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Abstract Mining discriminative spatial patterns in image data is an emerging subject of
interest in medical imaging, meteorology, engineering, biology, and other fields. In this
paper, we propose a novel approach for detecting spatial regions that are highly
discriminative among different classes of three dimensional (3D) image data. The main
idea of our approach is to treat the initial 3D image as a hyper-rectangle and search for
discriminative regions by adaptively partitioning the space into progressively smaller hyper-
rectangles (sub-regions). We use statistical information about each hyper-rectangle to guide
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the selectivity of the partitioning. A hyper-rectangle is partitioned only if its attribute cannot
adequately discriminate among the distinct labeled classes, and it is sufficiently large for
further splitting. To evaluate the discriminative power of the attributes corresponding to the
detected regions, we performed classification experiments on artificial and real datasets.
Our results show that the proposed method outperforms major competitors, achieving 30%
and 15% better classification accuracy on synthetic and real data respectively while
reducing by two orders of magnitude the number of statistical tests required by voxel-based
approaches.

Keywords Data mining . Image databases . 3D images . Adaptive partitioning .

Statistical pattern analysis . Classification . Intelligent knowledge discovery

1 Introduction

Mining multidimensional data has been one of the core aspects of knowledge discovery in
several fields and applications. In the traditional data mining literature (Han et al. 1996,
Agrawal et al. 1992), multidimensional data have been most often encountered in the
framework of relational databases and data warehouses. Within these frameworks, they
have been defined as vector/tuple instances constructed by features (attributes) and most of
the mining techniques have focused on extracting strong association rules and dependencies
among these attributes (Agrawal et al. 1993, Agrawal and Srikant 1994). However, these
attribute-oriented induction approaches can only handle this form of explicitly (tuple-
formatted) stored data, thereby limiting the ability to discover patterns in datasets that may
not involve this type of attributes. Recent advancements in data acquisition technology have
made it possible to collect several different types of multidimensional data that require more
elaborate analysis techniques (Faloutsos 1996).

A special case of multidimensional data that are encountered in many applications are
spatial data (Guting 1994, Gaede and Gunter 1998). In most of the reported research, spatial
data have been analyzed in the context of Geographical Information Systems (GIS) and
have been treated as representations of certain geographic entities, such as points, lines, and
polygons (Fotheringham and Rogerson 1994). Mining these spatial entities usually involves
extracting interesting knowledge that is implicitly present in the data, such as spatial
relations or patterns engaging spatial and non-spatial attributes (Ester et al. 1977, Koperski
and Han 1995). Recently, modern automated data collection tools-such as high-resolution
medical image scanners, remote sensing technology, and satellite imagery devices-have
allowed vast amounts of spatial data to be captured in a wide variety of image formats.
Examples of such 3D volume data repositories are geographic information systems (GIS)
storing 3D surface data obtained from geophysical studies (Kriegel and Seidl 1998); brain
image databases including volumes obtained from MRI1 fMRI2 or CT3 scanners
(Megalooikonomou et al. 2000b); and 3D protein structure databases (Bernstein et al.
1977). Challenges for these types of data include developing efficient frameworks for
organizing, storing, retrieving and analyzing such datasets.

1 Magnetic Resonance Imaging: shows soft-tissue structural information.
2 Functional-Magnetic Resonance Imaging: shows physiological activity in the brain.
3 Computed Tomography: shows hard-tissue structural information.
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Considerable effort has been devoted to developing tools for visual exploration of 3D
image data because they reflect real-world 3D spatial distributions (Kaufman et al. 1993),
but little work has been performed on developing efficient and effective methods for
modeling and mining these 3D datasets. Traditional knowledge discovery tasks, such as
classification, extraction of discriminative patterns, and detection of associations, need to be
extended to support efficient decision making at emerging 3D volume data collections.
Although many techniques have been developed in the case of content-based retrieval and
classification for general types of images (Smeulders et al. 2000, Flickner et al. 1995), the
analysis is based on extracted features that treat the image in a holistic manner: i.e., they are
based on extracted attributes that refer to the entire image space. These global attributes
may be less useful than attributes that focus on specific sub-regions that are of interest in
certain application domains, such as medicine, geography, and meteorology. The specific
sub-regions that are of interest may occupy a small portion of the image data, such as
temperature and precipitation contour maps in meteorological images (Kontos and
Megalooikonomou 2005) or lesions and tumor structures visualized by medical images
(Megalooikonomou et al. 2000b, Euripides et al. 1997).

For this type of analysis there is a need to detect highly informative image sub-regions of
interest, extract local informative features and then perform specialized sub-region focused
pattern analysis.

In this work we are interested in developing intelligent tools for mining discriminative
patterns among groups of 3D image data. The data we consider are 3D volumes (or spatial
data) that represent the spatial distribution of certain quantities in the 3D space. Examples
of such image data are spatial distributions of brain lesion centroids (Fig. 1a), regions with
high levels of precipitation or temperature-relative humidity in meteorological maps
(Fig. 1b), brain activation areas during a particular task in fMRI contrast maps (see Fig. 1c),
and 3D molecular structures studied in biological sciences (Fig. 1d). We propose a novel
Dynamic Recursive Partitioning (DRP) approach for distinguishing between 3D volume
data generated by highly non-uniform distributions, which is based on detecting
discriminative sub-regions and extracting informative quantitative features. This approach
facilitates the mining of associations between the spatial distribution of 3D regions of
interest and other non-spatial characteristics, such as class membership. We propose to
perform an adaptive partitioning of the 3D space into progressively smaller sub-regions
(hyper-rectangles) until discriminative areas are discovered in the initial volume. The
selectivity of the splitting is guided by statistical tests that determine the discriminative
power for each sub-region. In order to evaluate the discriminative power of the quantitative

Fig. 1 Examples of 3D image data: a 3D binary data illustrating the distribution of brain lesion centroids,
b 3D geophysical spatial data, c a 3D fMRI brain contrast activation map, and d a 3D molecular structure
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features extracted from the detected areas, we classify the initial 3D volumes using these
features. In our experiments we use artificial and real datasets, including mixtures of
Gaussian distributions, synthetic fractal data, real 3D fMRI data, and realistic lesion data
generated by a simulator conforming to a clinical study. To classify the data, we employ
neural networks.

The rest of this paper is organized as follows. In section 2 we present background
information on spatial data analysis. In section 3 we provide a comprehensive description of
the proposed methodology. In section 4 we present a description of the datasets used for the
experimental evaluation. In section 5 we describe the experiments performed and present
the corresponding results, including comparative experiments with the alternative
techniques described in the Background section. Finally, in section 6 we summarize our
concluding remarks and give directions for future research.

2 Background

Spatial data mining refers to the process of extracting significant implicit knowledge from
large amounts of spatial data. To facilitate this process, traditional data mining techniques
(Agrawal et al. 1993, Agrawal et al. 1996) have been extended and modified in order to be
applied to spatial data entities (Ester et al. 1996, Koperski and Han 1995, Lazarevic and
Obradovic 2002, Ng and Han 1994, Sheikholeslami et al. 1998, Son et al. 1998). In general,
spatial data mining techniques extract patterns of three different types (Koperski and Han
1995): spatial characteristics (general characteristics and patterns of a spatial-entities set,
such as precipitation patterns in meteorological maps), spatial associations (implications
and associations among spatial features), and spatial discriminant patterns (contrasting
discriminative characteristics of distinct spatial entity classes). Classification in the context
of spatial data is defined as the process of assigning non-spatially related labels to classes of
spatial entities. For this purpose, discovering spatial patterns that are discriminative among
classes is very useful. Discovering such patterns is the main focus of this paper.

Researchers face the following challenges when mining spatial data: (a) a very large
number of dimensions (in considered domains proportional to the number of pixels or
voxels (volume elements) that are observed); (b) difficulties extending existing mining
techniques for non-spatial data or designing novel algorithms for learning from spatial
objects directly; (c) errors introduced by preprocessing that involves spatial normalization
(registration) and intensity normalization (to deal with different acquisition mechanisms);
(d) a high correlation among data; and (e) large heterogeneity. In particular, the statistical
dependence that exists among neighboring spatial objects needs to be taken into account. In
addition, the granularity of the space considered (i.e., coarse or fine) determines the number
of spatial regions examined and affects the computational cost of an approach.

Most of the approaches for pattern analysis and classification of 3D image data proposed
in the literature have treated these data in a holistic manner without focusing on certain
discriminative sub-regions and their spatial distribution within the volume that might be of
particular interest. In several cases, volume data have been treated as multivariate variables.
The work of (Lazarevic et al. 2001, Pokrajac et al. 2005) assumes that each dimension is
represented by a component attribute and the voxel values are generated by probability
distributions. The probability density function is estimated using parametric, non-
parametric, or semi-parametric techniques (Devore 2000). Histograms and kernel-based
methods (Bishop 1995) have been applied to estimate the probability density function from
the available volume data. Under specific assumptions on the form of the distributions
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(number of Gaussian components, etc.) the expectation-maximization (EM; Lloyd 1982,
McLachan and Krishnan 1996) and the k-means (Lloyd 1982) algorithms have also been
employed to estimate the underlying 3D distribution models. Based on the estimated
probability density functions and the corresponding representation of volume data as
multivariate variables generated from multidimensional distributions, (Lazarevic et al.
2001, Pokrajac et al. 2005) have used distance based methods and maximum likelihood
approaches to distinguish between different classes of 3D image data.

Distance based methods define a distance measure to estimate to what extent
distributions diverge. Distance metrics frequently used in this context4 are the Euclidean
distance, the Mahalanobis distance (Fukunaga 1990) for normally distributed data and the
Kullback–Leibler (KL) divergence (Duda et al. 2000; see the Appendix for definitions of
those distances). When employing a maximum likelihood (ML) approach (Duda et al.
2000, Aladjem 1998, Bhattacharyya 1943, Mitchell 1997), the similarity (or equivalently
dissimilarity) between volumes can be assessed by the likelihood that a new distribution is
the same as one of the existing distributions, assuming that the probability densities of
existing distributions have been estimated. The probability that the particular data are
observed is calculated on the condition that a pre-determined hypothesis holds for the class
distribution. ML selects the hypothesis that maximizes this conditional probability, defining
similarity between a 3D sample and labeled volume data classes. Distance based and
maximum-likelihood techniques have been mainly applied to binary (homogeneous)
volumes (Lazarevic et al. 2001, Pokrajac et al. 2001), where voxel values are either 0 or
1. In many recent applications though, such as volume data analysis (Megalooikonomou
et al. 2000b, Kontos et al. 2004), there is a need for mining non-homogeneous (non-binary)
3D image datasets. In addition, when using distributional distance or ML techniques to
facilitate volume data classification, we cannot obtain any information about the spatial
sub-domains where the distributions are different.

In contrast to approaches that measure distances between spatial distributions in 3D
image data by looking at the space as a whole, voxel-wise statistical analysis has been
enthusiastically applied to distinguish among 3D spatial distributions (in particular in the
neuroimaging community). In this type of analysis, each voxel’s changes are analyzed
independently among the available samples and a map of statistical significance is built for
each voxel. To ascertain the discriminatory significance of each voxel, a statistical test such
as the t-test, ranksum test, or the F-test is applied (details about these tests are provided in
section 3.2). For example, when applying the t-test on a voxel-by-voxel basis a t-value is
obtained for each voxel that indicates how likely it is that the voxel’s variability across
classes is observed by chance. Clustering is often employed in the process to construct
highly informative regions with respect to classification. A detailed review of this and other
analysis techniques when applied to neuroimage data is provided by (Megalooikonomou
et al. 2000b). Statistical Parametric Mapping SPM (Friston et al. 1995) is a widely used
implementation of the voxel-wise analysis, which is mostly applied to the analysis of brain
image data such as fMRI data. In contrast to distributional distance or ML techniques

4 Other applicable distance measures that incorporate distributional information are the Bayesian distance,
the Patrick–Fisher distance (Aladjem, M. (1998) Nonparametric discriminant analysis via recursive
optimization of Patrick–Fisher distance. IEEE Transactions on Syst., Man, Cybern., 28B, 292–299 and the
Bhattacharyya distance (Bhattacharyya (1943) On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society, 35,
99–110).
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applied on the whole image space, voxel-wise analysis can easily identify spatial sub-
regions that are discriminative among classes. However, voxel-wise approaches appear to
be significantly biased towards distribution differences that are highly localized in space
and linear in nature (Davatzikos 2004). Also, when applying voxel-wise analysis, a
significant computational overhead is added because computations that consider each voxel
individually are involved. Moreover, the computation of a statistic for many pairwise tests
introduces the multiple comparison problem: a certain portion of the tests becomes positive
just by chance. Approaches to overcome this problem include the standard Bonferroni
correction (Andersen 1997), which overestimates the number of independent tests
performed in this case due to the spatial correlation among neighboring voxels, and
heuristic modifications such as the sequential Bonferroni correction (Andersen 1997).
Clustering is also usually applied to detect and discard outlier voxels when constructing
discriminative regions.

In order to distinguish among volume data distributions while reducing the number of
statistical tests performed by voxel-wise analysis, a static partitioning approach has been
proposed (Lazarevic et al. 2001). This approach partitions the volume into a predefined
number of 3D hyper-rectangles; then for each hyper-rectangle, certain statistical infor-
mation is extracted (such as mean, median, or sum). This statistical information is used for
training a classification model to assist in distinguishing between groups of volume data.
One problem of this approach is to determine the splitting resolution, i.e., the optimal size
of hyper-rectangles.

In this paper we propose an approach that effectively classifies 3D spatial distributions
by detecting highly discriminative regions among different classes and extracting
informative quantitative features that can be employed for classification. Rather than
treating the spatial domain in a holistic manner by extracting features that reflect the
information content of the entire image space, our approach focuses on specific regions that
are of interest. In addition to performing classification, our technique can also indicate
discriminative spatial sub-domains (where the distributions differ between the classes) for
possible further examination by domain scientists. The approach has been designed to be
applicable both to homogeneous (binary) and to non-homogeneous (non-binary) data. To
moderate the extent of the multiple comparison problem observed in voxel-wise analysis, it
reduces the number of statistical tests performed by applying statistical tests on groups of
voxels rather than on individual voxels. To deal with the problem of determining the right
splitting resolution of the static partitioning approach, it dynamically and adaptively
partitions the space by using statistical tests to guide the splitting. For this reason we call
the proposed approach Dynamic Recursive Partitioning (DRP). Preliminary results of the
application of DRP to binary volume data classification have been reported in
(Megalooikonomou et al. 2002). Here, we present a comprehensive description of the
proposed methodology for both homogeneous (binary) and non-homogeneous (non-binary)
3D image data. In our experiments, we evaluate the proposed method both on artificial and
real data and show that it outperforms major competitors by 30 and 15% respectively.

DRP treats the 3D space as a hyper-rectangle and searches for discriminative sub-regions
(sub-domains) by partitioning the space into progressively smaller hyper-rectangles
(cuboids) in an adaptive way. Although a few recently proposed methods (Wang et al.
1997, Keim 1999, Castelli and Kontoyiannis 2002, Castelli et al. 1996) are based on a
similar idea, these methods differ significantly from ours. In (Wang et al. 1997), a recursive
partitioning method has been proposed for clustering 2-dimensional data, while in (Keim
1999) oct-trees are used for hierarchical approximation of connected 3D shapes to provide
efficient search and querying. Unlike these approaches, our approach uses recursive
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partitioning for supervised learning (classification) and dynamically applies statistical tests
to decide the depth of the constructed oct-tree. In Castelli and Kontoyiannis (2002), Castelli
et al. (1996), a recursive partitioning algorithm is proposed which generates a tree-
structured subdivision of the image data using an adaptive rule based on the wavelet
transform. The authors deal with the problem of classification that consists of observing an
image with known pixel values and unknown labels and assigning a class label to each
pixel. The pixel classification is performed by considering the labels of neighboring pixels
while looking at lower resolution representation of the data. DRP is different from
progressive classification in several terms: (a) the main objective of DRP is to find
discriminative areas among groups of images, (b) it focuses on image classification rather
than on pixel classification, (c) it allows features to be extracted from the hyper-rectangles
at different resolutions, rather than being computed for each of the hyper-rectangles as a
function of the features of their partitions and in this respect it is superior to the progressive
classification approach, (d) it uses statistical tests for partitioning rather than relying on
classification performance, (e) it does not rely on images being transformed with a
pyramidal decomposition based on wavelets. In the following section we describe the
proposed methodology in detail.

3 Methodology

This section describes our approach for detecting highly discriminative patterns of the
distribution of voxel values in 3D image data. In addition to the partitioning method, we
discuss the statistical tests that are used, implementation details, and the classification
model that is used for evaluating the proposed technique.

3.1 Dynamic recursive partitioning

The main idea of the approach is to perform an adaptive partitioning of the space into
progressively smaller regions until areas are detected that reflect significant differences
among the distinct classes. The selectivity of the splitting is guided by statistical tests. We
use features extracted from the highly discriminative regions detected by the proposed
algorithm to perform classification of the 3D image data. To ensure a clear description of
the methodology, we consider a two-class problem here; an extension to more than two
classes can be easily obtained.

The data we consider consist of three-dimensional volumes of voxels (volume elements).
We focus on regions that can be defined as sets of (often connected) voxels with certain
characteristics. We consider both binary and non-binary data. In the case of binary data, the
voxels that form the regions of interest have the same value (e.g., “1” corresponding to
“black”) which is different from the background (e.g., “0” corresponding to “white”; see
Fig. 1a). For non-binary volumes, the voxel values can range while they are still different
from the background (see Fig. 1b, c). Another way to view the variability in non-binary
volumes is that voxel values reflect a probability generated by a 3D distribution. In some
applications this is a highly non-uniform distribution. We will refer to this value as the
density of a voxel.

The classification problem we address here can be defined as follows: Given two sets SX
and SY of 3D spatial distributions (each spatial distribution representing the spatial
arrangement of voxel values in one instance of a spatial object as in Fig. 1a) that belong to
one of two distinct classes, the task is to detect discriminative patterns, extract information
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from these patterns, and then use this information to identify whether a new data sample sz
comes from the same distribution as the set SX or the set SY. In order to facilitate this
classification, we identify spatial discriminative aspects of the class distributions by
detecting highly informative (discriminative) spatial sub-regions. Hence, the overall goal of
our work may be stated as developing a framework for mining discriminative patterns of
spatial distributions in 3D image data.

The proposed method operates directly on the 3D image and does not necessarily require
any prior processing of the voxel values. In specific applications (e.g. medical image
analysis), preprocessing steps such as segmentation and registration to a standard template
(i.e., spatial normalization) may be required. Image segmentation is used to delineate the
boundaries of regions that are of interest, and it is performed using manual, automated, or
semi-automated methods (Worth et al. 1997). Image registration is performed to bring the
sample’s image data into register (i.e., spatial coincidence) with a common spatial standard.
This process is performed using normalization to a particular template and is necessary to
determine whether two samples have specific sub-regions of interest in the same location.
Throughout the description of our proposed methodology, we assume that the 3D image
data has been normalized prior to the analysis.

The DRP algorithm treats the 3D space as a hyper-rectangle and searches for
discriminative sub-regions (sub-domains) by partitioning the space into progressively
smaller hyper-rectangles (cuboids) in an adaptive way. Although a few recently proposed
methods (Wang et al. 1997, Keim 1999) are similar to our approach, these approaches differ
significantly from ours. In (Wang et al. 1997), a recursive partitioning method has been
proposed for clustering 2-dimensional data, while in (Keim 1999) oct-trees are used for
hierarchical approximation of connected 3D shapes to provide efficient search and
querying. Unlike these approaches, our approach uses recursive partitioning for supervised
learning (classification) and dynamically applies statistical tests to decide the depth of the
constructed oct-tree.

Our proposed algorithm begins by considering the total volume as one initial hyper-
rectangle. Statistical information reflecting the distribution of voxel values in the hyper-
rectangle (under consideration) is collected and used as a candidate feature (attribute)
representing the corresponding sub-region. In our experiments in section 5, the mean
(Vmean) of all voxel values of a hyper-rectangle is used; other measurements, however, such
as the median or sum of the voxel values, can also be used as candidate features (attributes).
The adaptive partitioning of the 3D space continues by splitting every hyper-rectangle
whose attribute does not have the discriminative power to determine the class of samples.
This is determined by applying a statistical test and assigning a significance cutoff threshold
that determines the discriminative power of the specific sub-region. The procedure
progresses recursively until all remaining sub-regions are discriminative or a sub-region
becomes so small (given the resolution of the original data) that it cannot be further
partitioned. Figure 2a illustrates the main idea of the process. The maximum number of
partitioning steps (depth) is predefined to avoid excessive fragmentation of the volume.
Given the resolution of the original data, the partitioning obviously cannot proceed beyond
the voxel level. In specific applications, such as in medical imaging, going down to the
voxel level is not suggested due to the errors caused by non-perfect registration techniques.

3.2 Use of statistical tests

As described above, the adaptive partitioning of the 3D space is guided by a statistical test
and a significance cutoff threshold that determines the discriminative power of a given sub-
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region. Depending on the nature of the dataset, several statistical tests can be employed for
this purpose. In our experiments, we have used the Pearson correlation coefficient, the
t-test, and the ranksum test.

Based on the Pearson correlation coefficient (Devore 2000) between the class label
(considered as a binary numeric value) and the attribute value for each sample (Vmean), we
consider an attribute significant if the correlation coefficient is larger than a pre-determined
threshold. In a sample of n observations the correlation coefficient r between two random
variables X and Y can be estimated as

rXY ¼
Pn
i¼1

xi � xð Þ yi � yð Þ
nsXsY

where xi, yi are the observed values of the random variables X, Y and x, y, σx, σY are
respectively the empirical means and standard deviations of X and Y calculated from the
sample.

Alternatively, we can assess the significance of a candidate attribute by deciding whether
the distributions of attribute values, which correspond to the classes, differ substantially
using parametric (e.g., t-test (Devore 2000)) or non-parametric tests (e.g., Wilcoxon rank
sum (Conover 1999)). Here, we present in more detail these tests and how they are being
used. Let us consider again the two distinct classes SX of size NSx and SY of size NSy. The
initial assumption that holds for the two classes is that the observed samples from the two

Fig. 2 Illustration of the adaptive partitioning of a an initial domain into spatial sub-domains and b splitting
of an oct-tree node
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populations are generated by two independent (unrelated) processes. Under this
assumption, the following hypothesis testing scenario is examined at each step of the
recursive partitioning process:

& H0 (null hypothesis): The E[Vmean] is the same for the two classes; the hyper-
rectangle under consideration is not discriminative among the populations.

& H1 (alternative hypothesis): The E[Vmean] is not the same for the two classes; the
hyper-rectangle under consideration is discriminative among the populations.

Prior to performing the statistical test, experimental data is used to determine the
distribution of the test statistic under the null hypothesis. Based on the value of the test
statistic, the null hypothesis may be rejected in favor of the alternative hypothesis. The
rejection region (the set of values for the test statistic when the null hypothesis H0 is
rejected) is determined based on a pre-specified significance level α—the probability of the
Type I error (that the null hypothesis H0 is wrongly rejected by the test in the case that it is
in fact true). The probability value (p-value) of a statistical hypothesis test is the probability
of getting a value of the test statistic as extreme as or more extreme than that observed by
chance alone, if the null hypothesis H0, is true. A p-value is a measure of evidence against
the null hypothesis; the smaller the p-value, the more evidence we have against H0.

Depending on the characteristics of the datasets we employ parametric or non-parametric
statistical tests:

1. The Vmean attributes have normal (Gaussian) distribution for each class, and their
variances are the same for the two groups.

In order to verify the normality and equal variance assumptions, we need to have a
reasonable sample size. If these assumptions are satisfied, to evaluate the null hypothesis H0

that the means of attributes in the two classes are the same, we use the unpaired t-test. We
compute the following test statistic:

t ¼ VmeanSy � VmeanSx

� �
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NSy

þ 1
NSx

q ð1Þ

where VmeanSy ;VmeanSx are the empirical means of Vmean for class SY and Sx respectively
calculated from the available sample and s is the pooled standard deviation of the two
classes given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNSy � 1Þs21 þ ðNSx � 1Þs22

NSy þ NSx � 2

s

Under H0, t from Eq. 1 follows the t-distribution with NSy þ NSx � 2
� �

degrees of
freedom (Devore 2000).
2. The Vmean attributes do not satisfy the normality and/or equal variance assumptions.

In the case where the normality and/or equal variance assumptions do not hold or cannot
be validated due to a small dataset size, we use the non-parametric Wilcoxon rank sum test,
which makes no distributional assumptions and can be considered the alternative of the
unpaired t-test for this type of analysis. The Wilcoxon rank sum test is based on the sum of
ranks of the Vmean attributes in each of the two classes. More specifically, the Vmean

attributes are ranked according to their value, and equal Vmean observations are assigned the
average of the corresponding rank values. The sum of the ranks T is calculated for the group
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with the smaller sample size NSs=min(NSx,NSy). For datasets with relatively small size
(NSs<10, NSx+NSy<20), we consider as test statistic the value of T. Otherwise, (as is the
case in our experiments) the test statistic is calculated as

z ¼ T � mT

sT

� �
ð2Þ

where μT ¼ NSsðNSx þ NSy þ 1Þ
2

; and

sT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSxNSy NSx þ NSy þ 1

� �
12

s
:

Under the null hypothesis H0 (the attributes in two classes have the same medians), z
from Eq. 2 follows a normalized Gaussian univariate distribution.

Another criterion that can be used is based on discretization of the candidate attribute
and evaluation of the class/attribute contingency matrix using statistical tests (chi-square or
the Fisher exact test (Agresti 1996)) with pre-determined maximal type I errors. In this case,
a suitable value for the discretization threshold is set ad-hoc or by using discretization
techniques that maximize class/attribute mutual information (Ching and Wong 1995).

The DRP algorithm effectively reduces the number of statistical tests applied, because
the statistical tests are applied selectively on groups of voxels (cuboids) instead of on
individual voxels. This also helps alleviate the effect of the multiple comparison problem,
although a type of Bonferroni correction may still be employed (see section 2).

3.3 Implementation

For the implementation of this procedure, efficient data representation and manipulation is
done using augmented oct-trees (Fujimura et al. 1983) and dynamic arrays (Cormen et al.
2001) for storing pointers to the leaf nodes. (Similarly, quadtrees are used for the
implementation in two dimensions (2D)). If the splitting criterion is satisfied, the spatial
sub-domain (or cuboid) corresponding to the node of the oct-tree is partitioned into eight
smaller sub-domains using the SPLIT8 routine similar to the splitting algorithm in Quad
trees (Samet 1984; see Fig. 3). The corresponding tree node becomes the parent of eight
children nodes, each of which represents a new sub-domain (new cuboid). Figure 2b
illustrates the concept of splitting a tree node V2 into smaller sub-domains (children nodes).
The new measurements V 3

mean corresponding to the children node V 3 becomes a new
candidate attribute. Figure 3 shows the outline of the DRP algorithm.

3.4 Classification model

To verify the discriminative power of the patterns detected by DRP, we propose to build
classifiers using the extracted highly informative attributes. In our experiments, we used
linear and non-linear neural networks as classification models. These are universal
approximators and have been often reported to outperform the alternatives for classifying
real life linear and non-linear phenomena (Haykin 1999). Depending on the size of the
dataset and the number of discriminative regions detected by DRP, different network
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architectures and training algorithms were implemented to achieve optimal performance.
For example, to avoid overfitting due to the small size of real-world datasets, we employed
one-layer perceptron networks trained by the Pocket algorithm (Gallant 1990). We used
sigmoidal neural networks in all other cases. This is discussed in detail in section 5.

As inputs to the classifier we employ the attributes Vmean of the discovered regions, after
being standardized to have zero mean and unit standard deviation. The output of the model
is represented by binary class label (in the case of two class dataset) indicating the class of
the samples. A statistically valid estimate of the classification accuracy on out-of-sample
data is obtained by the leave-one method that is explained in section 5.2.

In the case that a large number of attributes are extracted by DRP, techniques for
attribute selection can be further employed to reduce the dimensionality and eliminate
highly correlated attributes. In addition to sequential backward and forward searches for

Fig. 3 The outline of the DRP algorithm in pseudocode
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dimensionality reduction, the branch and bound search can be applied for iterative
reduction of the attribute set.

To demonstrate the ability of this approach to effectively detect discriminative regions of
the 3D image data and to evaluate the discriminative power of the attributes corresponding
to these regions, we present classification experiments on various datasets. We first
introduce these datasets.

4 The datasets

We evaluated the proposed approach on both synthetic and real datasets. We used two
synthetic datasets, a mixture of Gaussians, and a fractal dataset. We also used a real dataset
of 3D fMRI brain image scans acquired from a study on Alzheimer’s disease (AD) and a
realistic dataset of brain lesions. All datasets are publicly available at http://denlab.temple.
edu/data_repository.

4.1 Synthetic data

Gaussian Mixtures This set consists of two distinct classes of homogeneous (binary)
volume data composed of mixtures of nine Gaussian distributions. These mixtures had the
same component means for each class but different component variances, namely 0.1 and
0.01. (In the case of generating volume data with different component means, classification
was trivial (Pokrajac et al. 2005).) We experimented with 50 and 200 3D volume data
samples for each class. Figure 4 illustrates an example from each distribution.

Fractal Data In order to evaluate our proposed approach on highly non-uniform data, we
included in our experiments a set of binary fractal volume data with varied levels of density
within different spatial sub-domains. These data were generated according to the
probabilistic structure of a non-complete oct-tree with a maximal depth Lmax and
probability pl(L) that a node of the tree at level L is a leaf [i.e., the node will branch
further with the probability of 1− pl(L)]. The set consisted of two distinct classes with
different voxel densities on tree leaves. Each class included 100 samples. The probability
that a leaf node at level L is discriminative, was specified as pdis(L). The probabilities pl(L)
and pdis(L) were modeled to have fractal-like exponential dependence on the node level L
according to pl Lð Þ ¼ 1=2 3�dlð ÞL and pdis Lð Þ ¼ pdis Lmaxð Þ�2 3�ddisð Þ� Lmax�Lð Þ. All the volume
data were generated with parameter values Lmax=8, dl=2.1, ddis=2.5 and pdis Lmaxð Þ ¼ 20%.

Fig. 4 Volume data samples from each class; sample with variance a 0.01 and b 0.1
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To make the experimental evaluation more challenging, the fractal data distributions we
created were very similar to each other. Figure 5 shows 3D fractal volume samples from
each class.

4.2 Real data

The real datasets include 3D volumes of brain image scans. More specifically, the samples
consist of 3D fMRI contrast activation maps5 acquired from a study (Saykin et al. 1999) on
Alzheimer’s disease (AD). The study involved subjects participating in cognitive tests
specifically designed to differentially probe semantic knowledge of categorical, functional,
and phonological congruence between word pairs, in order to explore neuroanatomical
correlates in AD. The task was to identify word pairs with correct category exemplar
(CATX) relationships. The 3D volumes were registered to a common spatial template in
order to become comparable across subjects, and background noise from sensor fluctuations
was removed (Saykin et al. 1999, Kontos et al. 2004). The set consists of nine control and
nine patient fMRI contrast activation volumes. Figure 6 shows examples of these fMRI
volumes.

Although the Alzheimer’s disease dataset size is small compared to our artificial data, it
is important to mention that this comparably small number of samples is usual for fMRI
studies because this kind of imaging is costly to acquire. In addition, by including real data
in our evaluation, we intend to explore the potential of applying our proposed approach to
real world datasets and problems. Notice that fMRI data are usually highly heterogeneous
and non-uniform distributions and therefore make good candidates for such an evaluation.

4.3 Realistic data

To experiment with a larger dataset that closely approximates real dataset, we generated a
realistic dataset using an established lesion-deficit simulator (LDS; Megalooikonomou et al.
2000a, Megalooikonomou 2002). In implementing the LDS, probability distributions are
used to model the number, size, spatial distribution, and shape of lesions, as well as other
parameters, such as registration error and structure-function associations. This dataset
consists of simulated 3D volumes that comply with a statistical model for brain lesions
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Fig. 5 Two distinct classes of fractal data (that at first glance look very similar)

5 Contrast activation maps show the difference between rest and active conditions for activation/deactivation
levels in the human brain.
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derived from a medical study. More specifically, the medical study that these data conforms
to is the Frontal Lobe Injury in Childhood (FLIC) study for Attention Deficit Hyperactivity
Disorder (ADHD) patients (Gerring et al. 1998). The dataset includes two classes
corresponding to two distributions. The first class simulates the subjects who developed
ADHD, (“yes ADHD” class) while the second class simulates the subjects who did not
develop ADHD (“no ADHD” class) after a closed head injury (see Fig. 7). Each class
consists of 50 samples with approximately 200 lesion voxels per 3D volume (i.e., per
subject).

5 Experimental evaluation

Here we report the results of applying our proposed approach to the four datasets described
in section 4. We explored the effectiveness of DRP by performing classification
experiments utilizing Neural Networks (Haykin 1999). Given a training set with class
labeled 3D volume data, our goal was to detect discriminative areas and then use these
areas to successfully determine class membership for new unseen 3D volume data. In

Fig. 7 Distributions for a “yes ADHD” and b “no ADHD” classes

Fig. 6 Sample 2D slice views of 3D fMRI contrast activation volume data for a a control and b patient
subject of the CATX dataset
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general, we evaluated the performance by calculating the classification accuracy defined as
the ratio of the number of rounds when the classification of a new sample was successful to
the total number of rounds. In the experiments we tested a wide range of parameters for
DRP (statistical stopping criterion, maximum splitting levels, etc.) in different experimental
settings. We also compared our proposed approach with other methods for 3D volume
classifications, such as distributional distance techniques, maximum likelihood approaches,
and voxel-based statistical techniques (see section 2). For distributional based techniques
that are deterministic in nature (repetition of the experiments on the same data will give the
same result) we reported only the accuracy. For the stochastic techniques (those based on
neural networks training with random parameter initialization) we reported the mean and
average accuracy through the repeated experiments.

We experimented with two statistical tests: the t-test and the ranksum test. The t-test was
employed under the normality and equal variance assumption for the Vmean attributes in
each class. To effectively evaluate cases with relatively small datasets (e.g., fMRI data), we
also employed the Wilcoxon rank-sum test to assess the statistical significance of the Vmean

attributes divergence among classes. A threshold value on the p-value that is typically used
in statistical analysis is 0.05. Another typically used but stricter p-value threshold is 0.01.
We experimented with both values. The tree depth limit that we used in the fMRI
experiments is justified, taking into consideration the resolution of our data. The
dimensions of the initial fMRI contrast activation maps are 79×95×68. Hence a tree
depth limit of 3 equals a voxel neighborhood of approximately 10×12×9 voxels. Also, a
tree depth limit of 4 equals a voxel neighborhood of approximately 5×6×4 voxels.

5.1 Results on synthetic data

Gaussian Mixtures We applied DRP with the non-parametric ranksum test as a stopping
criterion and a significance threshold set to 0.05. The maximum splitting levels (tree length)
that the algorithm was allowed to proceed was 4. For the classification, we used the best
eight attributes extracted by DRP according to their correlation with the class label. We
trained feed forward sigmoidal neural networks with one hidden layer and a number of
neurons equal to the number of input attributes. The number of output nodes was equal to
the number of classes, and classification was decided according to the winner-takes-all
principle (class corresponds to the output with the larger response). Training and parameter
estimation for the classifiers was performed using the Levenberg–Marquardt optimization
(Hagan and Menhaj 1994). We performed ten classification trials for DRP and Maximum
likelihood method, while experiments were not repeated for Kullback–Leibler and
Mahalanobis based methods since they are deterministic in nature. For each trial, we
generated a new random sample from the underlying mixtures of distributions and repeated
the training and testing process ten times with a random initialization of the network
parameters. Table 1 shows the classification performance achieved by DRP, as well as the
comparative accuracies obtained when using the approaches reviewed in section 2. DRP
was able to almost perfectly classify samples drawn from either one of the classes. In
general, DRP was comparable to the Maximum Likelihood parametric approach. To verify
this, we applied an unpaired t-test which could not reject hypothesis of the same mean
accuracies at the 0.05 significance level. However, in this case DRP still has additional
advantage of detecting the sub-areas in the 3D volumes where the class distributions differ
substantially. The other approaches were not able to provide good classification, especially
for samples belonging to the class with smaller variance; compared to them, Both DRP and
Maximum Likelihood obtained significantly higher classification accuracy (p-value<10−4).
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Fractal Data Since the highly non-uniform distributions (see section 4.1) were very difficult
to discriminate, we applied DRP with two different experimental settings. In the first set of
experiments, we used a t-test as a stopping criterion with a significance threshold level set to
0.01. For the rest of the experiments, we employed the ranksum test with the significance
threshold set to 0.05. In both cases, the maximum splitting levels (tree length) that the
algorithm was allowed to proceed was 5. We trained sigmoidal feed forward neural networks
with one hidden layer and neurons equal to the number of input attributes. The number of
output nodes was again equal to the number of classes, and classification was performed
according to the winner-takes-all principle (class corresponds to the output with the larger
response). The training was performed using 50 samples from each class (100 samples in
total). The remaining 100 samples were used for testing. Each training–testing trial was
repeated ten times. The model coefficients of the network were estimated using the
Levenberg–Marquardt (Hagan and Menhaj 1994) optimization algorithm. Table 2 illustrates
the classification accuracy and standard deviation achieved by DRP and other approaches (as
in previous experiments, standard deviation for Kullback–Leibler and Mahalanobis based
methods were not computed since these methods are deterministic in nature).

DRP was significantly more accurate than the other classification approaches (p-value
for t-test to compare accuracies was smaller than 10−4). The tree structures representing the
partitioning performed by DRP in this case are shown in Fig. 8. We would like to add that
the accuracy of the two variants of DRP were also similar (the null hypothesis that they
have the same accuracies could not be rejected even at 0.05 significance level).

5.2 Results on real data

We applied DRP to the fMRI dataset and tested a range of experimental settings. We
employed the t-test and parametric ranksum test as stopping criteria with the p-value
threshold set to 0.05 and 0.01. The maximum splitting steps that the algorithm was allowed
to proceed (tree depth) was 3 and 4 (this choice was justified earlier given the resolution of
the data). For the classification task, we implemented one-layer perceptron networks trained
by the Pocket algorithm (Gallant 1990) to avoid overfitting due to the small size of the

Method Classification accuracy (%)

0.01 Variance
class

0.1 Variance
class

Total

DRP 99 99 99±10
Maximum likelihood 95 100 98±7
Kullback–Leibler 58 100 79
Mahalanobis 57 48 53

Table 1 Comparative classifica-
tion performances on Gaussian
mixture data after applying DRP
and neural networks, as well as
other volume data classification
techniques

Method Classification accuracy (%)

DRP (t-test) 92±11
DRP (ranksum test) 95±12
Kullback–Leibler 57
Mahalanobis 66

Table 2 Comparative classifica-
tion performances on the Fractal
data after applying DRP and
neural networks as well as other
volume data classification
techniques
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datasets. As inputs to the classifier model, we used all the Vmean attributes of the detected
highly discriminative hyper-rectangles, which were standardized to have zero mean and
unit standard deviation. In this particular application of DRP on brain imaging 3D volumes,
these highly informative sub-regions reflect discriminative functional activation patterns.
They also reveal associations between spatial regions and non-spatial characteristics, such
as the presence of a disease (AD). Figure 9 illustrates sample views of discriminative sub-
regions detected by DRP within the 3D fMRI brain imaging domain. As output, we used a
binary class label indicating the class of the samples (control vs. patient). The goal of these
experiments was, given an fMRI image of a new subject, to determine the group to which it
belongs (i.e., controls vs. patients).

For training and testing, leave-one-out cross-validation was employed to evaluate out-of-
sample classification performance (Fukunaga 1990, Duda et al. 2000). More specifically,
the training set consisted of patients and controls with indices 1, 2, 3,..., i−1, i+1,..., 9; and
the method was tested on the patient and control with index i, where i=1,..., 9. Taking into
consideration the stochastic nature of the Pocket algorithm, we repeated the process of
training and testing the model in each of the leave-one-out loops for five times and
averaged the percentage of the correct predictions to obtain the reported accuracy. Table 3
shows the classification performances for all the experimental settings, as well as

Fig. 9 Sample views for the discriminative sub-areas detected by DRP for the CATX data, when applied
with t-test, significance threshold=0.01, and tree depth=4. A 3D view (a) and a 2D slice view of results
overlaid on the brain atlas template (b)

Fig. 8 The tree structures discovered when applying DRP to the fractal data using a the correlation criterion
and b rank-sum test. Gray and black rectangles denote non-leaf and leaf nodes respectively. Children nodes
are represented below its parent corresponding to a successive tree level (at the next depth)
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comparative results obtained using other techniques. Using DRP we were able to achieve a
prediction accuracy of 90% or more, improving on results previously published in the
literature for the same dataset that used principal components analysis and a Fisher linear
discriminant classifier (Ford et al. 2003). In addition to improving classification accuracy,
the obtained results also support the argument that the hyper-rectangles indicated by DRP in
the specific study are indeed discriminative with respect to class membership (control vs.
patient).

To further evaluate the effectiveness of our proposed approach, we present comparative
experimental results obtained when applying other volume classification techniques. We
compare the DRP algorithm to maximum likelihood and distance-based techniques, voxel-
wise statistical processing, and a static partitioning approach (see section 2).

DRP vs. distance-based and maximum likelihood techniques We compared the perfor-
mance of DRP to that of maximum likelihood and distance-based classification techniques.
These techniques have been previously evaluated on the same Alzheimer’s dataset
(Pokrajac et al. 2005). EM and k-means were considered to estimate the distribution of
the discriminative functional activity within the fMRI volume. The classification process
was repeated 30 times over each leave-one-out cross-validation loop, due of the stochastic
nature of the algorithms and the small size of dataset. From Table 3 that reports achieved
averaged accuracy and standard deviation of evaluated techniques, it is apparent that DRP
clearly outperforms other proposed methods. On average, DRP outperforms the other
methods by 18% (p-value=1.0125e−005<0.0001 using unpaired t-test).

DRP vs. voxel-wise statistical analysis In order to compare DRP to voxel-wise statistical
volume analysis (as used for example in SPM), we applied the same statistical tests and
criteria employed in the DRP algorithm on a voxel-by-voxel level. We performed a
computational complexity comparison and compared the detected areas to the
corresponding sub-regions formed by voxels that are indicated as highly discriminative.
Recall that one of the disadvantages of voxel-wise analysis is the multiple comparison
problem (see section 2). As Table 4 illustrates, DRP has the ability to alleviate this effect by
applying statistical tests selectively on groups of voxels thus reducing the number of

Table 3 Classification accuracies (± standard deviations) when applying DRP and neural network classifiers
on the real fMRI contrast activation volume dataset, as well as the comparative results when applying
maximum likelihood and distance-based techniques

Method Classification accuracy (%)

Criterion Threshold Tree depth Controls Patients Total

Correlation 0.4 3 82 93 88±5
DRP t-Test 0.05 3 89 100 94±0

0.05 4 84 100 92±3
0.01 4 87 100 93±2

Ranksum 0.05 3 87 100 93±6
0.05 4 80 100 90±5
0.01 4 87 96 91±3

Maximum likelihood/EM 77 67 72±7
Maximum likelihood/k-means 77 83 80±5
Kullback–Leibler/EM 79 57 68±8
Kullback–Leibler/k-means 77 66 71±6
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statistical tests performed. Although DRP and voxel-wise analysis indicate almost similar
discriminative sub-regions for the same experimental settings (see Fig. 10), DRP is 2–3
orders of magnitude faster.

DRP vs. static partitioning Finally, we compared DRP to the static partitioning approach.
This approach is naïve (as compared to the adaptive partitioning of the space) and simply
partitions the space into hyper-rectangles of equal length. Each dimension is split into

Fig. 10 Discriminative sub-regions detected when applying a DRP and b voxel-wise analysis with ranksum
test and significance threshold 0.05 to the real fMRI volume data

Table 4 Comparison of statistical tests performed by DRP and voxel-wise processing in different
experimental settings

Method Experimental settings Number of statistical tests performed

Statistical test Threshold Tree depth

DRP Correlation 0.4 3 465
t-Test 0.05 3 569

0.05 4 4,425
0.01 4 4,665

Ranksum 0.05 3 553
0.05 4 4,297
0.01 4 4,585

Voxel wise analysis Correlation 0.05/0.01 – 201,774
t-Test 0.05/0.01 – 201,774
Ranksum 0.05/0.01 – 201,774
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l equal length bins, resulting in a total partitioning of the space of l× l×l hyper-rectangles
for the 3D domain. The Vmean of each cuboid, which is treated again as a representative
attribute, is used as input to the classifier models. For the classification we again used one-
layer perceptron networks trained by the Pocket algorithm. Training and testing was
performed using the leave-one-out cross-validation approach. Table 5 illustrates these
results. Observe that although for k=2, 3 the results are somewhat reasonable, for k=4 the
classifier learns a decision boundary that classifies everything as one class (in all
experiments performed with the specific settings). Comparing the classification results of
static partitioning in Table 5 to those in Table 3 we see that, on average, the proposed
method, DRP, outperforms static partitioning by 30% (p-value=2.5595e−005<0.0001
using unpaired t-test).

5.3 Results on realistic data

For this set of simulated medical data, we applied DRP with very selective settings for non-
parametric ranksum test and the significance threshold set to 0.01. The maximum tree depth
(i.e., number of splitting levels) that the algorithm was allowed to proceed was again 4. The
classification model was implemented with feed forward two-layer neural networks with
hidden neurons equal to the number of attributes and output nodes equal to the number of
classes. The predicted class was again the one with the largest response. Two learning
algorithms were tested, namely the resilient propagation (Riedmiller and Braun 1993) and
the Levenberg–Marquardt (Hagan and Menhaj 1994). We performed 200 trials, each time
drawing a new random sample from the underlying distributions.

The classification accuracy obtained using the features extracted by DRP was almost
perfect, with error less than 1%. This was comparable to the Kullback–Leibler distance
approach, which also achieved almost perfect classification. Finally, DRP’s classification
performance exceeded that of the Mahalanobis distance approach by 10%.

6 Discussion

In this section, we attempt to interpret the observed superior performance of DRP and
provide reasoning behind it. We also discuss possible limitations of DRP and explain when
they may happen.

Classifying the synthetic data of Gaussian mixtures is rather challenging due to the fact
that the samples with smaller variance are overshadowed by the samples with larger
variance. This introduces significant difficulty when deciding class membership. The
experimental evaluation presented in the paper illustrates that DRP is able to almost
perfectly classify samples drawn from either one of the classes. The other approaches (with

k Classification accuracy (%)

Controls Patients Total

2 59 71 65±5
3 58 79 68±4
4 100 0 50±0

Table 5 Classification accuracy
based on static partitioning using
one-layer perceptron neural
networks and Pocket algorithm
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the exception of Maximum Likelihood that obtained similar classification accuracy to that
of DRP) are not able to provide good classification performance, especially for samples
belonging to the class with the smaller variance.

DRP is particularly successful in the analysis of fractal data as presented in Table 2. This
is a very important result, because the fractal data included in this set are visually very
difficult to differentiate (see Fig. 5). The proposed approach shows a potential for
developing robust and efficient volume data classification tools. It is also very interesting to
observe that the trees constructed by DRP during the process of the adaptive partitioning of
the space (shown in Fig. 8) are very similar to each other. These results suggest that DRP
partitioning trees can also be utilized to model highly non-uniform data distributions, such
as fractal-like datasets. The experimental results also show that the accuracy of the two
variants of DRP (one using the t-test and the other using the ranksum test) is similar.
Further exploration is needed to differentiate between performances of these two variants.

For the fMRI dataset, the areas detected by DRP as discriminative, elucidate large
hemispheric and lobar differences between Alzheimer’s patients and controls for all
semantic decision tasks. These findings actually comply with those obtained from other
medical studies (Saykin et al. 1999, Flashman et al. 2003). DRP outperforms distance-
based and maximum likelihood techniques in this analysis. In addition, DRP demonstrates
an advantage of simultaneously indicating discriminative sub-regions in the 3D volumes
that are of particular interest when deciding class membership.

The difficulty when performing volume distribution estimation is that usually real data
conform to highly non-uniform distributions that cannot be accurately modeled by mixtures
of Gaussian components. This issue is actually reflected by the comparative results of
Table 3 where the other approaches we considered cannot provide highly accurate
classification, performing only slightly better than a random guess in some cases.

The adaptive nature of DRP, combined with the predetermined number of levels that the
algorithm is allowed to proceed (tree depth), effectively reduces the number of statistical
tests and, consequently, efficiently deals with the multiple comparison problem (see
section 2). Moreover, DRP avoids detecting single voxels as discriminative (outliers),
which is typical with voxel-wise statistical processing. This improvement is illustrated in
Fig. 10 where data processed with voxel-wise statistical analysis demonstrate fragmentation
of the 3D volume. This indicates the ability of DRP to provide an efficient and effective
volume data classification technique that is able to process large datasets of high resolution.

Moreover, DRP clearly outperforms the static partitioning approach. This result is
expected because DRP is more flexible in partitioning the space adaptively and the number
of attributes that correspond to hyper-rectangles is significantly smaller than those of static
partitioning for the same granularity level (i.e., size of partitions).

The classification accuracy obtained by DRP on the realistic data is almost perfect,
similarly to the Kullback–Leibler distance approach. However, the advantage of DRP is
that the detected highly discriminative sub-areas in the volume domain can be utilized to
form associations between class membership and spatial characteristics. This can be
particularly useful in medical applications, such as the clinical study examined here, where
the expert (e.g., physician) is interested mostly in specific areas within the image data that
are highly discriminative.

DRP has the following limitations that can form the basis for future work in this area:

1. In datasets where the underlying distributions differ homogeneously in their entire
spatial extend rather than locally, DRP can detect statistically significant differences
from the very first statistical test and refrain from performing the partitioning of the

238 J Intell Inf Syst (2008) 31:217–242



space. A solution for such a scenario is to assign a more strict p-value significant
threshold (e.g., p-value<0.0001) which will force DRP to proceed with partitioning the
space and detect the most significant localized distribution effects.

2. Currently DRP does not create hyper-rectangles that are overlapping. Disjoint hyper-
rectangles at each level can miss discriminative areas spread over multiple adjoin
hyper-rectangles. Hence, DRP may not achieve desired performance on data that
express this property. More specifically, we expect that DRP will not perform well on
elongated linear or complex regions of interest.

3. The algorithm does not have a pruning phase, which would merge discriminative
regions and might help alleviating issue 2 above. Observe that pruning can also
improve generalization of other machine learning techniques [e.g., C4.5 (Quinlan
1993) and lead to simplification of the discovered rules].

Although performed experiments have provided evidence that the proposed method can
be very successful in detecting spatial regions, more work is needed to introduce new ways
of allowing the algorithm to trade off accuracy for efficiency.

7 Conclusions

In this paper, we proposed and evaluated a novel Dynamic Recursive Partitioning (DRP)
approach for the classification of 3D image data. We focused on efficiently detecting spatial
sub-regions that are discriminative among different classes. The main idea is to apply an
adaptive partitioning (guided by statistical tests) of the initial 3D domain until highly
informative spatial sub-domains are detected. To validate how effective the approach is at
discovering discriminative spatial sub-regions, we performed classification where we used
neural networks and attributes extracted from the discriminative regions detected by DRP.We
evaluated our technique on both artificial and real datasets. Our study involved a wide range
of synthetic, realistic, and fractal artificial datasets. To explore the potential of our approach
with real-world problems, we also used actual, 3D brain imaging datasets. Experiments
demonstrated that the proposed method outperforms alternative approaches (e.g. distribu-
tional distance-based methods, maximum likelihood classification, voxel-wise analysis, and
static partitioning) by achieving up to 30% better accuracy on artificial data and 15% better
accuracy on real data. At the same time, the proposed method reduces by two orders of
magnitude the number of statistical tests required by voxel-wise analysis; this not only
reduces the computational cost but also the extent of the multiple comparison problem
because it considers groups of voxels (spatial sub-domains) rather than individual voxels. In
addition, the new method is expected to be more robust than voxel-wise analysis, which is
prone to errors contributed by certain preprocessing steps such as the spatial normalization
required in specific applications. We believe that DRP can be a robust and efficient
approach for 3D volume data classification in other spatial data mining applications.
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Appendix

Mahalanobis distance:

Given datasets Sz and S, the Mahalanobis distance, dM, between them is computed as:

dM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μsz � μS

� �T � X�1 � μsz � μS

� �q
;

where msz and μs are mean vectors of the datasets Sz and S respectively, and Σ is the sample
covariance matrix:

X ¼ nz � 1ð Þ � Psz þ n� 1ð Þ � PS

nz þ n� 2ð Þ ;

with Σsz and ΣS denoting estimated covariance matrices of the datasets Sz and S,
respectively, and nz and n denoting the size of the datasets Sz and S, respectively.

K–L divergence:

Unlike the Mahalanobis distance, the KL divergence dKL p xð Þ; q xð Þð Þ is computed directly
between the estimated probability densities of the distributions corresponding to the new
subject Sz and to the existing data distribution S (corresponding to datasets SX or SY) as:

dKL Sz; Sð Þ ¼ X
D

pz xð Þ log pz xð Þ
p xð Þ dx:

Since the datasets SX, SY and Sz obtained from medical imaging or simulation contain
coordinates of discrete volumes-voxels, we use a discrete approximation to compute the KL
divergence as:

dKL Sz; Sð Þ �
X

all voxels vi1 ;i2 ;i3

pz xi1;i2;i3
� �

log
pz xi1;i2;i3
� �

p xi1;i2;i3
� �Δx:

Here, pz xi1;i2;i3
� �

and p xi1;i2;i3
� �

are estimated probability densities of the involved
distributions at the voxel centers xi1;i2;i3

� �
; and Δx is the product of corresponding

discretization intervals.
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