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Abstract Assuring confidentiality of personal information and preserving privacy are vital
when data is harvested from multiple institutions for business decision-making. An algorithm
that builds knowledge using statistics based on subject data from distributed sites that satisfy
specified selection criteria is presented here. The algorithm maintains complete fidelity of
information structures in the distributed data compared to the centralized equivalent.
Heterogeneous data schemas across sites can be accommodated and thresholds can be set
for global minimum saturation for attributes to participate in the prediction model building.
Policies for inclusion and exclusion of non-exhaustive attributes among sites are introduced.
Unification of attributes is introduced for homogenizing attribute values globally. Results of
experiments using data from medical, higher education, and social domains elucidate the value
of our algorithm in regulated industries, where shipping raw data outside parent institution is
not practical.

Keywords Data privacy - Privacy-preserving framework - Distributed decision support systems

1 Introduction

Due to regulations similar to EU data protection directive (Allaert and Barber 1998) in Europe
and HIPAA (Sweeney 2010) as well as FERPA in USA, sharing sensitive personal information
between institutions is a difficult proposition. However, gathering intelligence from distinct
entities by harvesting local information is valuable to many agencies (Rockwell and Abeles
1998). This could be the result of rare samples being spread across many sites or targeted
population being geo-dispersed. In the financial sector, a study may be geared towards
understanding the repossession pattern of houses in a specific geographic area. A social
agency may be interested in understanding certain characteristics of teen drivers in the country.
In line with Evidence Based Medicine, a Clinical Decision Support (CDS) system (Courtright
2001) that can provide suggestive knowledge representations based on data sets with patient
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attributes that are similar to the attributes of the patient in context, is valuable to a medical
practitioner (Karthikeyan and Pais 2010). Aggregating similar samples from other distributed
(off-site) databases would help in better decision-making (Fu 2001; Park and Kargupta 2003).
As an example, for studying the enrollment pattern of freshman women students in engineer-
ing, a social scientist would like to obtain information that goes beyond what is seen at the
local university and what might be available of a more general student population in univer-
sities around the nation. The intelligence being sought is usually seeded by partial information,
which is commonly known as the “attributes of interest” (Khoshgoftaar 2005). In the example
of freshman women students, the attributes of interest with targeted values can be represented
as a vector: <year = 1, sex = ‘f”, college = ‘engineering’>. To support distributed decision-
support, we suggest an algorithm that can query participating sites to retrieve statistics about
data instances satisfying the query and build a knowledge representation for the global
prediction model using aggregation of local statistics.

Dynamically acquiring targeted sample data directly from other sites is difficult due
to legal and regulatory implications (Vest and Gamm 2010). Even if two sites agree to
collaborate, the data schema in the two sites can be different. It is also important to
protect the confidentiality of personally sensitive information in inter-institutional data
transactions (Goldstein 2000). Given these obstacles, it is advantageous to model a
distributed decision support system that makes use of statistics about the samples from
distributed sites based on the attributes of interest, rather than the actual data or
microdata from other sites (Chow and Mokbel 2011). Our algorithm for decision
support does not require raw data from distributed sites and it does not require
identical data schema at participating sites. The algorithm does not introduce any
noise and the knowledge representation learned by the distributed mechanism is
theoretically provable to be identical to the centralized counterpart, with no loss of
fidelity.

The knowledge to be harvested needs a representation. One of the widely used artifact for
capturing learned information is a decision tree (Moret 1982). A ‘Decision Tree’ is a data
structure for representing paths of traversals in a decision making process for the class of
problems known as classification problems. An example of a classification problem is to
categorize applicants for a job as qualified or under-qualified or over-qualified. One of the
commonly used decision tree-building algorithm that is fairly easy to interpret is ID3 (Quinlan
1986). ID3 builds the decision tree iteratively by starting at the root node and splitting nodes
based on a node-splitting criterion that gives better distribution of the data instances into more
focused decision paths. The attribute with the highest gain (Quinlan 1993) or equivalently the
smallest impurity (or entropy) is picked for the node split. Typically for a decision tree
algorithm, the whole raw data is made use of in one central location. Our Distributed ID3-
based Decision Tree (DIDT) algorithm extends this to a distributed model where no raw data is
needed at a central location to generate the decision tree. A centralized service called Clearing
House (hereinafter referred to as CH) mediates the negotiations between the distributed sites.
In our distributed decision tree building, the inter-site (global) data schema (of attributes and
classes) is dynamically generated with no prior knowledge of local data schemas. The
computational model followed in our distributed prediction model building algorithm involves
local information processing and global synthesis (Caragea et al. 2004). The initial query based
on the attributes of interest and subsequent queries for decision tree building are processed
against the local data sets and the resulting local statistics are globally synthesized. This
distributed processing concept is illustrated in Fig. 1.

In Fig. 1, Dy, ....., Dn are the distributed sites, Sy, ....., S, are the local statistics from each
site and g(Sy, ...., S,) represents the global synthesis.

@ Springer



J Intell Inf Syst

. \

o
\

a 9
=

X 1 Y
[ g5, S, ’S) ]

Fig. 1 Distributed decision tree building

2 Related work

Privacy Preserving Distributed Data Mining (PPDM) (Lindell and Pinkas 2000; Xu 2011) has
emerged as a field of research interest. PPDM is aimed at mining information from different
sources without sacrificing the privacy of the parties involved. Privacy preserving data mining
has been studied by researchers in different communities — database community, the statistical
disclosure community and the cryptography community (Aggarwal and Yu 2008). The
pioneering work on Secure Multiparty Computation (SMC) by Yao (1986) along with other
works appear early in the literature (Goldreich 1998; Canetti 1998) and studied in the
cryptographic community. PPDM is a form of Secure Multiparty Computation (SMC) (Du
and Atallah 2001; Lindell and Pinkas 2009). Preserving privacy of individuals is the essence of
Secure Multiparty Computation. A survey of various approaches to SMC also appear in the
literature (Vaidya and Clifton 2003b). Other generic cryptographic PPDM techniques also
exists (Pinkas 2002). In the statistical disclosure control community, both non-interactive
(Adam and Wortman 1989; Brand 2002) and interactive (Dinur and Nissim 2003; Dwork
2006) query modes have been studied. One method of achieving PPDM is to model a
distributed decision support system that makes use of statistics about the samples from
distributed sites, rather than the actual data from those sites (Chow and Mokbel 2011). The
distributed algorithm for decision support introduced in this research does not require raw data
from distributed sites and it does not require identical data schema at participating sites. The
algorithm does not introduce any noise and the knowledge representation learned by the
distributed mechanism is identical to the centralized counterpart, with no loss of fidelity. Data
mining algorithms for distributed classification using SVM (Yu et al. 2006) and Logistics
Regression (Wu et al. 2012) that preserves privacy appear in the literature. Decision tree is a
popular classification model that is easy to interpret and computationally efficient (Cieslak
et al. 2012). Caragea et al. (2004) have outlined a theoretical sketch for a distributed decision
tree building process. Bar-Or et al. (2005) also made use of the ideas suggested by Caragea
et al. to introduce a distributed decision tree induction, viz. DHDT (Distributed Hierarchical
Decision Tree). Our DIDT algorithm design was influenced by both of these works. However,
both models (Caragea et al. & Bar-Or et al.) require identical relational data schemas (i.c.,
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homogeneous data schemas) in each of the participating sites and the schema has to be known
to the central broker. DIDT can accommodate non-homogeneous schemas at participating sites
and does not require prior knowledge of any data schema. This gives the flexibility for sites to
participate fully or participate by not disclosing certain attributes or not participate at will and
yet maintain data schema independence locally. Mechanisms similar to differential privacy
(Friedman and Schuster 2010) or constraint graphs (Mathew and Obradovic 2011a) can be
used as localized constraint filters.

The two data partitioning models for distributed data sets outlined by Caragea et al. (2004)
are horizontal & vertical fragmentation. In horizontal data partitioning, all data instances have
identical attribute sets and the instances corresponding to a specific value of an attribute will be
located in different sites. In vertical partitioning, the attribute set is subdivided and each site
holds values for the attributes in the subdivision assigned to it. To get a complete data instance,
the sub-tuples are to be combined from different sites. The hybrid model we propose allows for
a flexible data schema. A pictorial representation of these models is shown in Fig. 2.

In Fig. 2, columns represent attributes and rows represent instances of data. In the hybrid
model, there is no predefined set of attributes for data instances.

Various studies have been done on vertically partitioned data. Giannella et al. (2004)
proposed a distributed decision tree-building algorithm for vertically partitioned data.
However, the distributed decision tree generated may not be identical to the centralized tree.
A privacy-preserving decision tree building over vertically partitioned data was proposed by
Vaidya and Clifton (2005). Privacy-preserving k-means clustering (Vaidya and Clifton 2003a)
and Privacy-preserving Kth Element Score (Vaidya and Clifton 2009) over vertically
partitioned data has also been proposed. Vertical partitioning is usually done on databases to
improve performance of transactions (Navathe et al. 1984) and so from a practical use point of
view, distributed vertically partitioned databases are implemented across multiple departments
within an organization. Clustering (Inan et al. 2006) and Association Rules (Kantarcioglu and
Clifton 2004; Kumbhar and Kharat 2012)) on Horizontally Partitioned Data have been studied.
From a computational standpoint, privacy-preserving algorithms on vertically partitioned
databases may need to restrict the number of participating sites as well as the total size of
data involved; while for horizontally partitioned data, only the number of sites needs to be
controlled (Kantarcioglu 2008).

The two main techniques for privacy-preserving distributed data mining are secure multi-
party computation (SMC) and perturbation (Kantarcioglu et al. 2009). In the case of SMC, the
sites cooperate to build the global prediction model without revealing local data. In perturba-
tion, a transformation is performed on the data instances before being used in the model
building. There are two general perturbation techniques. One is randomization, in which some
noise is added to data before being published. Randomization techniques similar to differential
privacy (Dwork 2006) hampers the utility of the model. The second perturbation technique is a
mapping of the data instances to some representational data structure with no noise addition.
Our algorithm uses such a perturbation technique.

D D

1 n

D, D, _

Fig. 2 Data fragmentations: horizontal (leff), vertical (middle), and hybrid (right)
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Preliminary empirical investigation of our proposed algorithm (Mathew and Obradovic
2011b) using SPECT heart data set (Frank and Asuncion 2010a) was promising. In this paper,
we provide empirical validations for the equivalency of the centralized data structure (viz.
crosstable) and the aggregation of the localized crosstables; which is the key to our algorithm.
A new method of entropy calculation viz. relative entropy is introduced for entertain-
ing attributes that do not span all data instances across the distributes sites, but has
coverage span above a given threshold. We define two new policies (union and
intersection policies) to be applied on the sets of attributes from participating sites.
The concept of ‘unification of attributes’ to eliminate cross-band effects is also
introduced in this paper. The original global schema disclosure to individual sites
was refined so as not to divulge unwarranted attributes to participating sites, thus
improving security. Each site now gets a conditional global schema (conditional based
on the original schema created locally). Experiments using real data from various
domains (viz. healthcare, higher-education, and social) are presented. The experiments
in this work are done with identical cross-validation sets for our distributed algorithm
and the corresponding centralized ID3 algorithm, to demonstrate their equivalence.
The experiments in the preliminary study had cross-validation mismatch issues. Our
algorithm allows for a flexible localizable constraint enforcement mechanism to be
used to assure that local policies related to Personally Identifiable Information and
privacy constraints are implemented. In our experiments, attribute-based constraints
were used. Attribute-based constraints specify what attributes at particular sites should
be blocked from being disclosed. However, this can be replaced by any another
localized constraint filter.

3 Methodology

The goal of Distributed ID3-based Decision Tree (DIDT) algorithm is to generate a
decision tree from the distributed data instances that would functionally be identical to
the decision tree obtained by applying ID3 on the aggregate set of all the distributed
data instances. A query mechanism is incorporated to restrict the selection to instances
that satisfy the query. There are 2 stages in the DIDT algorithm. In the first stage, a
global schema of the distributed data instances relative to a query is generated. The
second stage involves gathering statistics from distributed sites based on the global
schema and building the next node in the decision tree. In this algorithm, we handle
categorical attributes. We also accommodate a complex test from C4.5 in which
possible values of an attribute are “allocated to a variable number of groups with
one outcome for each group” (Quinlan 1993). Continuous attributes and other add-ons
in C4.5 can be accommodated as well with some extensions to our algorithm. A
centralized agent called a Clearing House (hereinafter referred to as CH) will broker a
query to mine decision-support information from distributed sites. An important
assumption is that in each individual site, the data instances will remain the same
throughout the decision tree creation process. Another assumption is that all partici-
pating sites use agreed upon common vocabulary (Mathew and Obradovic 2010) for
attribute names, data types and class names.

The query originated by an end user is passed along to the CH. At the discretion of CH, the
query is forwarded to k chosen participating sites. When a site i receives the query, local
database is checked for data instances that matches the query. The resulting set of data
instances is subjected to local constraint enforcements. The metadata about the resulting set
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of attributes and the corresponding set of values are communicated to the CH. The CH
synthesizes this information and generates a global schema. For example, assume the metadata
from the only 2 participating sites are as follows:

<{sex,income},{{m,f}, {med,high}}>

<{sex,income,age},{{m,f}, {low} {teen,adult} }>

The global schema can be generated using union or intersection of the attribute sets. When
set union is applied to generate global schema, we say that ‘union policy’ is applied. In this
example, the global schema using union policy is:

<{sex,income,age},{{m,f}, {low,med,high}, {teen,adult} }>

Similarly, the global schema using ‘intersection policy’ is:

<{sex,income},{{m,f}, {low,med,high} }>.

The CH generates conditional global schema for each one of the £ sites selected earlier. A
conditional global schema for site 7 is a customized version of the global schema specific to the
site and is generated by masking out the attributes and values from the global schema that were
not originated by site 7. This is done so as to not disclose any attribute information to a site that
is not aware of it. At the same time, the conditional global schema gives a uniform template for
all local sites to communicate statistics to CH. Referring to the above example, using ‘?’ to
mask out a token, the conditional global schema for the first site (using either policies) will be:

<{sex,income},{{m,f},{?,med,high} }>

The CH communicates relevant conditional global schema to each site. Each site generates
crosstable matrices (Caragea et al.; 2004) for individual attributes in the conditional global
schema. For a given attribute u, the (x,y)™ entry of the crosstable matrix represents the number
of data instances that exists locally for which the attribute u exists with value x and the instance
belongs to class y. Local crosstable matrices generated by the sites are sent to the CH. The CH
will aggregate site-specific crosstable matrices to create global crosstable matrices for each
attribute. Using global crosstable matrices, the weighted average impurity measure for each
attribute is calculated. The attribute that gives minimum impurity is chosen for the next node
split. The formal algorithm is given below.

A. Stage 1

01. A query Q by an end user is transmitted to the CH

02. CH, at its discretion, selects k appropriate sites and sends the query Q to the & sites S,
...... s Sk

03. Each site i generates the set L; of local data instances that satisfies the query Q

04. Let II; represent the site-specific constraints and G;=II,(L;)

05. Let 4, denote the set of all attributes relative to G;. For a given attribute x € 4,, let V',
denote the set of values observed in G,. Let C; denote the set of all classes that are in G;. Then,
the metadata tuple for the site i takes the form<4,, {V; | x € 4;}, C;, n; >, where n;=|G;. Each
site sends the metadata to CH

06. CH creates a global schema by applying union policy on the local schemas using the

tuple expression:
k k k k k

< U A4, U Vixeu 45,0 CpY g >
i=1 i=1 =1 = e
Union policy is the default. Alternatively, intersection policy can be used. When intersec-
tion policy is used, the global schema takes the tuple expression:
k k k k k

<N Ai,{u VilkeN 4;p, v Ciy Y 0 >
i=1 i=1 j=1 i=1 i—1

07. CH creates conditional global schema for each site by dropping attributes and masking
attribute values that were not originated from the site
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B. Stage 2
08. CH communicates the conditional global schema to the & participating sites in the form:

< Aay...an}, {{v},.‘.v},l} {v’" }} {co,...cn} >

09. Based on the attributes in the cond1t10na1 global schema, each of the sites S; generates
uniform templates for the crosstable matrices for individual attributes. The crosstable matrix
template for an attribute with m values v;, v,, ..., v,, and n classes ¢y, ¢, ..., ¢, takes the form:

|CI(‘2---(‘"

Vi
vz

<

The elements in the matrix templates are populated by the local site. Such a
matrix for a given attribute is called the Unified Local Crosstable Matrix (ULCM)
for that attribute. The crosstable matrices for all attributes at each site are sent to the
CH.

10. The CH adds the ¥ ULCM’s (site-specific crosstable matrices) for each attribute # and
creates Unified Global Crosstable Matrix (UGCM) for u. If CT; represents the ULCM for an

k

attribute u at site 7 and CT, represents the UGCM for u, then CT, (x,y)= Y. CT;(x,y) . Let the
i=1
UGCM for an attribute be as follows:

(1)

11. The weighted average impurity measure for the attributes is calculated and the attribute
for split is chosen based on smallest value of weighted average impurity measure (highest
gain) (Tan et al. 2006). For the matrix shown in (1), the weighted average impurity measure is
given in (2).

-1 m

Z vailoggL (2)
i " v \ = /=1 ] vaik

i=1  j=1 k=1

This formula is based on Quinlan’s ID3 decision tree algorithm (Quinlan 1993). By default,
only attributes that exist in all the G,’s are included in the impurity calculations. Alternatives
are discussed in section 3.1 below.

12. To proceed to the next level of the decision tree, updated queries are generated for each
branch of the decision tree, using the values of the attribute selected. Updated queries are sent
to the same £ sites selected in Step 02. The process repeats from step 03 with each of the
queries until the classes are reached in the leaf nodes.

As mentioned earlier, G; in each individual site i will remain the same throughout the
decision tree creation process.
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3.1 Complete and Relative Entropies

“It is an unfortunate fact of life that data often has missing attribute values”
(Quinlan 1993). In ID3, the values of an attribute must be known for determining
the outcome of a test at a decision node. This restriction was overcome in C4.5
(Quinlan 1993) by calculating the apparent gain based on instances with known
values for a given attribute taking into consideration the fraction of such cases in
the training set. We generalize this idea of missing and non-existing values to the case
of hybrid data schemas as complete and relative entropies. We also take into consid-
eration the strength of the known values for this generalization. If a substantial
number of values are present for an attribute, the strength will be high. Such an
attribute deserves a chance and qualifies to be considered for test.

When a query QO is applied on a data set, the collection of data instances that
satisfies the query is referred to as “filtered data space” or simply “filtered space”. If
a given attribute u exists in all instances in the filtered space, we say that u spans the
filtered space. Otherwise, u does not span the filtered space. When entropy is
calculated using formula (2), an attribute may or may not span all of the filtered
data space. Assume that site i (i=1,2,...,k) has ¢#; data instances and Q is a query to
be applied. If ¢(#;) is the number of instances that satisfy Q in sitke i (i=1,2,...,k), the

total number of instances globally satisfying O is given by: t; = Y. ¢(t;) . For a given
i=1

attribute, using the elements of UGCM in (1), if the value of #, equals > 3 v;,
i=1 j=1

the attribute spans the whole filtered space and the value computed using (2) is termed

n

“complete entropy”. If 21 Zl vj < tg , then the attribute does not span the whole
j=

=
filtered space and the value computed using (2) is termed “relative entropy”. The
“relative entropy” is entertained for node splitting decision only if the ratio

m n

X
=1 j=1

tg
attribute is ignored from node splitting decision. The ratio » is a measure of the
strength of the attribute over the filtered space. The threshold 7 is usually set as a
percentage of the coverage of the attribute over the instances in the filtered space;

typically a high percentage value (e.g. 90 %).

r= is greater than a predefined threshold 7. i.e., r>7. Otherwise the

4 DIDT as a promotion algorithm

A promotion algorithm (Mathew and Obradovic 2013) incorporates finer resolution
data analytics into coarser levels. Let there be k tiers of resolutions, starting with r; as
the first tier resolution and r; as the k™ tier resolution. A window at tier i is a set of
r; data points. The representative value (rv) for a window at tier i will be a value
calculated using some designated function f; on the data points in the corresponding
window frame. The algorithm starts with 1st data point in a window of resolution r;
and keeps on moving the data cursor, adding data points to a bin for the window,
until the bin is full. When r; points accumulate in the bin corresponding to resolution
r;, a representative value (rv) is calculated using a function f; on the data points in
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the current bin. Then this »v is promoted to the next bin corresponding to r,. Once 7,
values accumulate in bin for r,, the rv for this bin is calculated and promoted to the
bin corresponding to »; and so on. After the »v for a bin is calculated and promoted
to the next bin, the entries in the original bin are cleared. The formal version of the
algorithm is given below:

Begin algorithm

variables: resolution,

1, T2y cereny T //k tiers of resolutions

bin,, biny, ...., bing //k bins corresponding to the resolutions
start:

{

initialize bin,, biny, ...., biny to be empty

while more data points are available in resolution r;

add current data point to bin

if (bin,, is full)

i =1, resolution = r;

while bin,egorution 18 full

v = fi(binesonution)

add rv to binresolution—>next

empty binresolution

i=it+1 > binresolution :binresolution—>next

end while

end if

end while

}

End algorithm

It is easy to see that DIDT is a promotion algorithm. Assume that there are & participating
sites and there are m attributes among the data instances.

As can be seen from Fig. 3, ; has a resolution of £ and each window corresponds to the
local crosstable matrix of one of the m attributes. Thus there are m windows in this case. The v
for this level is the global crosstable matrix for the corresponding attribute. At the 7, level, the

A
=N r rv = max N\
A A
rp=1 [ rv=information gain ceeee 4 A
e
=k A AL
= /" rv=global crosstable ) ce e 4 N

Fig. 3 Tiers in DIDT as a promotion algorithm
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Table 1 Boolean Operations

Symbol Operation Precedence

! negation high
conjunction medium

v disjunction low

information gain of each crosstable matrix is the 7v. At the r; level, maximum value among the
information gains is the 7v.

5 Privacy model

We analyze 3 aspects of DIDT in this context; viz. the framework, privacy preservation and
threat agents.

The framework includes the Clearing House (CH), the participating sites and their rela-
tionships. The CH is a trusted entity and acts as a central authority. The sites are vetted by the
CH. This is very similar to federations (eg. caGrid) where the central authority has a
credentialing process based on which membership is granted to institutions. Practical reasons
for having the CH includes the vetting process and setting up a common code of ethics the
member institutions should adhere to. This provides the administrative and technical controls
to establish trust and data integrity.

Our interest is in the privacy of individuals as well as utility of the algorithm for practical
use. The primary consideration in privacy preserving data mining is not disclosing Personally
Identifiable Information (PII) similar to name, address, date of birth, etc. (Verykios et al. 2004).
Since DIDT do not use raw data and does not need any PII attributes for prediction model
building, this condition is satisfied. The secondary consideration is that of re-identification of
the individual (Zheleva and Getoor 2007) or linking of microdata with publicly available
information (Samarati 2001). Since DIDT does not require any raw data, no microdata is
released and the problem related to linking of microdata for re-identification is eliminated. The
third issue is related to targeted querying. This is the case of inference attacks (Silva et al.
2004) where focused queries are used to infer private information. In the case of DIDT, a query
originating site cannot do a site-specific targeted query. The CH determines who participates in
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Fig. 4 Distribution of patient records based on age for NIS 2008 data
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Diabetes mellitus
without complications
( CCS DIAGNOSES 49)

24900 m ......
ICD-9-CM ICD-9-CM ICD-9-CM

Fig. 5 Parent—child relationship between CCS code 49 and ICD-9-CM codes

the model building and the participating sites’ credentials are not revealed to the query
originator. Also, the sites selected by the CH are free to participate or not. This layer of
isolation prevents targeted queries.

The main adversary in this model is an evesdropper. From a practical implementation point,
asymmetric crypto keys can be used for one-to-one communication between the CH and the
participating sites; thus thwarting evesdropping. For example, communications from the CH to
site x can be encrypted using the public key of x.

6 Experiments

The experiments were oriented towards demonstrating the working of the DIDT algorithm in
various business domains and verifying that the results are consistent with the centralized ID3
algorithm. For centralized runs, we used the well-known implementation of ID3 using weka
opensource software (Hall et al. 2009). The implementation of DIDT was done in JAVA. The
data instances in individual sites for DIDT were stored in neo4j (Huang and Dong 2013) graph
databases in one-to-one mapping — one neo4j graph database per site. A graph database is well
suited to represent heterogeneous records. The DIDT implementation in JAVA required one
dedicated database per participating site. This was to ensure that the querying against individ-
ual databases and local crosstable generations are all working according to the published
procedural steps of the algorithm. To aid in query processes, Lucene indexing (Bialecki et al.
2012) was made use of. In all experiments, a formal representation of queries using the
Boolean operators in Table 1 was made use of.

One method of verifying a learning model is to use a set of training data to generate the
model and use another set of data (called testing data) to verify the performance. This process
is called cross-validation. For our distributed model, we use a leave-one-site-out cross-
validation. In this type of cross-validations, if there are  sites, there will be 7 pairs of model
building and validation. In one cross-validation, data from n-/ sites will be used for training
and data from the remaining site will be used for testing. For fair comparison between DIDT
and ID3, we use the same (training, testing) sets for cross-validations in corresponding
experiments.

Table 2 Results of the query: hospst = “CA” && (age > 12 && age < 20)

Algorithm Number of sites Cross-validation Correctly classified Accuracy
D3 n/a 10 22629/23508 84.09 %
DIDT 83 10 22628/23508 84.09 %

Note that the attribute ‘age’ was not used in the classification as we were considering teenagers as belonging to
one bin of age group
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Table 3 Results for student data

Algorithm Number of sites Cross-validation Correctly classified Accuracy
ID3 n/a 6 1086/1194 90.95 %
DIDT 6 6 1091/1194 91.37 %

6.1 Experiments based on real data
6.1.1 Data from medical domain

The Nationwide Inpatient Sample (NIS) Database for 2008 was created by Agency for
Healthcare Research and Quality (AHRQ) Healthcare Cost and Ultilization Project (HCUP).
It contains discharge level information of all inpatients from a 20 % stratified sample of
hospitals across USA. The 2008 NIS database has more than eight million “inpatient stay”
records from 1056 hospitals. The distribution of patient records based on age is given in Fig. 4.

The distributions of male and female patients were 41.60 and 58.40 % respectively. Due to
confidentiality laws, records with some very specific medical conditions and procedures (e.g.
HIV/AIDS or abortion) are not released by certain hospitals.

There are up to 15 high level codes for diseases per data instance in the NIS 2008 data set.
These are codes based on HCUP Clinical Classifications Software (CCS), developed by
combining ICD-9-CM codes in a hierarchical fashion. For example, CCS code for diabetes
mellitus without complications is 49. The Clinical Classifications Software for ICD-9-CM is a
diagnosis and procedure categorization scheme where closely related ICD-9-CM codes are
combined under a parent CCS code. There are a total of 259 CCS codes in all. The parent—
child relationship with CCS Diagnoses 49 and its sibling ICD-9-CM codes is shown in Fig. 5.

Only 3 of the 12 children ICD-9-CM codes are shown in Fig. 5. The complete sibling ICD-
9-CM codes are: 24900, 25000, 25001, 7902, 79021, 79022, 79029, 7915, 7916, V4585,
V5391, and V6546. The largest percentages of records in the 2008 NIS data set were based on
Essential Hypertension (CCS code 98) with 30.60 % and Coronary Atherosclerosis (CCS code
101) with 29.59 %.

The 259 CCS codes were represented as binary attributes. For a given hospitalization
record, if a CCS code was present, the value of the corresponding binary attribute was set

Table 4 Distribution of data based

on country Country # of instances

Brazil 1000
Chile 988

Guatemala 1305
India 1224
Kenya 1001
Nigeria 999

Philippines 1300
S. Africa 1137
S. Korea 1000
USA 1074
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Table 5 Results for fully spanned attributes

Algorithm Number of sites Cross-validation Correctly classified Accuracy
ID3 n/a 10 6151/11028 55.78 %
DIDT 10 10 6228/11028 56.47 %

as 1 and if a CCS code was not present, the value of the corresponding binary attribute
was set to 0. Thus, the 259 binary attributes represent the presence or absence of the
corresponding CCS codes in a hospitalization record. In this experiment, we used 262
attributes for each hospitalization record. These were: Age, Race, Sex and the 259 binary
attributes for CCS codes. The selection of these attributes was influenced by Khalilia
et al.’s work (2011). Value for the attribute ‘race’ was missing from 5 states - Georgia,
[llinois, Minnesota, Ohio and West Virginia — in the NIS 2008 data. Also, in some other
hospitals, the attribute values for ‘race’ were missing from a portion of the records. In our
experiment, we included only data instances for patient records that had all the attributes
present.

The classification was done for a Californian teenage patient to be having “essential
hypertension” (CCS Code 98) or not. The experiment was based on the query: hospst =
“CA” && (age > 12 && age < 20). There were 83 hospitals that had patients with this
criterion. Leave-one-hospital-out cross-validation would result in 83-fold cross-validations.
So, in order to do 10-fold cross-validation, we used the method of banding hospitals into
megahospitals (Mathew and Obradovic 2012). Three megahospitals were formed by randomly
selecting 9 hospitals per band and 7 megahospitals were formed by randomly selecting 8
hospitals per band. Leave-one-megahospital-out cross-validations were performed and the
results of DIDT as well as centralized ID3 decision trees are shown Table 2.

As can be seen from the results in Table 2, the DIDT algorithm gives result very consistent
with the ID3 centralized result.

Table 6 Missing ratio of the additional 28 attributes

Attribute Missing ratio Attribute Missing ratio
AIDS 2.70 % ORG_REL7 86.28 %
ATTEND 3.78 % POLITICS 2.70 %
CHANGE 77.64 % PROSPER 2.70 %
CHRSTATE 121 % Q5 A 17.56 %
CONVERT 7.00 % Q5 B 17.56 %
GOD 93.17 % Q5. C 17.56 %
HEALTH 2.70 % Q5D 17.56 %
ILLS 17.56 % RAPTURE 17.56 %
MOSTIMP 7.00 % REL _ALWS 1.09 %
ONLYWAY 17.56 % RETURN 17.56 %
ORG_RELLI 87.16 % TONGUES 7.00 %
ORG_REL2 83.12 % TONGUES2 19.84 %
ORG _REL5 89.45 % TRUSTS 7.00 %
ORG_REL6 88.30 % WORK 7.00 %
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Table 7 Results using supplemental attributes applying intersection policy

Entropy Threshold Cross-validation Correctly classified Accuracy
Complete n/a 10 6380/11028 57.85 %
Relative 90 % 10 7612/11028 69.02 %
Relative 80 % 10 8170/11028 74.08 %

6.1.2 Data from higher-education domain

This experiment was based on student data from 6 schools. The UCI machine learning data
repository has the data under the section ‘Student Loan Relational Domain’ (Frank and
Asuncion 2010b). Each data instance had 7 attributes and classified as positive or negative.
Positive means the student is not required to repay a student loan. For simplicity, the ‘months
of absence’ attribute was coded into one of the categorical values ‘low’, ‘med’, and ‘high’
corresponding to the months of absence in the range 0-3, 4-5, and 6+ months (inclusive of the
boundary values). Each attribute was treated as categorical in nature. The list of attributes and
their categorical values used in the experiment are as follows:

sex {m,f}

absence {low, med, high}

units {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

enlisted {none, armed, peace}

employed {yes, no}

bankruptcy {yes, no}

disabled {yes, no}

The data instances were distributed to 6 different sites corresponding to each school.
Results of running DIDT and centralized ID3 on the full data sets are shown in Table 3.

As can be surmised from the results in Table 3, the DIDT results are very consistent with
ID3 results. The difference in correct counts is due to the fact that multiple attributes can have
same entropy and the selection of the attribute for node split is implementation-dependent.

6.1.3 Data from social domain

A multi-country survey commissioned by the Pew Forum on Religion and Public Life was
done across 10 countries to investigate the religious, political and civic views of renewalists.
The data (Spirit and Power 2006) consisted of 11,028 instances with 201 attributes. The
distribution of the data among the countries is given in Table 4.

We treated the data instances as belonging to one of two classes: ‘renewalists’ or ‘non-
renewalists’. In the sections to follow, uppercase identifiers are attribute names in the data
instances.

Table 8 Results of the query: SAMPLE=(1v2) A SATISFY=1 A HARDWORK=1

Entropy Threshold Cross-validation Correctly classified Accuracy
Complete n/a 10 1340/2333 57.44 %
Relative 90 % 10 1462/2333 62.67 %
Relative 80 % 10 1584/2333 67.90 %
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a) Preprocessing:

The following preprocessing was done on the data set. Caseld$ (serial number),
PSRAID (identification number), GPWGT (weight), and PENTWGT (weight) are
attributes irrelevant for decision support. We distributed data based on COUNTRY,
which provided naturally distributed data for 10 sites. And COUNTRY attribute
cannot be used for tree building as otherwise leave-one-site-out cross validation
cannot be performed. So, the 5 attributes Caseld$, PSRAID, GPWGT, PENTWGT,
and COUNTRY were blocked from being released from each site using attribute
constrains. Two attributes, AGE and CHANGE were continuous. So, they were
categorized using concept hierarchy (Han and Fu 1994) into ‘young’,’mid’, and
‘old’. All experiments were based on the query ‘SAMPLE = 1 v 2°, unless mentioned
otherwise. The attribute SAMPLE was excluded from decision tree building.

b) Experiment based on fully spanned attributes:

In this experiment, only attributes that spanned over all the 11028 instances were included.
Of the 201 attributes, 92 attributes met this criterion. Since the 5 attributes Caseld$, PSRAID,
GPWGT, PENTWGT, and COUNTRY were constrained, that left 87 attributes. Ignoring the
query attribute SAMPLE and the ‘class’ attribute, there were 85 attributes that contributed to
the structure of the decision tree. The intersection policy and complete entropy were applied.
Results are given in Table 5.

Ignoring the minor aberration due to the selection differences between the two algorithms
for node splitting, here also we get results consistent between DIDT and centralized ID3.

6.2 DIDT-focused experiments
Since the consistency of DIDT with ID3 was demonstrated in the previous experiments, we
focus on DIDT experiments for the rest of this section. Following experiments demonstrate

additional capabilities of DIDT. The experiments were based on the pew survey data subjected
to the same pre-processing outlined in the previous section. Some of the following experiments

Table 9 Cross-band for ‘religious group’ attribute

N br cl gt in ke ni ph za kr us
Q3BRA 1000 0 0 0 0 0 0 0 0 0
Q3CHI 0 988 0 0 0 0 0 0 0 0
Q3GUA 0 0 1305 0 0 0 0 0 0 0
Q3IND 0 0 0 1224 0 0 0 0 0 0
Q3KEN 0 0 0 0 1001 0 0 0 0 0
Q3NIG 0 0 0 0 0 999 0 0 0 0
Q3PHI 0 0 0 0 0 0 1300 0 0 0
Q3SAF 0 0 0 0 0 0 0 1137 0 0
Q3SKOR 0 0 0 0 0 0 0 0 1000 0
Q3US 0 0 0 0 0 0 0 0 0 1074

? br = Brazil, ¢/ = Chile, g = Guatemala, in = India, ke = Kenya, ni = Nicaragua, ph = Philippines, za = South
Africa, kr = South Korea, us = USA
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do not have ID3 equivalents because certain attributes in these experiments do not span all
instances.

0.2.1 Experiment using supplemental attributes

The data attributes included in this experiment are those spanning all sites with at least one non-
missing value in every site. This data set is different from the one in the previous experiment.
Here, the attribute exists among all sites, but not necessarily in all instances within a site. i.e.,
certain attributes may have holes in some sites. An attribute may not span all 11028 samples in
the first iteration. It can fully span a filtered space down the decision tree. There were 113
attributes in this intersection. Hence, 28 extra attributes are supplemented compared to the data
set in previous section. These 28 additional attributes do not span all the 11028 instances.
Table 6 shows the percentage of instances in which these attributes have missing values.

Results of applying intersection policy are shown in Table 7.

The slight improvement in accuracy for complete entropy in Table 7 compared to result in
Table 5 is attributed to the additional features, which improves the precision of the decision
tree. As seen from Table 7, relaxing the span of attributes over filtered space improved
accuracy of the model. This is attributed to the fact that some features were able to produce
better relative entropy in the node splitting selection.

06.2.2 Experiment based on the query: ‘SAMPLE = (1v2) A SATISFY = 1 A HARDWORK = I’

Results of experiments using this query and applying intersection policy are as given in
Table 8.

In this case also, improvement in accuracy is attributable to relative entropy. The shift in
accuracy is following the same pattern as in Table 7.

6.3 Data unification

Due to the inherent hybrid nature of the data, it is possible to observe cross-bands of attributes.
A cross-band exists if the matrix representing counts of non-missing values for local repre-
sentations of an attribute across all the sites is a diagonal matrix. Each one of the local
attributes that makes up a cross-band span one site only. In all other sites, the count will be
0. This is due to the fact that the values of a localized attribute are specific to the site. Table 9
shows the diagonal matrix of one such cross-band (for ‘religious group’).

Brazil had 1000 data instances and in all instances the Q3BRA attribute had non-missing
values. Hence the (Q3BRA,Brazil) entry of the matrix is 1000. Q3BRA, Q3CHI, ..., Q3USA
are local representations for the attribute ‘religious group’. In this case, we call ‘religious
group’ the super attribute. In line with the local representations, we represent this super
attribute as Q3 in the following discussions.

Table 11 Results of intersection policy applied on unified data

Entropy Threshold Cross-validation Correctly classified Accuracy
Complete n/a 10 8792/11028 79.72 %
Relative 90 % 10 10049/11028 91.12 %
Relative 80 % 10 8904/11028 80.74 %
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Table 13 Results of intersection policy applied on unified data with value groupings

Entropy Threshold Cross-validation Correctly classified Accuracy
Complete n/a 10 10253/11028 92.97 %
Relative 90 % 10 10287/11028 93.28 %
Relative 80 % 10 8733/11028 79.19 %

Unification is the process by which the local representations are combined to create a single
super attribute using the superset of values of the local representations. Unification is in line
with unified vocabulary among sites. It may or may not be possible to unify a cross-band,
depending on whether the attributes are very specific to the country or not. In those cases
where it is possible to unify a cross-band, the values of the local representations in all sites can
be combined together by some unification process to create a super attribute that covers all
sites with a range of the combined values. International organizations or agencies may have
normalization tables that can be used for unification.

The data set had 8 cross-bands (7 spanned all 10 sites completely). Some of these cross-
bands can be unified. ‘Religious group” was one of the attributes with a cross-band effect that
we unified. The following figure (Table 10) shows the table we used for unifying ‘religious
group’ attribute among the 10 countries. In this table, Q3BRA, Q3CHI, ..., Q3USA are
country-specific (localized) representations for the ‘religious group’ attribute as used in the
original data. Q3BRA uses the value 4 to represent ‘Jehovah’s Witness’, whereas Q3GUA uses
value 3, Q3KEN uses value 9, etc. So, we unify the value ‘Jehovah’s Witness’ by assigning 4
as the common representative value among all sites. We continue this unification process for
the other 32 values. Thus, unification is the process by which local representations are
combined to create a super attribute by tagging the superset of values from the local
representation.

We used the unified values from the unification table for Q3 and applied DIDT. Results are
shown in Table 11.

The results in Table 11 are similar to the results from Tables 7 and 8 in that relaxing the span
produced better relative entropies for node splitting decision. However, the threshold point for
higher accuracy is observed to be shifting.

There are 33 values for the super attribute Q3 as seen from Table 10. Some of these values
are sparse among sites. For example, the value “Brotherhood of Cross & Star” is confined to

Table 14 Cross-band effect of ‘income’

INC_BRA 1000 0 0 0 0 00 0 0 0 0
INC_CHI 0 988 0 0 0 0 0 0 0 0
INC_GUA 0 0 1305 0 0 0 00 0 00 0
INC_IND 0 0 0 1224 0 00 0 0 0 0
INC_KEN 0 0 0 0 1001 0 0 0 0 0
INC_NIG 0 0 0 0 0 999 0 0 00 0
INC_PHI 0 0 0 0 0 0 1300 0 0 0
INC_SAF 0 0 0 0 0 0 0 1137 0 0
INC_SKOR 0 0 0 0 0 0 0 0 1000 0
INC_US 0 0 0 0 0 0 0 0 0 1074
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Table 15 ppp factor used to unify income in units of US dollars

Country ppp factor Country ppp factor
Brazil 1.562217325 Nigeria 82.40308843
Chile 364.677042 Philippines 22.3679723
Guatemala 3.085622277 S. Africa 4.854167618
India 13.64586631 S. Korea 775.051255
Kenya 35.85241959

Nigeria and “Iglecia ni Cristo” is confined to Philippines. To improve the spread of values
among sites to reduce sparsity, we grouped values that exist only in one site. The groupings
were done primarily by combining singly isolated values (e.g. ‘Jain’) into one of two group
values “Other Christian Group” and “Other non-Christian Group”.

Table 12 shows the table after grouping values from the table in Table 10. As can be seen,
the number of values reduced from 33 to 15 after this grouping.

The results based on these value groupings are shown in Table 13.

As seen from the results in Table 13 relaxing the span produced better accuracy, though not
substantial. The threshold point for higher accuracy is following the same pattern as in
Table 11.

6.4 Data unification for ‘income’ super attribute

INC_BRA, INC_CH]I, ...., INC_USA were the local representations of ‘income’. The cross-
band effect of these attributes is seen in Table 14.

We unified these using Penn World Table (Heston et al. 2009) of purchasing power parity
(ppp) for all countries in the world. The ppp conversion values for 2006—the same year the
data was collected—is shown in Table 15. The super attribute obtained by unifying the local
representations was named INC. However, after the conversion, the income ranges were

Table 16 Mapping of local values to unified values for the super attribute ‘income’ for first set of 5 countries

INC_BRA INC_CHI INC_GUA INC_IND INC_KEN

1 — below 1 — below 1 — below 1 — below 1 — below

2 — poor 2 — poor 2 — poor 2 — poor 2 — average
3 — poor 3 — poor 3 — average 3 — average 3 — middle

4 — poor 4 — average 4 — average 4 — average 4 — rich

5 — poor 5 — average 5 — middle 5 — middle 98 — Don’t know
6 — average 6 — middle 6 — middle 6 — middle 99 — Refused
7 — average 7 — middle 7 — upper-mid 7 — upper-mid

8 — middle 8 — upper-mid 8 — upper-mid 8 — upper-mid

9 — middle 9 — rich 9 — rich 9 — rich

10 — upper-mid 10 — upper-mid 98 — Don’t know 10 — rich

11 — rich
98 — Don’t know
99 — Refused

98 — Don’t know
99 — Refused

99 — Refused

11 — upper-rich
98 — Don’t know
99 — Refused
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Table 17 Mapping of local values to unified values for the super attribute ‘income’ for second set of 5 countries

INC_NIG INC_PHI INC_SAF INC_SKOR INC_USA

0 — below 1 — below 19 — below 1 — below 1 — below

1 — below 2 — poor 18 — poor 2 — poor 2 — poor

2 — poor 3 — average 17 — poor 3 — average 3 — average

4 — average 5 — upper-mid 15 — poor 5 — middle 5 — middle

5 — average 6 — rich 14 — average 6 — middle 6 — middle

6 — average 7 — upper-rich 13 — average 7 — middle 7 — upper-mid
7 — middle 99 — Refused 12 — average 8 — upper-mid 8 — rich

8 — middle 11 — average 9 — upper-mid 9 — upper-rich
9 — upper-mid 10 — middle 10 — upper-mid 98 — Don’t know
10 — upper-mid 9 — middle 11 — rich 99 — Refused
11 — rich 8 — middle 12 — rich

12 — rich 7 — middle 13 — upper-mid

13 — upper-mid
98 — Don’t know

6 — upper-mid
5 — upper-mid

98 — Don’t know
99 — Refused

99 — Refused 4 — upper-mid

3 — rich

2 — rich

1 — Don’t know
98 — Don’t know

99 — Refused

widely varied between countries. So, a binning process with bin selection was needed. Seven
bins were created per individual country and individual income ranges within each country
were allocated to specific bins (many-to-one mapping). Two values “Don’t know” and

“Refused” were left intact. The income-based bins were: “below poverty line”, “poor”,

“average”, “middle”,”upper-middle”, “rich”, “upper-rich”.

Tables 16 and 17 shows the mappings from the original local data values to the super
attribute values.

Applying the unified values for the super attribute ‘income’ to the data set, we get the
results in Table 18.

These complete and relative entropy results are consistent with the results in
Table 7. Hence, the unification of ‘income’ did not influence the accuracy of the
classification.

The super attribute ‘education’ was obtained by the unification of local represen-
tations EDUC_BRA, EDUC _CHI, ..., EDUC_USA. The unification was based on the

Table 18 DIDT results with thresholds, intersection policy, relative entropy and super attribute ‘income’

Entropy Threshold Cross-validation Correctly classified Accuracy
Complete n/a 10 6361/11028 57.68 %
Relative 90 % 10 7602/11028 68.93 %
Relative 80 % 10 8158/11028 73.98 %
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Table 19 Query results of: SAMPLE= (1v2) A (INC=rich v EDUC=degree)

Entropy Threshold Cross-validation Correctly classified Accuracy
Complete n/a 10 1677/1858 90.26 %
Relative 90 % 10 1577/1858 84.88 %
Relative 80 % 10 1470/1858 79.12 %

widely accepted 8-4-4 (primary-secondary-college) format for years spent in the
corresponding level. Unification of education did not produce better results. There
were other attributes REG (region), ETH (ethnicity), and LAN (language) that had
cross-band effects, but the values were specific to each country and so these attributes
were not amenable to unification.

Experiments based on the query: ‘SAMPLE = (1v2)A (INC =rich v
EDUC = degree) ’

Unification of 3 attributes Q3 (religion), EDUC (education), and INC (income) were done
at the same time on the distributed data and the query was run on the resulting data. 1858
instances satisfied the query. Results are shown in Table 19.

As evidenced from the results in Tables 7, 11 and 19, the maximum accuracy can be
attained with complete or relative entropy. The level at which it is attained depends on the
attributes distribution within the filtered space.

7 Conclusion

We have outlined an algorithm that can aid in decision-making when data is distrib-
uted among multiple sites and shipping raw data out from the individual sites is
impractical due to regulatory and legal reasons. This algorithm for a distributed
decision support system can protect personally identifiable information as well as
assure data privacy. We have demonstrated that a distributed decision support intelli-
gence tool in the form of a decision tree can be constructed using just the statistics
related to the data distributed among the sites. We provided empirical validations for
the key construct in our algorithm. Experiments done on various data sets from
different business domains validate the results generated by the algorithm. Relative
entropy was introduced to entertain attributes that span a minimum threshold globally
to be considered for node split in the decision tree building. Unification of attribute
values to create a set of common values among distributed sites was presented. It was
empirically shown that the DIDT algorithm gives results that are consistent with the
results generated by centralized ID3 algorithm. In summary, for DIDT algorithm, the
data do not leave the sites and no rigid data schema structure is enforced on the
collaborating sites. This makes it a viable option for building knowledge from sites
that cannot disclose sensitive data records due to privacy concerns.
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