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Abstract— Building prediction models for suggestive 
knowledge from multiple sources dynamically is of great 
interest from a clinical decision support point of view. This is 
valuable in situations where the local clinical data repository 
does not have sufficient number of records to draw conclusions 
from. However, due to privacy concerns, hospitals are 
reluctant to divulge patient records. Consequently, a 
distributed model building mechanism that can use just the 
statistics from multiple hospitals’ databases is valuable. Our 
DIDT algorithm builds a model in that fashion. In this study, 
using National Inpatient Sample (NIS) data for 2009, we 
demonstrate that DIDT algorithm can be used to help 
collaboratively build a better decision-making model in 
situations where hospitals have small number of records that 
are insufficient to make good local models. Based on 262 
attributes used for model building, we showed that 9 
collaborating hospitals each with less than 100 cases of 
hospitalizations related to diabetes were able to achieve 9.9% 
improvement in accuracies of hospitalization prediction 
collectively using a distributed model as compared to relying 
on local models developed on their own. When relying on local 
risk prediction models for diabetes at these 9 hospitals, 159 of 
357 patients were misclassified and prediction was impossible 
for another 16 patients. Our integrated model reduced the 
misclassification to 138 effectively providing accurate early 
diagnostics to 37 additional patients. We also introduce the 
concept of banding to improve DIDT algorithm so as to 
logically combine multiple hospitals when large number of 
hospitals is involved for reduction in cross-validation folds.  

Keywords- distributed decision making; privacy preserving 
prediction model; hospitalization risk prediction 

I.  INTRODUCTION 
Applying data mining techniques to clinical domain data 

can help with decision support systems and in identifying at 
risk patients for targeted communications [1]. Since 
medicine is “characterized by much judgmental knowledge” 
[2], suggestions for decision-making are valuable to a 
practitioner. Other prediction models of recent interest are 
hospital readmission cost [3] and health insurance 
underwriting [4]. In real life scenarios, the databases from 
various hospitals are distributed geographically. There is 
interest in building decision support systems that can harness 
the power of collective intelligence from multiple hospitals 
using the power of Internet [5]. Survey results have shown 
that physicians are interested in such decision support 

systems [6]. Collecting data from all the distributed hospitals 
to a central location is not practical due to privacy concerns 
and regulatory implications. Hence, a distributed model 
building mechanism is attractive. Since hospitals are 
reluctant to divulge patient records to other institutions due 
to legal and compliance issues, algorithms that can build 
prediction models in a distributed environment using just the 
statistics of the data are very useful. Furthermore, local 
databases in some hospitals do not have sufficient number of 
records of a certain diagnosis to garner intelligence from. In 
these cases, mining the collective distributed space of similar 
hospitals in a collaborative fashion can possibly lead to a 
quite useful decision making model. For e.g., a particular 
patient may be an outlier in the physician’s practice and so it 
would help to obtain information relevant to diagnosis and 
treatment from external hospitals. Another scenario is the 
case of a patient with rare disease. The objective of our study 
is to help draw conclusions on a certain diagnosis when local 
samples are insufficient, using shared statistics from multiple 
hospitals. A hypothesis explored in this study is that mining 
the collective distributed data space of similar hospitals in a 
collaborative fashion can possibly lead to developing a better 
decision making model. Based on this premise, we identified 
nine hospitals in the NIS (Nationwide Inpatient Sample) 
2009 data set, each of which had less than 100 patient 
records having diabetes mellitus without complications. For 
those nine hospitals we built the local models and compared 
them to the distributed model built using DIDT (Distributed 
Id3-based Decision Tree) [7] algorithm. The distributed 
model using just the statistics of data provided an 
improvement of 9.9% in accuracy over average local model 
accuracies. In Section II, we outline some of the salient 
features of the NIS 2009 data set. 

DIDT is a simple algorithm that produces a decision tree 
identical to the one produced on an equivalent centralized 
data aggregation. A decision tree [8] is a data structure that 
represents the paths of traversals in a decision making 
process for classification problems. Id3 [9] is one of the 
commonly used decision tree building algorithms. The 
algorithm uses only statistics of data from the distributed 
hospital databases. Thus it is a valuable tool in privacy 
preserving distributed decision-making. DIDT has a built-in 
mechanism to search the distributed databases using logical 
constructs based on specified attributes of interest. This 
search facility helps identify precisely the targeted data 
instances from the distributed pool of databases. For e.g. if a 
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patient with a specific set of symptoms and vital signs is an 
outlier in the local database, these attributes of interest can be 
used to seed the initial distributed search. 

The equivalency of DIDT to centralized tree building is 
theoretically provable. This means that the model built by 
DIDT algorithm by learning from distributed data sets is 
provably exact [10] with respect to its centralized 
counterpart. Thus there is no loss of fidelity in the results 
produced by our distributed algorithm DIDT. This is 
attractive compared to privacy preserving algorithms similar 
to differential privacy [11] that introduces noise to the 
statistics and hence introduce distortion to the results.  

II. NIS 2009 DATA 
In this work, we used the Nationwide Inpatient Sample 

(NIS) Database for 2009 that was created by Agency for 
Healthcare Research and Quality (AHRQ) [12] Healthcare 
Cost and Utilization Project (HCUP). It contains discharge 
level information of all inpatients from a 20% stratified 
sample of hospitals across USA. The 2009 NIS database has 
close to eight million records from 1050 hospitals. Each data 
instance represents an “inpatient stay record”. Due to 
confidentiality laws, records with some very specific medical 
conditions and procedures (e.g. HIV/AIDS or abortion) are 
not released by certain hospitals. The data records are de-
identified and do not contain personally identifiable 
information such as name or home address. Hence, these 
records are the ideal subset of vertically partitioned attributes 
that are candidates for participation in a privacy preserving 
distributed decision support model. Our DIDT algorithm do 
not use the attributes directly, but use only statistics about 
these attributes. The variations in data records between 
hospitals provide a real world setting for studying distributed 
algorithms. The distribution of patient records based on age 
is given in Figure 1. 

 

Figure 1.  Distribution of patient records based on age. 

There are up to 25 high level codes for diseases per data 
instance in the NIS 2009 data set. These are codes based on 
HCUP Clinical Classifications Software (CCS), developed 
by combining ICD-9-CM codes in a hierarchical fashion. 
For example, CCS code for diabetes mellitus without 
complications that is studied in this article is 49. The 
Clinical Classifications Software (CCS) for ICD-9-CM is a 
diagnosis and procedure categorization scheme [13] where 
closely related ICD-9-CM codes are combined under a 

parent CCS code. There are a total of 259 CCS codes in all. 
The largest percentages of records in the 2009 NIS data set 
were based on Essential Hypertension (CCS code 98) with 
31.2% and Coronary Atherosclerosis (CCS code 101) with 
31.18%. Our study was focused on patients with “Diabetes 
mellitus without complications” (CCS code 49), which 
accounted for 14.88% of patient records and is the fifth most 
common diagnosis. The parent-child relationship with CCS 
Diagnoses 49 and its sibling ICD-9-CM codes is shown in 
Figure 2. 

 
Figure 2.  Parent-child relationship between CCS code 49 and ICD-9-CM 

codes. 

Only 3 of the 12 children ICD-9-CM codes are shown in 
Figure 1. The complete sibling ICD-9-CM codes are: 24900, 
25000, 25001, 7902, 79021, 79022, 79029, 7915, 7916, 
V4585, V5391, and V6546. The distributions of male and 
female patients were 58.08% and 41.92% respectively. The 
distribution of patient records based on race is given in 
Figure 3. The distribution of race is based on the HCUP race 
code. 

 
Figure 3.  Distribution of patient records based on HUCP race code. 

The distribution of the 5 most common specific 
comorbidities among the patient records in the NIS 2009 
data were as given in Table 1. 

TABLE I.  MOST SPECIFIC COMORBIDITIES AMONG THE NIS 2009 
PATIENT RECORDS 

CCS Code Description Prevalence 
98 Essential Hypertension 31.20% 

101 Coronary Atherosclerosis 31.18% 
106 Cardiac Dysrhythmias 16.80% 
108 Congestive heart failure 15.14% 
49 Diabetes mellitus without 

complications 
14.88% 

III. RELATED WORKS 
The NIS data sets have been used in various medical 

studies with a statistical approach. Age related 
cholecystectomy [14] analysis was done using NIS data 
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from 1996-2001. Factors affecting length of hospital stay in 
connection with mouth cellulitis [15] was done using NIS 
2008 data. Hospitalization costs and post discharge follow-
up care costs associated with meningococcal disease was 
studied [16] making use of 2005 NIS data. These studies 
were using traditional statistical instruments with a 
centralized data model. Studies using data mining 
techniques on public data sets were also published. Support 
Vector Machine prediction was used for diabetes related 
hospitalization [17]. A recent study provided an 
enhancement to the Support Vector Machine – Recursive 
Feature Elimination (SVM-RFE) mechanism to optimally 
estimate disease risk based on 2008 & 2009 NIS data [18]. 
Random Forest technique for predicting disease risks was 
applied by Khalilia et al. [1] on the NIS 2005 data. An 
improved prediction model over this work, using fuzzy 
membership based on ICD-9 codes later appeared in the 
literature [19]. These data mining models were all based on 
centralized data architecture. In real life, the patient records 
are distributed among clinical databases in various hospitals. 
Due to this natural distribution of patient data among 
hospitals, a distributed data mining technique would align 
well with the distributed data topology. DIDT (Distributed 
Id3-based Decision Tree) [7] is one of the distributed 
decision making algorithms that builds a classification 
model using decision trees. In this paper, the classification 
problem of identifying patients as diabetic (CCS code 49) or 
non-diabetic, is used as the underlying basis for our study. 

IV. METHODOLOGY 
DIDT is a distributed decision tree building algorithm 

that makes use of the distribution of the values of an attribute 
among classes at individual hospitals. The data structure 
capturing this information is called a crosstable matrix [20]. 
Suppose an attribute u takes m values v1,v2,….,vm and spans n 
classes c1,c2,….,cn  among data instances within a given 
hospital. Then the (x,y)th element of the crosstable matrix 
represents the number of data instances belonging to class cy 
for which the attribute u has value vx. The format of 
crosstable matrices are uniformly maintained among all 
participating hospitals. For the attribute u, as described 
above, the crosstable matrix takes the template form: 

 

The sum of the crosstable matrices from individual 
hospitals, named global crosstable matrix, gives the global 
distribution of the values across all classes for a given 
attribute. The global crosstable matrices can be used to 
calculate the information gains and pick the attribute that 
gives maximum gain to decide on the branching of the 
decision tree. Let the global crosstable matrix for attribute u 
based on template (1) be as follows: 

 
 

Then, the weighted average impurity measure for 
attribute u is calculated using the formula: 

 

 

 
The weighted average impurity measure for each attribute 

is calculated using the corresponding global crosstable 
matrix. The attribute with the smallest value of weighted 
average impurity measure (highest gain) is chosen for node 
split [21]. At each node, the logical expression for the path 
from root to the node is constructed using Boolean 
operations. These Boolean expressions are used as search 
expressions so as to globally construct the data attributes to 
be considered for the next set of cross-table matrix 
evaluations and eventual node split. The process is repeated 
recursively till leaf nodes are reached. Cross-validation is 
done by leave-one-hospital-out method. In this method, data 
from one hospital is used for testing while data from all other 
hospitals are used for training. 

We modified the published DIDT algorithm to 
accommodate a variation of crossvalidation. In the original 
DIDT algorithm, a leave-one-hospital-out cross-validation 
method was employed. When large number of hospitals are 
involved, this makes the number of crossvalidations quite 
high. To avoid this aberration, a few hospitals can be banded 
together to create a logical mega-hospital so that when the 
leave-one-hospital-out method is employed, a mega-hospital 
can be left out for testing. We implemented the mega-
hospital building by selecting appropriate number of 
hospitals randomly without replacement for each mega-
hospital such that these mega-hospitals provide a partition of 
all the hospitals. For example, if there are 250 hospitals 
involved, a leave-one-hospital-out crossvalidation leads to 
250-fold cross-validations. However, if sets of 25 hospitals 
(picked randomly without replacement) are used to create 10 
mega-hospitals, then only 10-fold cross-validations using the 
mega-hospitals need to be performed. In our study, the 
modified DIDT was used for the distributed model building, 
while local models were built using Weka opensource 
software [22] with 10-fold crossvalidations. 

The 259 CCS codes were represented as binary attributes. 
The NIS data had up to 25 CCS codes per hospitalization 
record. For a given hospitalization record, if a CCS code was 
present, the value of the corresponding binary attribute was 
set as 1 and if a CCS code was not present, the value of the 
corresponding binary attribute was set to 0. Thus, the 259 
binary attributes represent the presence or absence of the 
corresponding CCS codes in a hospitalization record. In our 
classification, we used 262 attributes for each hospitalization 
record. These were: Age, Race, Sex and the 259 binary 
attributes for CCS codes. The selection of these attributes 
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was influenced by Khalilia et al.’s work [1]. Values for the 
attribute ‘race’ was missing from 4 states: Minnesota, North 
Carolina, Ohio and West Virginia. Hence, hospitals in these 
states were excluded. Also, in some hospitals from other 
states, the attribute values for ‘race’ were missing from a 
portion of the records. In these cases, we included only data 
instances for patient records that had all the attributes 
present. Age attribute was categorized using a binning 
process. A range of 8 years (starting with ages 0-7) was used 
for one bin. There were 1162186 diabetes patient records out 
of which 672683 had all 262 attributes present. 

V. EXPERIMENTS 
A. Pre-processing 

The NIS 2009 data was loaded into SPSS Statistics 
software Version 19 from IBM, using the load program 
supplied on the AHRQ-HUP web site. The data records 
were exported as comma separated values (csv) from SPSS. 
The csv files were parsed for creating arff formatted files 
using PERL scripts written for this purpose. ‘arff’ is one of 
the data input formats supported by Weka software.  

We used a graph model as the underlying data 
framework for the distributed databases. Graph databases 
[23] help capture the structure of clinical data in a very 
natural way. When each patient record is treated as a graph, 
the symptoms can be represented as labeled vertices of a 
graph. A graph database is well suited to represent the 
heterogeneous patient graphs. In our experiments, the neo4j 
[24] opensource graph database was used for storing 
individual hospital data, one database per hospital, to create 
the distributed environment. Lucene [25] indexing was used 
for text indexing within the neo4j databases. Software 
implementation was done in JAVA. 

B. Results 

We studied the problem of classifying patients with or 
without “Diabetes mellitus without complications”. Decision 
tree building on individual hospitals were done using Weka 
software. The experiments were based on data from hospitals 
with all 262 attributes present. There were 902 hospitals for 
which data instances existed with non-missing values for 
age, sex and race. The local models for these 902 hospitals 
were generated with 10-fold crossvalidations, resulting in the 
distribution of accuracy ranges shown in Table 2. 

TABLE II.  DISTRIBUTION OF ACCURACIES FOR 902 HOSPITALS WITH 
DIABETES RECORDS 

Range of accuracies Number of hospitals 

could not build model 5 
< 50% 1 

50% - 60% 17 
60% - 70% 86 
70% - 80% 411 
80% - 90% 353 

90% - 100% 29 

As seen from Table 2, there are 23 hospitals with less 
than 60% accuracy. To understand the distribution in this 
range and to identify an area of improvement, we plotted the 
distribution of patient records among these 23 hospitals. The 
result is shown in Figure 4. 

 

 
Figure 4.  Distribution of hospitals with less than 60% accuracies in local 

models. 

It is seen from this graph that the prevalence of hospitals 
in this group had less than 100 patient records. Hence, we 
decided to work on these 11 hospitals with less than 100 
patient records. Of the 5 hospitals that could not build local 
models, 2 had less than 3 records. Since using 1 or 2 records 
can lead to reverse-identifying the patient(s) in a distributed 
system, we decided to leave out these hospitals in our study. 
Thus we focused on the 9 hospitals with less than 100 patient 
records with all 262 attributes present. We performed local 
decision trees building with 10-fold crossvalidations. The 
results are shown in Table 3. 

TABLE III.  DISTRIBUTION OF ACCURACIES FOR HOSPITALS WITH 
LESS THAN 100 RECORDS HAVING DIABETES ATTRIBUTE 

Number of 
records 

Number of 
hospitals 

Local Model 
Accuracy 

< 10 3 - 
25 - 50 2 56% - 60% 
51 - 75 3 48.48% - 58.06% 

76 - 100 1 57.5% 
 

The average of local model accuracies among the 9 
hospitals was calculated using: 

 

Next, we ran the distributed DIDT algorithm on the same 
set of hospitals. This resulted in an accuracy of 63%, an 
improvement of 9.92%. To compare the results obtained by 
the distributed model with the equivalent centralized model, 
we combined all data from the 9 hospitals centrally and built 
decision tree using weka software. To do this centralized 
operation, all raw data from the 9 hospitals had to be 
combined. We used the same crossvalidation formats as 
DIDT to avoid crossvalidation mismatch. The result is 
shown in the last column of Table 4.  
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TABLE IV.  COMPARISON OF ACCURACIES FOR HOSPITALS WITH 
LESS THAN 100 RECORDS 

Number 
of 

records 

Number 
of 

hospitals 

Average 
local 

model 
accuracy 

DIDT 
accuracy 

Centralized 
equivalent 
accuracy 

1 - 100 9 53.08% 63% 64.07% 
 

It can be seen from the results that the DIDT algorithm 
gives empirical result close to the centralized equivalent 
value. The aberration in the result is due to the fact that in the 
tree building node split, it is possible to have multiple 
attribute selection choices for a node split and hence the 
distributed tree is not necessarily identical to the centralized 
one. However, the big advantage with the DIDT over the 
centralized equivalent tree building is that no patient data is 
required from the hospitals - only statistics about the patient 
data is required. The centralized equivalent tree building 
requires all patient data centrally and is costly in terms of 
data transfer as well as in terms of data privacy. And, in 
terms of not harming patients by improved diagnosis, the 
statistics for these methods are shown in Table 5. 

TABLE V.  DISTRIBUTION OF ACCURACIES FOR HOSPITALS WITH 
LESS THAN 100 RECORDS 

Method Average 
accuracy 

Number of patients 
incorrectly diagnosed 

Local models 53.08% 159* 
DIDT 63% 138 

Centralized 
equivalent 

64.07% 136 

*: excluding the 16 patients from 3 hospitals without local models 
 
The results in Table 5 show another big advantage for 

DIDT. The number of patients incorrectly classified is quite 
less with DIDT compared to what the local models do on 
their own; even after excluding the 16 patients that could 
not be classified by the local models from the count and 
accounting for them in DIDT. Our collaborative distributed 
model reduced the misclassification from 159 to 138 
effectively providing accurate early diagnostics to 37 
additional patients. 

Based on the values in Table 4, the improvement in 
accuracy using DIDT was 9.92%. To validate our hypothesis 
that the net improvement in accuracy is best for these 
cohorts, we computed the net improvement in accuracies 
when these hospitals collaborate with hospitals having higher 
number of similar patient records. In order to do this, DIDT 
algorithm was used to generate the corresponding decision 
trees by making use of the related patient records from the 9 
hospitals plus the hospitals in the corresponding tier. The 
resulting improvements in accuracies for various tiers are 
shown in Table 6. 

 
 
 
 

TABLE VI.  DISTRIBUTION OF ACCURACIES FOR HOSPITALS WITH 
LESS THAN 100 RECORDS 

Number of 
records 

Number of 
hospitals 

Improvement in 
accuracy using DIDT 

1 - 100 9 9.92% 
1 – 250 12 4.92% 
1 - 500 19 1.49% 

1 - 1000 20 0.37% 
 

It is observed from Table 6 that the net improvement in 
accuracy is best when the disadvantaged hospitals with less 
than 100 patient records used DIDT to build a distributed 
prediction model. Hospitals with larger number of records 
do not contribute substantially to improve the accuracy 
when hospitals with insufficient number of data build the 
models collaboratively with them. Figure 5 shows a 
graphical representation of this trend. 

 

 
Figure 5.  Distribution of accuracies among hospitals at various 

resolutions. 

In this case, the hospitals with large number of samples 
to build their local models are better off by themselves as 
they can build a model specific to their patients. 

C. Dimension Reduction 
The next experiment was oriented towards reducing the 

dimension of the patient data. It was observed that some 
symptoms had very low frequency in the aggregated data 
set. Hence attributes corresponding to these symptoms with 
frequency less than 4 in the combined data set were 
eliminated. This resulted in a dimension reduction from 262 
to 211 attributes. In this scenario, all 211 attributes were 
fully populated in all hospitals. The accuracy in this case for 
DIDT related results are shown in Table 7. 

TABLE VII.  DISTRIBUTION OF PREDICTION ACCURACIES AFTER 
DIMENSION REDUCTION FOR HOSPITALS WITH LESS THAN 100 DIABETES-

RELATED RECORDS 

Number 
of 

records 

Number 
of 

hospitals

Average 
Local 
Model 

DIDT 
accuracy 

Centralized 
equivalent 
accuracy 

1 - 100 9 53.08% 63% 63.40% 
 

Comparing Tables 4 and 7, it is observed that the 
accuracy for DIDT remains the same even after 
considerable reduction in dimension. 
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VI. CONCLUSION 
Using NIS data for 2009, we demonstrated that the 

DIDT algorithm can be employed to the advantage of 
hospitals that do not have enough information to build a 
local decision support model to collaboratively build a 
distributed model using just the statistics of data from such 
hospitals. The DIDT algorithm does not require patient data 
from participating hospitals. It improves the overall 
accuracy of a classification model and provides the 
disadvantaged hospitals with a classification model that 
otherwise would not be at their disposal. The error in 
diagnosis is reduced by the use of DIDT. It was observed 
that hospitals with enough instances to create a reasonably 
good local model do not contribute much to improve the 
overall accuracy of a distributed model. Though DIDT is a 
general-purpose distributed decision making algorithm, we 
demonstrated this algorithm could be used to address a very 
specific problem. We studied the model building in the case 
of predicting hospitalization due to diabetes without 
complications. However, this methodology has no 
dependency on the disease per say and so can be applied to 
building a classification model for any disease. We also 
improved efficiency of the leave-one-hospital-out cross-
validation method in DIDT implementation to include the 
mega-hospital concept by banding together hospitals. The 
dimension reduction process produced nearly identical 
results compared to the original data. 
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