect to its centralized
counterpart. Thus there is no loss of fidelity in the results
produced by our distributed algorithm DIDT. This is
attractive compared to privacy preserving algorithms similar
to differential privacy [11] that introduces noise to the
statistics and hence introduce distortion to the results.

II.  NIs2009 DATA

In this work, we used the Nationwide Inpatient Sample
(NIS) Database for 2009 that was created by Agency for
Healthcare Research and Quality (AHRQ) [12] Healthcare
Cost and Utilization Project (HCUP). It contains discharge
level information of all inpatients from a 20% stratified
sample of hospitals across USA. The 2009 NIS database has
close to eight million records from 1050 hospitals. Each data
instance represents an ‘“inpatient stay record”. Due to
confidentiality laws, records with some very specific medical
conditions and procedures (e.g. HIV/AIDS or abortion) are
not released by certain hospitals. The data records are de-
identified and do not contain personally identifiable
information such as name or home address. Hence, these
records are the ideal subset of vertically partitioned attributes
that are candidates for participation in a privacy preserving
distributed decision support model. Our DIDT algorithm do
not use the attributes directly, but use only statistics about
these attributes. The variations in data records between
hospitals provide a real world setting for studying distributed
algorithms. The distribution of patient records based on age

is given in Figure 1.
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Figure 1. Distribution of patient records based on age.

There are up to 25 high level codes for diseases per data
instance in the NIS 2009 data set. These are codes based on
HCUP Clinical Classifications Software (CCS), developed
by combining ICD-9-CM codes in a hierarchical fashion.
For example, CCS code for diabetes mellitus without
complications that is studied in this article is 49. The
Clinical Classifications Software (CCS) for ICD-9-CM is a
diagnosis and procedure categorization scheme [13] where
closely related ICD-9-CM codes are combined under a
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parent CCS code. There are a total of 259 CCS codes in all.
The largest percentages of records in the 2009 NIS data set
were based on Essential Hypertension (CCS code 98) with
31.2% and Coronary Atherosclerosis (CCS code 101) with
31.18%. Our study was focused on patients with “Diabetes
mellitus without complications” (CCS code 49), which
accounted for 14.88% of patient records and is the fifth most
common diagnosis. The parent-child relationship with CCS
Diagnoses 49 and its sibling ICD-9-CM codes is shown in

Figure 2.

ICD-9-CM

Diabetes mellitus
without complications
( CCS DIAGNOSES 49 )

24900

ICD-9-CM ICD-9-CM

Figure 2. Parent-child relationship between CCS code 49 and ICD-9-CM
codes.

Only 3 of the 12 children ICD-9-CM codes are shown in
Figure 1. The complete sibling ICD-9-CM codes are: 24900,
25000, 25001, 7902, 79021, 79022, 79029, 7915, 7916,
V4585, V5391, and V6546. The distributions of male and
female patients were 58.08% and 41.92% respectively. The
distribution of patient records based on race is given in
Figure 3. The distribution of race is based on the HCUP race
code.
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Figure 3. Distribution of patient records based on HUCP race code.

The distribution of the 5 most common specific
comorbidities among the patient records in the NIS 2009
data were as given in Table 1.

TABLE 1. MOST SPECIFIC COMORBIDITIES AMONG THE NIS 2009
PATIENT RECORDS
CCS Code Description Prevalence
98 Essential Hypertension 31.20%
101 Coronary Atherosclerosis 31.18%
106 Cardiac Dysrhythmias 16.80%
108 Congestive heart failure 15.14%
49 Diabetes mellitus without 14.88%
complications
III.  RELATED WORKS
The NIS data sets have been used in various medical
studies with a statistical approach. Age related

cholecystectomy [14] analysis was done using NIS data



from 1996-2001. Factors affecting length of hospital stay in
connection with mouth cellulitis [15] was done using NIS
2008 data. Hospitalization costs and post discharge follow-
up care costs associated with meningococcal disease was
studied [16] making use of 2005 NIS data. These studies
were using traditional statistical instruments with a
centralized data model. Studies using data mining
techniques on public data sets were also published. Support
Vector Machine prediction was used for diabetes related
hospitalization [17]. A recent study provided an
enhancement to the Support Vector Machine — Recursive
Feature Elimination (SVM-RFE) mechanism to optimally
estimate disease risk based on 2008 & 2009 NIS data [18].
Random Forest technique for predicting disease risks was
applied by Khalilia et al. [1] on the NIS 2005 data. An
improved prediction model over this work, using fuzzy
membership based on ICD-9 codes later appeared in the
literature [19]. These data mining models were all based on
centralized data architecture. In real life, the patient records
are distributed among clinical databases in various hospitals.
Due to this natural distribution of patient data among
hospitals, a distributed data mining technique would align
well with the distributed data topology. DIDT (Distributed
Id3-based Decision Tree) [7] is one of the distributed
decision making algorithms that builds a classification
model using decision trees. In this paper, the classification
problem of identifying patients as diabetic (CCS code 49) or
non-diabetic, is used as the underlying basis for our study.

IV.  METHODOLOGY

DIDT is a distributed decision tree building algorithm
that makes use of the distribution of the values of an attribute
among classes at individual hospitals. The data structure
capturing this information is called a crosstable matrix [20].
Suppose an attribute u takes m values v;,v,,....,v,, and spans n
classes c;,¢y,....,c, among data instances within a given
hospital. Then the (x,»)" element of the crosstable matrix
represents the number of data instances belonging to class c,
for which the attribute u# has value v,. The format of
crosstable matrices are uniformly maintained among all
participating hospitals. For the attribute u, as described
above, the crosstable matrix takes the template form:
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The sum of the crosstable matrices from individual
hospitals, named global crosstable matrix, gives the global
distribution of the values across all classes for a given
attribute. The global crosstable matrices can be used to
calculate the information gains and pick the attribute that
gives maximum gain to decide on the branching of the
decision tree. Let the global crosstable matrix for attribute u
based on template (1) be as follows:
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Then, the weighted average impurity measure for
attribute u is calculated using the formula:
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The weighted average impurity measure for each attribute
is calculated using the corresponding global crosstable
matrix. The attribute with the smallest value of weighted
average impurity measure (highest gain) is chosen for node
split [21]. At each node, the logical expression for the path
from root to the node is constructed using Boolean
operations. These Boolean expressions are used as search
expressions so as to globally construct the data attributes to
be considered for the next set of cross-table matrix
evaluations and eventual node split. The process is repeated
recursively till leaf nodes are reached. Cross-validation is
done by leave-one-hospital-out method. In this method, data
from one hospital is used for testing while data from all other
hospitals are used for training.

We modified the published DIDT algorithm to
accommodate a variation of crossvalidation. In the original
DIDT algorithm, a leave-one-hospital-out cross-validation
method was employed. When large number of hospitals are
involved, this makes the number of crossvalidations quite
high. To avoid this aberration, a few hospitals can be banded
together to create a logical mega-hospital so that when the
leave-one-hospital-out method is employed, a mega-hospital
can be left out for testing. We implemented the mega-
hospital building by selecting appropriate number of
hospitals randomly without replacement for each mega-
hospital such that these mega-hospitals provide a partition of
all the hospitals. For example, if there are 250 hospitals
involved, a leave-one-hospital-out crossvalidation leads to
250-fold cross-validations. However, if sets of 25 hospitals
(picked randomly without replacement) are used to create 10
mega-hospitals, then only 10-fold cross-validations using the
mega-hospitals need to be performed. In our study, the
modified DIDT was used for the distributed model building,
while local models were built using Weka opensource
software [22] with 10-fold crossvalidations.

The 259 CCS codes were represented as binary attributes.
The NIS data had up to 25 CCS codes per hospitalization
record. For a given hospitalization record, if a CCS code was
present, the value of the corresponding binary attribute was
set as 1 and if a CCS code was not present, the value of the
corresponding binary attribute was set to 0. Thus, the 259
binary attributes represent the presence or absence of the
corresponding CCS codes in a hospitalization record. In our
classification, we used 262 attributes for each hospitalization
record. These were: Age, Race, Sex and the 259 binary
attributes for CCS codes. The selection of these attributes



was influenced by Khalilia et al.’s work [1]. Values for the
attribute ‘race’ was missing from 4 states: Minnesota, North
Carolina, Ohio and West Virginia. Hence, hospitals in these
states were excluded. Also, in some hospitals from other
states, the attribute values for ‘race’ were missing from a
portion of the records. In these cases, we included only data
instances for patient records that had all the attributes
present. Age attribute was categorized using a binning
process. A range of 8 years (starting with ages 0-7) was used
for one bin. There were 1162186 diabetes patient records out
of which 672683 had all 262 attributes present.

V.  EXPERIMENTS

A. Pre-processing

The NIS 2009 data was loaded into SPSS Statistics
software Version 19 from IBM, using the load program
supplied on the AHRQ-HUP web site. The data records
were exported as comma separated values (csv) from SPSS.
The csv files were parsed for creating arff formatted files
using PERL scripts written for this purpose. ‘arff” is one of
the data input formats supported by Weka software.

We used a graph model as the underlying data
framework for the distributed databases. Graph databases
[23] help capture the structure of clinical data in a very
natural way. When each patient record is treated as a graph,
the symptoms can be represented as labeled vertices of a
graph. A graph database is well suited to represent the
heterogeneous patient graphs. In our experiments, the neo4j
[24] opensource graph database was used for storing
individual hospital data, one database per hospital, to create
the distributed environment. Lucene [25] indexing was used
for text indexing within the neo4j databases. Software
implementation was done in JAVA.

B. Results

We studied the problem of classifying patients with or
without “Diabetes mellitus without complications”. Decision
tree building on individual hospitals were done using Weka
software. The experiments were based on data from hospitals
with all 262 attributes present. There were 902 hospitals for
which data instances existed with non-missing values for
age, sex and race. The local models for these 902 hospitals
were generated with 10-fold crossvalidations, resulting in the
distribution of accuracy ranges shown in Table 2.

TABLE II. DISTRIBUTION OF ACCURACIES FOR 902 HOSPITALS WITH
DIABETES RECORDS
Range of accuracies Number of hospitals
could not build model 5
<50% 1
50% - 60% 17
60% - 70% 86
70% - 80% 411
80% - 90% 353
90% - 100% 29

As seen from Table 2, there are 23 hospitals with less
than 60% accuracy. To understand the distribution in this
range and to identify an area of improvement, we plotted the
distribution of patient records among these 23 hospitals. The
result is shown in Figure 4.
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Figure 4. Distribution of hospitals with less than 60% accuracies in local
models.

It is seen from this graph that the prevalence of hospitals
in this group had less than 100 patient records. Hence, we
decided to work on these 11 hospitals with less than 100
patient records. Of the 5 hospitals that could not build local
models, 2 had less than 3 records. Since using 1 or 2 records
can lead to reverse-identifying the patient(s) in a distributed
system, we decided to leave out these hospitals in our study.
Thus we focused on the 9 hospitals with less than 100 patient
records with all 262 attributes present. We performed local
decision trees building with 10-fold crossvalidations. The
results are shown in Table 3.

TABLE IIL DISTRIBUTION OF ACCURACIES FOR HOSPITALS WITH
LESS THAN 100 RECORDS HAVING DIABETES ATTRIBUTE
Number of Number of Local Model

records hospitals Accuracy
<10 3 -

25-50 2 56% - 60%

51-75 3 48.48% - 58.06%

76 - 100 1 57.5%

The average of local model accuracies among the 9
hospitals was calculated using:

count of correctly classified instances in all 9 hospitals

total instances in all 9 hospitals
= 53.08 %

Next, we ran the distributed DIDT algorithm on the same
set of hospitals. This resulted in an accuracy of 63%, an
improvement of 9.92%. To compare the results obtained by
the distributed model with the equivalent centralized model,
we combined all data from the 9 hospitals centrally and built
decision tree using weka software. To do this centralized
operation, all raw data from the 9 hospitals had to be
combined. We used the same crossvalidation formats as
DIDT to avoid crossvalidation mismatch. The result is
shown in the last column of Table 4.



TABLE IV. COMPARISON OF ACCURACIES FOR HOSPITALS WITH

LESS THAN 100 RECORDS

Number | Number| Average DIDT Centralized
of of local accuracy | equivalent
records | hospitals)] model accuracy
accuracy
1-100 |9 53.08% 63% 64.07%

It can be seen from the results that the DIDT algorithm
gives empirical result close to the centralized equivalent
value. The aberration in the result is due to the fact that in the
tree building node split, it is possible to have multiple
attribute selection choices for a node split and hence the
distributed tree is not necessarily identical to the centralized
one. However, the big advantage with the DIDT over the
centralized equivalent tree building is that no patient data is
required from the hospitals - only statistics about the patient
data is required. The centralized equivalent tree building
requires all patient data centrally and is costly in terms of
data transfer as well as in terms of data privacy. And, in
terms of not harming patients by improved diagnosis, the
statistics for these methods are shown in Table 5.

TABLE V. DISTRIBUTION OF ACCURACIES FOR HOSPITALS WITH
LESS THAN 100 RECORDS
Method Average Number of patients
accuracy incorrectly diagnosed

Local models 53.08% 159*

DIDT 63% 138

Centralized 64.07% 136
equivalent

*: excluding the 16 patients from 3 hospitals without local models

The results in Table 5 show another big advantage for
DIDT. The number of patients incorrectly classified is quite
less with DIDT compared to what the local models do on
their own; even after excluding the 16 patients that could
not be classified by the local models from the count and
accounting for them in DIDT. Our collaborative distributed
model reduced the misclassification from 159 to 138
effectively providing accurate early diagnostics to 37
additional patients.

Based on the values in Table 4, the improvement in
accuracy using DIDT was 9.92%. To validate our hypothesis
that the net improvement in accuracy is best for these
cohorts, we computed the net improvement in accuracies
when these hospitals collaborate with hospitals having higher
number of similar patient records. In order to do this, DIDT
algorithm was used to generate the corresponding decision
trees by making use of the related patient records from the 9
hospitals plus the hospitals in the corresponding tier. The
resulting improvements in accuracies for various tiers are
shown in Table 6.
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TABLE VL DISTRIBUTION OF ACCURACIES FOR HOSPITALS WITH
LESS THAN 100 RECORDS
Number of | Number of| Improvement in
records hospitals | accuracy using DIDT
1-100 9 9.92%
1-250 12 4.92%
1-500 19 1.49%
1-1000 20 0.37%

It is observed from Table 6 that the net improvement in
accuracy is best when the disadvantaged hospitals with less
than 100 patient records used DIDT to build a distributed
prediction model. Hospitals with larger number of records
do not contribute substantially to improve the accuracy
when hospitals with insufficient number of data build the
models collaboratively with them. Figure 5 shows a
graphical representation of this trend.
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Figure 5. Distribution of accuracies among hospitals at various
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In this case, the hospitals with large number of samples
to build their local models are better off by themselves as
they can build a model specific to their patients.

C. Dimension Reduction

The next experiment was oriented towards reducing the
dimension of the patient data. It was observed that some
symptoms had very low frequency in the aggregated data
set. Hence attributes corresponding to these symptoms with
frequency less than 4 in the combined data set were
eliminated. This resulted in a dimension reduction from 262
to 211 attributes. In this scenario, all 211 attributes were
fully populated in all hospitals. The accuracy in this case for
DIDT related results are shown in Table 7.

TABLE VII.  DISTRIBUTION OF PREDICTION ACCURACIES AFTER
DIMENSION REDUCTION FOR HOSPITALS WITH LESS THAN 100 DIABETES-
RELATED RECORDS
Number | Number| Average DIDT Centralized

of of Local accuracy | equivalent
records | hospitals)] Model accuracy
1-100 |9 53.08% 63% 63.40%

Comparing Tables 4 and 7, it is observed that the
accuracy for DIDT remains the same even after
considerable reduction in dimension.
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Using NIS data for 2009, we demonstrated that the
DIDT algorithm can be employed to the advantage of
hospitals that do not have enough information to build a
local decision support model to collaboratively build a
distributed model using just the statistics of data from such
hospitals. The DIDT algorithm does not require patient data
from participating hospitals. It improves the overall
accuracy of a classification model and provides the
disadvantaged hospitals with a classification model that
otherwise would not be at their disposal. The error in
diagnosis is reduced by the use of DIDT. It was observed
that hospitals with enough instances to create a reasonably
good local model do not contribute much to improve the
overall accuracy of a distributed model. Though DIDT is a
general-purpose distributed decision making algorithm, we
demonstrated this algorithm could be used to address a very
specific problem. We studied the model building in the case
of predicting hospitalization due to diabetes without
complications. However, this methodology has no
dependency on the disease per say and so can be applied to
building a classification model for any disease. We also
improved efficiency of the leave-one-hospital-out cross-
validation method in DIDT implementation to include the
mega-hospital concept by banding together hospitals. The
dimension reduction process produced nearly identical
results compared to the original data.

CONCLUSION
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