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When a medical practitioner encounters a patient with rare symptoms that translates to rare occurrences
in the local database, it is quite valuable to draw conclusions collectively from such occurrences in other
hospitals. However, for such rare conditions, there will be a huge imbalance in classes among the relevant
base population. Due to regulations and privacy concerns, collecting data from other hospitals will be prob-
lematic. Consequently, distributed decision support systems that can use just the statistics of data from
multiple hospitals are valuable. We present a system that can collectively build a distributed classification
model dynamically without the need of patient data from each site in the case of imbalanced data. The
system uses a voting ensemble of experts for the decision model. The imbalance condition and number of
experts can be determined by the system. Since only statistics of the data and no raw data are required by
the system, patient privacy issues are addressed. We demonstrate the outlined principles using the Nation-
wide Inpatient Sample (NIS) database. Results of experiments conducted on 7,810,762 patients from 1050
hospitals show improvement of 13.68% to 24.46% in balanced prediction accuracy using our model over the
baseline model, illustrating the effectiveness of the proposed methodology.
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1. INTRODUCTION

Evidence-based clinical practice is influenced much by judgmental knowledge [Sim
et al. 2001]. Consequently, a decision support system that can provide a medical
practitioner with suggestive knowledge is a valuable tool of the trade. Survey results
[Sittig et al. 2006] have affirmed the interest of physicians in such systems. The first
wave of clinical decision support systems [Bobrow et al. 1986; Buchanan and Shortliffe
1984] were self-contained and rule-based. They had preconfigured rules to help make
decisions on specific modalities. Because of the static nature of these rules, these sys-
tems could not harness the power of opportunistic data resident in multiple hospitals.
With the availability of distributed systems [Oster et al. 2007; Warren et al. 2007]
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and protocols [Dolin et al. 2001], it became possible to harness the power of clinical
databases from multiple sources. Distributed classification algorithms [Caragea et al.
2004; Mathew and Obradovic 2011] make it possible to do decision making dynami-
cally from multiple hospitals. The data could be retrospective or real time [Kansagara
et al. 2011]. These systems use just the statistics of data from individual hospitals and
hence preserve patient privacy. Clinical decision support systems can take advantage
of data mining techniques to dynamically build the required information model. One
class of widely used algorithms for such activity is classification. The goal of classifica-
tion is to separate patient records into distinct classes. Classification has been shown
to be effective in analyzing effects of various factors on diseases including clinical and
demographic variables [Risch 2000]. The effectiveness of classification is dependent
on the distribution of class attributes in the data. Classification algorithms typically
assume a uniform distribution that provides balanced class data. Real-world classifi-
cation problems are known to have imbalanced data. The attributes used for clinical
model building are usually linked directly to the vital signs or physical characteristics
of the patient and the diagnosis codes associated with the medical condition. There
could also be comorbidities associated with the patient at the time of visit. In those
situations where the conditions of the patient are rare occurrences, there could be very
few or none of similar records in the local database to draw conclusions from. However,
it is very likely that such records exist in other hospitals, though few in number in
individual hospitals. We present a system where statistics of the data from various
sites can be used to detect the class imbalance problem and build a classification model
that gives much improved balanced accuracy compared to the baseline model. Our
model building uses oversampling of the rare class data and as-needed undersampling
of the abundant class instances. The model we build is an ensemble of decision trees.
A decision tree [Moret 1982] provides a representation for the paths of traversals in
the decision making process associated with a classification problem. The first serial
decision tree-building algorithm was proposed by Quinlan [1986]. Algorithms for
parallel construction [Jin and Agrawal 2003] as well as distributed construction of de-
cision trees appear in the literature. Our decision model is a voting machine that is an
ensemble of multiple decision trees built in a distributed manner. In the next section
we provide the literature review. In Section 3, we outline our methodology and the sys-
tem design. Computational complexities and communication costs are summarized in
Section 4. The details of the Nationwide Inpatient Sample (NIS) data set are de-
scribed in Section 5 and we present our experimental results based on the NIS data
in Section 6.

2. RELATED WORKS

Data mining techniques for classification have been previously applied to public
medical data. Support Vector Machine [Yu et al. 2010] was used for diabetes related
hospitalization prediction. An enhancement to the Support Vector Machine—the
Recursive Feature Elimination (SVM-RFE) method, has been proposed [Stiglic et al.
2012] to optimally estimate disease risk. These algorithms work well in balanced data
sets. The class imbalance problem in classification is well documented [Japkowicz
2000]. A class imbalance occurs when the number of data instances that belongs to one
class is very large while very few data instances belong to the other class. For example,
a local clinical database may have one or zero prior record of syncope (ICD-9M code
7802). Algorithms that address class imbalance problems [Ertekin et al. 2007; Khalilia
et al. 2011] appear in literature. Khalilia et al. apply Random Forest technique for
disease prediction. An improved model using fuzzy membership based on ICD-9 codes
was later proposed [Popescu and Khalilia 2011]. However, all of these require raw
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patient data and cannot be used in privacy preserving systems. Also, these algorithms
are centralized in nature and not designed for distributed systems. DHDT (Distributed
Hierarchical Decision Tree) [Bar-or et al. 2005] is a distributed classification algorithm
that preserves data privacy. However, the focus of the algorithm is on high-dimensional
data and for reducing communication costs. It achieves efficiency by taking advantage
of the correlations among attributes. DIDT (Distributed Id3-based Decision Tree)
[Mathew and Obradovic 2011] is a privacy-preserving distributed algorithm that
produces a decision tree theoretically provable to be identical to the centralized coun-
terpart. It does not assume any correlation among the data attributes. DHDT requires
all participating distributed sites to have an identical database schema that is known
a priori, while DIDT can accommodate heterogeneous database schema with no prior,
knowledge of individual database schema. Neither of these algorithms is designed for
dealing with imbalanced data. Our focus is on a privacy-preserving algorithm for im-
balanced data that can work in a distributed environment. Such an algorithm should
use just the statistics of data from individual hospitals. Due to this characteristic
of the algorithm, it belongs to the privacy-preserving data mining (PPDM) domain.
Since privacy-preserving data mining is a form of Secure Multiparty Computation
(SMC) [Du and Atallah 2001; Lindell et al. 2009], our algorithm qualifies as an
SMC algorithm. Preserving privacy of patients is the essence of Secure Multiparty
Computation.

The proposed system uses a decision model based on voting by an ensemble of
classifiers. Ensemble systems [Dasarathy and Sheela 1979; Hansen and Salamon
1990] consider the decisions of multiple experts to make a final decision. In those
scenarios where sufficient representative samples of one class are not available in the
data, resampling with replacement can be used for drawing subsets of the insufficient
class data. Each of these subsets can be combined with subsamples of the sufficient
representative class to train a different classifier. Combining these classifiers creates
an ensemble [Polikar 2006]. The decision of the ensemble is based on the final vote
tallied by assigning weights to the decisions of individual classifiers. In our system,
each individual classifier is assigned the same voting weight. We use DIDT for
building each one of the experts.

DIDT makes use of the distribution of the values of attributes across classes at in-
dividual hospitals to build the global decision tree. The data structure that captures
such a distribution of values of an attribute among classes is called a crosstable ma-
trix [Caragea et al. 2004]. Suppose a given attribute u spans m values v;(i = I to m)
and there are n classes c;(j = I to n) in the dataset. Then the (i, j)th element of the
crosstable matrix corresponding to this attribute is the count of instances with class
label c; for which attribute « has value v;. The crosstable matrix format is kept identi-
cal across all hospitals. The layout of the crosstable matrix for attribute u is [Mathew
and Obradovic 2012]:

| c1cg -+ cn

U1
U9 @})

Um

The sum of crosstable matrices from participating hospitals for an attribute is de-
fined as its global crosstable matrix. The global crosstable matrix of an attribute u
provides a representation for the distribution of values of u across all classes spanning
the totality of data instances. The information gain for an attribute can be computed
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Fig. 1. Distributed model building.

using its global crosstable matrix. Assume that the global crosstable matrix for at-
tribute u, with the layout of (1), is as follows [Mathew and Obradovic 2011]:

(2)

Then, the formula for the weighted average impurity measure of u is [Mathew and
Obradovic 2011]:
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Once the weighted average impurity measure for each attribute is calculated, the
attribute with the smallest value of weighted average impurity measure (highest
gain) is chosen for test and branching from the current node of the decision tree [Tan
et al. 2006]. When a new node is constructed, the logical expression representing the
path of traversal from the root to the new node is generated using Boolean operations.
These logical expressions are used as seed queries for searches to globally identify the
attributes for constructing the next set of crosstable matrices and eventual node split.
These steps are carried out recursively to the down-levels until leaf nodes are reached.

The general computing structure of a distributed algorithm for model building in-
volves local information gathering and global synthesis [Caragea et al. 2004]. A query
generated globally is processed against the local datasets and the corresponding local
statistics (partial statistics) are globally synthesized.

Figure 1 illustrates this concept. D1, ..., D, are the distributed clinical data
repositories, S1, ..., Sy are the partial statistics from each repository, and g(Sy,..,5n)
represents the global synthesis. The relevance of this global synthesis by a neutral
party will be evident in the next section.

3. DECISION SUPPORT SYSTEM

3.1. General Overview

The decision support system is designed to have a Clearing House (CH) that serves as
the central agent to liaison with all participating hospitals. Practical reasons for a CH
include vetting participating hospitals and setting up a common code of ethics that the
participating hospitals are governed by. Since hospitals are careful to avoid legal ram-
ifications and they are regulated for ethical operations, truthful information exchange
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is mandatory for participating institutions. If mandates from local/state authorities or
local policy of the hospital prohibit disclosure of certain information, the hospital can
choose to do so. For example, certain states prohibit disclosing the HIV status of pa-
tients. Each participating hospital will have a local communication agent whose task
is information exchange with the CH as well as interaction with the local database
for statistics gathering. The CH is responsible for building the decision model. One of
the common barriers in establishing collaborations between hospitals is the access to
raw patient data. Our algorithm does not require raw patient data—only statistics of
the data is needed. Hence, it is not intrusive and the likelihood of hospitals to par-
ticipate is much higher. For simplicity, we assume that all sites follow the same data
schema and naming convention for the attributes. The principle behind the system is
that when a patient with a rare instance shows up, the medical practitioner can use
the constraints around the patient’s clinical attributes to dynamically build a decision
model. Then the current patient attributes can be used as inputs to the decision model.
The general working of the system is as follows.

A medical professional interested in making a decision based on certain attributes
of interest and their associated constraints submits the query to the system. This in-
formation is passed to the CH. The CH picks a certain number of hospitals and passes
along the query to the local agents. An individual agent (on behalf of the hospital) has
the option to participate in the process or not. Also, hospitals with an insufficient num-
ber of instances will be eliminated from the process. After these initial negotiations,
the count of hospitals participating in the process will be known. The participating
agents at the individual hospitals use the query to find matching instances from the
local database and respond back to the CH with matrices for the class distribution.
This is a single row matrix with the number of records in each class in a predeter-
mined order. In the discussions to follow, we refer to positive class as the class under
consideration and refer to negative class as instances not in the positive class. For ex-
ample, [12 3456] suggests that 12 positive class instances and 3456 negative instances
meet the query criteria. If the total number of instances in a hospital is less than 4,
that hospital is excluded from further participation. This is because of the possibil-
ity that statistics of small number of instances can be reverse engineered to identify
patients. Also, if a hospital has no positive instances, we exclude them from further
participation. These policies can be implemented at the local agent level in such a
way that if the exclusion conditions are met locally, the agent can inform the CH that
it is opting out. In the discussions to follow, we refer to the totality of all instances
matching the query over all the hospitals after the exclusions as the constrained data
space. The CH aggregates the individual local matrices received from the agents to
estimate the balance of class distribution globally. If the ratio of positive to negative
samples is below a set threshold, imbalance of class is in effect and a voting ensemble
model is constructed. Otherwise, a regular distributed decision tree algorithm can be
applied. The voting ensemble model is made up of distributed decision trees that are
constructed using DIDT. Note that the imbalance is taken into consideration at the
CH level for simplicity. It is possible that at a few individual hospital levels there is no
imbalance, while there is imbalance at the CH level. An extension to this more general
situation is easy to design. During the ensemble building process, the CH aggregates
global crosstable matrices, calculates global information gains, selects the attribute for
node splitting, keeps track of partial decision trees between iterations, and generates
subqueries for down level subtrees.

The prediction model learning environment we present here is different from tradi-
tional statistical experiments where study participants are selected by some prequal-
ification process. In classic statistical studies, samples are selected based on meeting
certain qualification criteria. Our data mining algorithm makes use of opportunistic
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Fig. 2. A possible layout for 2 positive and 16 negative instances.

data—data that is not based on preselected study participants, but real data accumu-
lated historically by virtue of patient visits to the hospitals. This means, the model
is built based on the totality of available data instances. Hence, there is no hard rule
as to how many hospitals must be involved. The algorithm by itself does not limit the
number of sites to participate. The CH has the ability to select any number of sites. The
goal of the decision support system is to learn from the available data so as to build a
knowledge representation model. The effectiveness of the learned prediction model is
rated by a success factor calculated using measures such as accuracy, Matthew’s Cor-
relation Coefficient, and so on. These measures give an indication as to how well the
learning process is working.

In order to create multiple experts, at the individual participating hospital level, the
negative and positive instances that are part of the constrained data space have to be
processed in a specific way. In each hospital, groups of multiples of (m + 1) instances
are made in such a way that for 1 positive instance, m negative instances are selected.
To simplify presentation in this article and the experiments, we will use m = 3. These
groupings are repeated in a cyclic fashion. More formally, let there be & participating
hospitals with p; positives and n; negatives that satisfy the query in the ith hospital.
Let P denote the corresponding set of positives and N* the related set of negatives. Let
Nj, Nj, N5, ... be a random selection of 3p; negative instances without replacement

from N*. We combine P* with each of the selected subsets of N¢. If there are less than
3p; instances for the last selection, then randomly select additional instances from N*
to have 3p; instances. Arranging them in order, we get the layout: P*U N, P'U N;, P'U
N, ...

For e.g., assume that there are 2 positives and 16 negatives in the constrained data
space in a hospital. In this case, 6 (2 x 3) random negatives without replacement are to
be combined with the 2 positives in successive collections. The first two sets will get 12
negatives so the third set will have only 4 negatives left. Hence, 2 negatives have to be
picked randomly from the original 16 negatives so as to have 6 instances in the third
set. One possible selection gives the visual layout shown in Figure 2, where squares
represent instances with positive classes and circles represent instances with negative
classes.

Stacking all the local layouts based on the selections from the & hospitals in order,
we get the arrangement in Figure 3. In this arrangement, row i corresponds to the
layout from hospital i.

The totality of instances in each column contributes to a distributed collection S;
of instances from the & hospitals. A distributed decision tree DT; that spans S; can
be built using DIDT. These decision tree DT}’s are combined to form an ensemble of
classifiers where the weight for voting is the same among the individual classifiers.
One issue to be addressed is the number of classifiers to be constructed. The number
of classifiers that constitute the ensemble are built incrementally starting with 1 and
adding 2 at a time. At each stage, the Balanced Accuracy is calculated for the ensemble
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Fig. 3. Layout of the repeated positives and random negatives from all hospitals.

of all classifiers thus far. That is, Balanced Accuracy is calculated for ensembles of 1,
3,5,7, ... of classifiers; where the ensemble at any stage is made up of the classifiers
from the previous stage plus 2 new classifiers. There are two scenarios with the
Balanced Accuracies. First one is where a maximum Balanced Accuracy is reached at
some stage and the immediately following ensembles have lower Balanced Accuracies.
In the second case, the Balanced Accuracies increase and tend to converge to a limit.

In the first case, after the local maximum Balanced Accuracy is reached, the next
2 sets of ensembles do not produce better Balanced Accuracies. That is, we observe
a sequence of 3 ensembles with the first one having maximum Balanced Accuracy. In
the case of converging Balanced Accuracies, a sequence of 3 consecutive ensembles will
have Balanced Accuracies very close to each other; i.e. they differ from each other by
a small delta value. These two cases can be accommodated in a generalized testing
condition for the algorithm to stop as follows.

Let A be a predefined small value. When the maximum Balanced Accuracy MaxBA
is observed at an ensemble MaxENS and the Balanced Accuracies at the next 2 en-
sembles are less than MaxBA+A, the algorithm stops selecting MaxENS.

3.2. Formal Description

The complete processing from start of the query to voting ensemble assembly is done
in 2 phases. In the first phase, initializations are done by the CH. In the second, the
ensemble construction takes place.

Phase 1. Starts when a new query @ arrives at the CH

01. CH identify hospitals to participate
02. CH send participation request and query Q to selected hospital agents
03. Complete opt out process
04. CH collects initial class distribution matrices from all participating agents
05. Eliminate hospitals with insufficient data; Finalize list of participating hospitals
06. CH estimates data imbalance based on a preset threshold
07. If imbalance condition is detected,

proceed with step 08

else

use a regular distributed classification process and finish
08. Agents do random 3p; negative selections and complete the layout
09. Agents confirm readiness to CH

Phase 2. Starts after confirming readiness from all participating agents

10. CH initiates DIDT using Q as the seed query to build 1 expert
11. The Balanced Accuracy is computed using the ensemble of 1 expert
12. Denote this expert as MaxENS and the Balanced Accuracy as MaxBA
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13. MaxENS—next = MaxENS— next—next = null;
14. Initialize A
14. While (more experts to be built) {
if (MaxENS—next is null ) {
CH initiates DIDT using Q as seed query to build 1 more expert
CH adds the expert to the ensemble. Denote this as MaxENS—next and
Balanced Accuracy as MaxENS—nextBA;

if ( MaxENS—next—next is null ) {
CH initiates DIDT using Q as seed query to build 1 more expert
CH adds the expert to the ensemble
Denote this as MaxENS— next—next and

Balanced Accuracy as MaxENS— next—nextBA

}
if ( ( MaxENS—nextBA <= MaxBA+A )
and ( MaxENS—next—nextBA <= MaxBA+A )) {
no more experts to build; MaxENS is the final ensemble;

else {
if ( ( MaxENS—nextBA > MaxBA ) and
( MaxENS—next—nextBA > MaxENS—nextBA ) ) {
MaxENS = MaxENS— next—next;
MaxBA = MaxENS—next—nextBA;
MaxENS—nextBA = MaxENS—next—nextBA = 0;
MaxENS— next = MaxENS— next—next = null;

}
else if ( MaxENS—nextBA < MaxBA ) {
MaxENS = MaxENS—next;
MaxENS—next = null
MaxENS—next—next = null;
MaxBA = MaxENS—nextBA,
MaxENS—nextBA = MaxENS—next—nextBA = 0;

}

}
End while
15. End of algorithm

4. COMPUTATIONAL COMPLEXITY AND COMMUNICATION COSTS

The complexity of the ensemble is dominated by the computational needs of DIDT and
expressed differently for the global level and local level. Globally, it is influenced by
the height of the tree H and the number of hospitals M. Locally it is influenced by
the height of the tree H and the number of instances at the hospital N. The height of
the tree H is bounded by the number of attributes A and in practice is usually much
smaller than A as will be demonstrated in the experimental results section. Using A,
M, and N:

Computational complexity at the Clearing House level is O(A2M).
Computational complexity for a member hospital is O(A2N).

The communication costs for each hospital is O(A2).
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Fig. 4. Parent-child relationship between CCS code 103 and ICD-9-CM codes.

Table I. Distribution of Patient Records Based On Age

Age Number of patients Age Number of patients Age Number of patients
0-7 1087392 40 — 47 585964 80 — 87 766250
8—15 105890 48 — 55 748453 88 — 95 311699

16 — 23 480465 56 — 63 817277 96 — 103 32537

24 — 31 649395 64 — 71 805034 104 — 111 665

32 -39 577986 72 -179 841738 112 — 119 17

5. DATA AND PREPROCESSING
5.1. NIS 2009 Data

For experimental evaluation, we used the Nationwide Inpatient Sample (NIS)
database for 2009. The NIS 2009 database was created by 20% stratified sampling
from discharge level information from all inpatients from hospitals across the USA. It
was created by the Agency for Healthcare Research and Quality (AHRQ)! Healthcare
Cost and Utilization Project (HCUP) and the database has 7,810,762 patient records
from 1050 hospitals. Each data instance corresponds to an “inpatient stay record.”
Each patient record holds up to 25 high-level codes for diseases. These high level codes
are based on HCUP Clinical Classification Software (CCS) and are developed by com-
bining ICD-9-CM codes in a hierarchical fashion. The CCS for ICD-9-CM is a diagnosis
and procedure categorization scheme [CCS 2012] in which closely related ICD-9-CM
codes are combined under the same parent CCS code. For e.g. the CCS code for pul-
monary heart disease is 103. The parent-child relationship between CCS diagnosis
code 103 and its sibling ICD-9-CM codes is shown in Figure 4.

Only 3 of the 14 ICD-9-CM codes associated with CCS Diagnoses 103 are shown in
the figure. The complete sibling ICD-9-CM codes are: 4150, 4151, 41512, 41513, 41519,
4160, 4161, 4162, 4168, 4169, 4170, 4171, 4178, and 4179. There are 259 CCS codes in
total.

The distribution of patients among NIS 2009 data based on age is given in Table I.

Male patients account for 58.08% of the records and female patients account for
41.92% of the records. The patient records contain the HCUP race codes. The distribu-
tion of patient records based on HCUP race codes is given in Table II.

5.2. Preprocessing

We used the load program for SPSS, available on the AHRQ-HCUP Web site, for load-
ing the data into SPSS Statistics software Version 19 from IBM. The data instances
were exported as comma separated value (csv) files. PERL scripts were written for
parsing these files to our specific needs. Software implementation for the experiments
was done using JAVA.

For the purpose of our experiments, the 259 CCS codes were represented as binary
attributes. The NIS 2009 database contained up to 25 CCS codes per hospitalization

Thttp:/ahrq.gov
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Table IlI. Distribution of Patient Records Based on HCUP Race Code

HCUP race code Description Number of patients
1 White 4358125
2 Black 909981
3 Hispanic 849907
4 Asian or Pacific Islander 176129
5 Native American 52781
6 Other 267670

record. For a given hospitalization record, the presence of a CCS code was marked
by setting the value of the corresponding binary attribute as 1 and the absence of a
CCS code was marked by setting the value of the corresponding binary attribute to 0.
Thus, the 259 binary attributes represent the presence or absence of the correspond-
ing CCS codes in a hospitalization record. In our experiments, we were interested in
262 attributes for each hospitalization record. They were: Age, Race, Sex, and the 259
binary attributes for CCS codes. The selection of these attributes was influenced by
the work of Khalilia et al. [2011]. Values for the attribute “race” were missing from 4
states: Minnesota, North Carolina, Ohio, and West Virginia. Hence, hospitals in these
states were excluded, resulting in the exclusion of 900,578 instances. Also, in some
hospitals from other states, the attribute values for “race” were missing from 295,591
records. We included only data instances for patient records that had all the attributes
present. Age attribute was categorized using a binning process. A range of 8 years
(starting with ages 0-7) was used per bin.

6. EXPERIMENTS AND RESULTS

6.1. Experiments

In order to compare the accuracy of results, we use the concept of balanced accuracy,
where balanced accuracy = %(sensitivity + specificity).

In the following experiments, imbalance threshold was set at 2.50%. Tenfold cross-
validations were used in all experiments. For keeping crossvalidations to 10, a suit-
able number of hospitals were randomly selected and logically grouped into bands.
A leave-one-band-out method was applied for 10-fold crossvalidations. The baseline
experiments were done using DIDT, which being a Privacy Preserving Data Mining
algorithm qualifies as a Secure Multiparty Computation (SMC) algorithm. Thus, we
are comparing results of our ensemble SMC algorithm to the baseline SMC algorithm,
DIDT. For consistency in comparing baseline DIDT and ensemble model results, the
random selection of hospitals, bands, and testing sets for 10-fold crossvalidations were
kept the same in both cases for all experiments.

The attributes of interest and constraints were used to create a seed query that was
used to select data instances from the hospitals. The selected instances constituted the
constrained data space. Two hundred and sixty-two attributes were selected for each
instance; these were the 259 CCS code representations, age, sex, and ethnicity. One of
the 259 CCS codes is the label used for classification. The A for convergence test was
set at 0.1%.

6.1.1. Experiment 1. The attributes of interest were age and race. The constraints
were: age between 20 and 41; race code is 5 (Native American). The problem was to
classify patients in the constrained population as with or without Gastrointestinal
Hemorrhage (CCS code 153).

There were 49 hospitals with positive class instances and having more than 4 in-
stances that satisfied the query: (age > 20 && age < 41) && (race-code = 5). In the
constrained data space, there were 127 positive and 8089 negative instances. This
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Table Ill. Summary of Balanced Accuracies

Number of Experts | Balanced Accuracy
1 0.7806
3 0.7954
5 0.7970
7 0.8254
9 0.8268
11 0.8369
13 0.8296
15 0.8376
0.84 . .
Zo.83 e .
gos2
Zos1
E 0.8 L.
T 0.79
0.78 *

1 3 5 7 9 11 13 15
Count of Experts in Ensemble

Fig. 5. Scatter plot of count of experts in the ensemble vs. balanced accuracy.

accounts for 1.55% of positives, which is less than the 2.50% threshold. Hence the
imbalance condition is satisfied.

6.1.1.1. Baseline Experiment. DIDT was applied to these 49 hospitals in the constrained
data space. Ten bands of hospitals were created by randomly picking 5 hospitals per
band into 9 bands and the remaining 4 into the 10" band. Leave-one-band-out 10-fold
crossvalidations using DIDT, resulted in a balanced average accuracy of 59.39%.

6.1.1.2. Ensemble Method Experiment. For fair comparison with the baseline experiment,
the same random order of hospitals was used. We did tenfold crossvalidations, using
the ensembles of classifiers per crossvalidation. Corresponding to each training set in
the baseline experiment, experts were built using DIDT per crossvalidation. Testing
sets for each crossvalidation were kept the same as the ones from the baseline experi-
ment.

Starting with 1 expert and adding 2 experts at a time, we got the results shown in
Table III. The plot of balanced accuracies for 1, 3, 5, ... experts is shown in Figure 5.

As seen from Table III, the ensemble with 11 experts had maximum balanced
accuracy so far. Also, 13 and 15 experts did not produce balanced accuracies more
than 0.8369 + A = 0.8369 + 0.1% (0.8379). Hence, the ensemble with 11 experts and
balanced accuracy 83.69% was chosen.

Average depth of the trees among the 11 ensembles was 35, while the number of
independent attributes was 261. The average number of attributes that were used for
node splits was 52. The most influential attribute in the decision trees was CCS code
196; normal pregnancy and/or delivery.

6.1.2. Experiment 2. The attributes of interest were age and state. The constraints
were: age between 39 and 51; hospital state is one of GA, SC, and VA.

The problem was to classify patients in the constrained population as with or with-
out peripheral and visceral atherosclerosis (CCS code 114).
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Table IV. Summary of Balanced Accuracies

Number of Experts | Balanced Accuracies

1 0.6370
11 0.6773
13 0.6816
15 0.6781
17 0.6803

Table V. Summary of Balanced Accuracies

Number of Experts | Balanced Accuracies

25 0.8064
27 0.8067
29 0.8057

Sixty-four hospitals satisfied the participation criteria and the query: (age > 39 &&
age < 51) && (hospital-state in {{GA’)SC’VA’}). In the constrained data space, there
were 1259 positive and 60,272 negative instances. This accounts for 2.05% of positives,
which is less than the 2.50% threshold and hence the imbalance condition is in effect.

6.1.2.1. Baseline Experiment. 7 hospitals were randomly picked per band from 4 bands
and the remaining 36 hospitals were grouped into 6 bands of 6 randomly selected
hospitals. DIDT using tenfold crossvalidations by leave-one-band-out method resulted
in a balanced average accuracy of 54.48%.

6.1.2.2. Ensemble Method Experiment. Keeping the same random order of hospitals and
training/testing sets as the baseline experiment, 10-fold crossvalidations with ensem-
bles of 1,3,5,. .. resulted in the balanced accuracies shown in Table IV.

As seen from Table IV, the ensemble with 13 experts had maximum balanced accu-
racy so far and the ensembles with 15 and 17 experts did not produce balanced accu-
racies better than 0.6816 + A (i.e. 0.6826). Thus the final selection was the ensemble
with 13 experts and a balanced accuracy of 68.16%.

Average depth of the decision trees among the ensembles was 59 compared to
the number of independent features, 261. On average 162 attributes were used for
node splits. The most influential independent attribute was CCS Code 101; coronary
atherosclerosis and other heart disease.

6.1.3. Experiment 3. The attributes of interest were age and state. The constraints
were: age between 27 and 40; hospital state is CA. The problem was to classify patients
in the constrained population as with or without Pancreatic disorders (not diabetes)—
CCS code 152.

There were 75 qualifying hospitals that satisfied the query: (age > 27 && age <
40) && (hospital-state is ‘CA’). 2190 positive and 108052 negative instances in the
constrained data space accounts for 1.99% of positives, which is less than the 2.50%
threshold, resulting in an imbalance condition.

6.1.3.1 Baseline Experiment. 10 bands of hospitals were created by randomly picking
8 hospitals per band for the first 5 bands and 7 hospitals per band for a second set
of 5 bands. Tenfold cross-validations by the leave-one-band-out method using DIDT
resulted in a balanced average accuracy of 56.18%.

6.1.3.2 Ensemble Method Experiment. Keeping the same random order of hospitals and
training/testing sets as the baseline experiment, tenfold crossvalidations with ensem-
bles of 1,3,5,. .. resulted in closing balanced accuracies shown in Table V.
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Table VI. Summary of Prediction Statistics

Experiment Balanced prediction accuracy Matthew’s Correlation Co-efficient
Baseline | Ensemble | Improvement | Baseline Ensemble
1 59.39% 83.69% 24.30% 0.17 0.22
2 54.48% 68.16% 13.68% 0.08 0.12
3 56.18% 80.64% 24.46% 0.12 0.24

Table VII. Summary of Prediction Statistics

Experiment Sensitivity Specificity
Baseline | Ensemble | Baseline | Ensemble
1 0.20 0.84 0.98 0.83
0.11 0.60 0.97 0.77
3 0.14 0.75 0.98 0.87

As seen from Table V, the ensemble with 25 experts had the maximum balanced
accuracy so far and the ensembles with 27 and 29 experts did not produce balanced ac-
curacies better than 0.8064 + A (0.8074). Thus, the algorithm stops with the selection
of 25 experts and balanced accuracy 80.64%.

Average depth of the trees among ensembles was 107 which is much smaller than
the number of independent attributes, 261. The average number of attributes used
for node splits was 193. The most influential attribute was CCS Code 196; normal
pregnancy and/or delivery.

6.2. Comparison of Results

As can be surmised from Tables VI and VII, the ensemble-based experiments gave
improvements in balanced prediction accuracies ranging from 13.68% to as much as
24.46% over the baseline experiments. These significant improvements were achieved
by preserving data privacy. MCC also showed improvements. By repeated grouping
of positive instances with negative instances in a ratio of 1:3 and using the decisions
of multiple experts, the errors in classification by a single classifier in the baseline is
improved substantially by smoothing over multiple experts’ opinions.

7. CONCLUSIONS

In this article, we developed a system for distributed clinical decision support when
the data instances have class imbalance issues. The system can dynamically detect
the class imbalance and build the classifier model without the need for actual data
from the participating hospitals. The decision model we built for the system is a vot-
ing machine that is an ensemble of decision trees built individually in a distributed
manner using the DIDT algorithm. The number of experts for the ensemble can be
estimated by the system. Each member of the ensemble has the same voting weight.
Since only statistics of the data and no real data are used in the process, patient pri-
vacy is preserved. The model-building makes use of oversampling of insufficient class
data. We illustrated the working of the system using the NIS 2009 dataset and showed
that the system improves the balanced accuracy and Matthew’s Correlation Coefficient
over the baseline system.
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