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Abstract 

The neural network learning process is a sequence 
of network updates and can be represented b y  sequence 
of points in the weight space that we call a learning 
trajectory. In this paper a new learning approach 
based on repetitive bounded depth trajectory branching 
M proposed. This approach has objectives of improving 
generalization and speeding up Convergence b y  avoid- 
ing local minima when selecting an alternative trajec- 
tory. The ezperimental results show an improved gen- 
eralization compared to the standard back-propagation 
learning algorithm. The proposed parallel implemen- 
tation dramatically improves the algorithm eficiency 
to the level that computing time is not a critical factor 
in achieving improved generalization. 

1 Introduction 

With most currently known algorithms, neural net- 
work learning has to be done sequentially resulting 
with a large amount of computational time and non- 
optimal generalization. For example, the well known 
back-propagation algorithm requires a huge amount of 
nonlinear computations and scales up poorly as tasks 
become larger and more complex [l]. By increasing 
the number of hidden units and layers we also increase 
the probability of experiencing the so called local min- 
ima problem where the error function is not minimized 
by further learning (although there exists a lower min- 
imum) [6].  We believe that more efficient and more 
accurate learning is possible through parallelization. 

The state of a neural network can be represented 
as a single point in the weight space. Each update 
of the neural network generates a new point in this 
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space. Consequently the learning process can be r e p  
resented by a sequence of points in the weight space 
that we call a learning trajectory. We will refer to the 
standard trajectory as the trajectory of the weight vec- 
tor during the learning phase of a standard algorithm 
which can be any gradient-descent learning technique 
(back-propagation in our experiments it is). The ob- 
jective of this paper is both more efficient and more 
accurate neural network learning by exploring a num- 
ber of learning trajectories in parallel in order to find 
one that avoids local minima. Trajectories have the 
same starting point and the best one is selected after 
a bounded depth branching in weight space during the 
learning phase. At the first branching point, which 
could be after a single pattern presentation or a whole 
epoch, a number of new neural network structures are 
constructed with the same architecture as the original 
one but with the weight vector branching in various di- 
rections. At each following branching point the num- 
ber of neural networks is increased. When the number 
of trajectories reaches the maximum supported on the 
hardware a cross-validation test is performed on all 
generated networks (trajectories) and a small num- 
ber of trajectories are kept for further evolution again 
using bounded depth branching. The proposed algo- 
rithm allows a faster minimization of the error func- 
tion (a smaller number of epochs for convergence) as a 
result of frequent comparison among several learning 
trajectories. 

2 Branching Algorithms 

In real life problems a neural network’s error func- 
tion usually generates a complex surface. Conse- 
quently a better trajectory could be found in the vicin- 
ity of the standard one using small variations in the 
branching parameters. In the proposed algorithm new 
branching points are generated systematically during 
the weight updating phase and one new trajectory is 
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added at each branching point. The general branching 
algorithm implies several steps: 

1. Initially follow a single learning trajectory cor- 
responding to the standard learning algorithm. 

2. Generate new branching points after a specified 
number of learning steps. 

3. At each new branching point start exploring new 
learning trajectories in addition to the existing ones. 

4. Continue with step 2 until 2K trajectories are 
generated such that 2K 5 C < 2K+1 where C is max- 
imum number of trajectories supported by the hard- 
ware. 

5. Using a cross-validation test on all existing tra- 
jectories select M of those and abandon the remainder. 

6 .  Starting from M selected trajectories of step 5 
continue constucting and exploring new trajectories 
on new branching points until 2LM trajectories are 
constructed such that 2=M 5 C < 2L+'M. 

Continue with step 5 until the training error 
is within a prespecified tolerance or for a prespecified 
number of steps. 

In the general branching algorithm initially there 
is a single trajectory corresponding to the standard 
algorithm. At the first branching point the learning 
trajectory is split into one corresponding to the stan- 
dard algorithm and one constructed using branching 
parameters (discussed in detail in Section 4). The se- 
lection of trajectories (step 5) is based on performance 
on a cross-validation data set. This data set should be 
fairly small due to the large number of trajectories and 
computing time requirements. In our experiments we 
select three trajectories ( M  = 3): the very best on the 
cross-validation test, the standard (generated by the 
standard algorithm) and a random choice of the exist- 
ing trajectories. We propose two ways of generating 
new branching points. In the short term branching 
algorithm new branching points are generated on all 
existing trajectories. In contrast the long term branch- 
ing algorithm generates a single new branching point 
on each of the M selected trajectories. The details of 
these two algorithms follow. 

7. 

2.1 Short Term Branching Algorithm 

In the short term branching algorithm new branch- 
ing points are generated after each training pattern is 
presented (Figure 1). 

After weight initialization the first training pattern 
is used to update the network and the learning trajec- 
tory is split. The number of trajectories is doubled on 
each new training pattern (each trajectory is split in 
two). Let C be the maximum number of trajectories 
supported by the hardware. Once B trajectories are 
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Figure 1: Short term branching algorithm 

generated (B = 2LM where 2LM 5 C < 2L+1M),  M 
of them are selected and all others are abandoned. 
This selection is performed using a cross-validation 
data set which should be fairly small in order to avoid 
a long testing time, but a t  the same time should be 
representative enough for the learning problem distri- 
bution. The process continues and after each epoch 
the error function is computed for each trajectory. 
The training terminates when the error function be- 
comes smaller than a specified tolerance on one of the 
existing trajectories or when a prespecified number of 
epochs is reached. 

It is easy to see that in the short term branching al- 
gorithm the number of training patterns used between 
two selections of M trajectories (step 5 of the gen- 
eral branching algorithm) is given by [log2 B] on initial 
branching (steps 1-4 of the general algorithm) and by 
[Zogng] otherwise (step 6 of the general algorithm). 
Consequently, a large variety of useful learning trajec- 
tories is generated quickly (after a small number of 
update steps) in the short term branching algorithm. 

2.2 Long Term Branching Algorithm 

The long term branching algorithm is similar to the 
previous one except the location of branching points 
and the number of generated trajectories is different. 
In contrast to the short term, in the long term branch- 
ing algorithm (Figure 2 ) ,  a new trajectory is generated 
at the end of each epoch. Branching points are always 
located on one of the M trajectories selected at the 
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Figure 2: Long term branching algorithm 

previous cross-validation test (rather than on all ex- 
isting trajectories as in the short term branching al- 
gorithm). In the long term branching algorithm the 
number of epochs between two selections of M tra- 
jectories (step 5 of the general branching algorithm) 
is given by B on initial branching (steps 1-4 of the 
general algorithm) and by otherwise (step 6 of the 
general algorithm). Consequently in the long term 
branching algorithm, a large variety of useful learning 
trajectories is generated after a much larger number 
of update steps than in the short term branching al- 
gorithm. Although in the short term branching algo- 
rithm a large variety is obtained quickly (after a few 
training patterns), those trajectories are not necessar- 
ily of high quality (a few patterns are not necessarily 
representative for the whole input data set). Superior- 
ity of one or the other algorithm must be determined 
experimentally. 

3 Parallelization 

It was observed during simulations that a sequen- 
tial implementation of the proposed branching algo- 
rithms takes much more time to achieve an acceptable 
value for the error function than a standard back- 
propagation (to be discussed in the results section). 
The most time consuming phase is the cross-validation 
check on all trajectories. It occurs when a system limit 
is reached due to the amount of generated trajectories. 
The computing time can be drastically reduced by dis- 

tributing all trajectories on separate processing units 
and running the back-propagation on them in parallel. 
In such a distributive environment cross-validation can 
be easily performed on all trajectories in parallel. In 
Section 3.1 the proposed parallelization is discussed in 
detail and in 3.2 the efficiency of the parallel algorithm 
is analyzed. 

3.1 Parallel Branching Algorithm 

P a 
b 
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Figure 3: Short term branching paralelization 

Figure 3 presents the initial phase (steps 1-4 from 
Section 2) and further phases (steps 5-6) for the short 
term branching algorithm implemented on a parallel 
system. The Unit1,l is a processor loaded with the 
initial neural network parameters. When an updat- 
ing step occurs a new neural network is constructed 
by copying the modified network parameters to a new 
processor U n i t l , ~ .  The original network could be also 
copied to a new processor Unit2,z or kept on the old 
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one that we rename as Unitalp. The process repeats 
for K steps, when 2K processing units contain 2K dif- 
ferent neural networks. Obviously this number is lim- 
ited by the maximum number of available processing 
units. Each of these units then performs in parallel 
a cross-validation test evaluating its local neural net- 
work. After selection of M of those networks (M = 3 
on Figure 3 )  the algorithm continues for L branching 
steps, such that M ~2~ 5 2K < M - ZL+'. Again M 
trajectories are selected using parallel cross-validation 
and the process repeats as indicated by the arrow in 
the figure. The parallelization of the long term branch- 
ing algorithm is similar. 

Observe that the amount of interprocessor commu- 
nication in the proposed parallel algorithm is quite 
small. In fact, the algorithm has a tree structure with 
one-directional communication from parent to child 
units only. Consequently, the parallel learning algo- 
rithm is applicable for a hypercube implementation us- 
ing one dimension of egdes per step and using consec- 
utive dimensions of edges in consecutive steps. Such 
algorithms (called normal algorithms) are suitable for 
efficient implementation on any bounded-degree vari- 
ation of the hypercube such as the butterfly and the 
shuffle-exchange graph network [4]. 

3.2 Performance Analysis 

In our analysis P is the number of available process- 
ing units; t t  is the time required for network param- 
eters transfer between two processors; tu is the time 
required for a single cross-validation test and t ,  is the 
time required for selecting the three branches after a 
cross-validation step. For simpler analyses in branch- 
ing algorithms after a cross-validation testing we will 
assume selection of three trajectories (M = 3). 

Let us first analyze the short term branching algo- 
rithm. By cp we denote the computing time needed by 
the standard algorithm to update the neural network 
when a new training pattern is presented. If the neu- 
ral network is updated after each pattern presentation 
then the computing time of an epoch for the standard 
algorithm on a sequential machine is 

T, = Ncp 

where N is size of the training set. In the short term 
branching algorithm the number of branches for a 
cross-validation test (except for the initial test) is 

If we implement the short term branching algorithm 
on a sequential machine emulating P processing units, 

the computing time of an epoch (except the initial 
epoch) is 

Consequently, 

which shows that a sequential implementation of the 
short term branching algorithm is computationally 
very expensive. 

On the other side, the computing time of an epoch 
(except the initial epoch) for the short term branching 
algorithm on a parallel system of P processors is 

So, for a parallel implementation 

which shows that the algorithm is more suitable for 
parallel system rather that distributed system imple- 
mentation where tt is significantly larger. 

Let us now analyze the long term branching algo- 
rithm. In this case the underlying standard sequential 
algorithm performs one neural network update per one 
epoch. We define c, to be the computing time be- 
tween two neural network updates by this standard 
algorithm. As earlier let B be the number of branches 
for the cross-validation test (except the initial test). 

If we implement the long term branching algorithm 
on a sequential machine emulating P processing units, 
the computing time between two cross-validation ( f 
epochs) is 

or, after simplification 

T,, ,  e B -  3c ,  + Bt ,  + t ,  
6 

The computing time for those $ epochs on a parallel 
system of P processors is 

The computing time for f epochs for the standard 
algorithm is 

B 
3 

Tl = -c ,  
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Consequently 

and 

which shows that a sequential implementation of the 
long term branching algorithm is still expensive ( B  is 
large) but a parallel implementation is time efficient. 

The analysis also shows that a parallel implemen- 
tation of the long term branchin g algorithm is more 
efficient than the short term branching implementa- 
tion (* < w). However, better experimental gen- 
eralization results were obtained using the short term 
branching algorithm as will be discussed in the follow- 
ing section. 

4 Results 

The proposed branching technique can be used 
to improve the generalization of any gradient de- 
scent learning algorithm. In our experiments back- 
propagation is used as the standard algorithm. The- 
oretical results concerning the efficient method for 
branching as well a8 simulation results are presented 
further in this section. 

4.1 Branching Trajectories Construction 

It is known that the back-propagation algorithm 
is not an optimal minimization technique. Figure 4 
represents an example of a standard trajectory gen- 
erated by the back-propagation algorithm. From the 
branching point ( 2 0 ,  EO) a better trajectory could be 
found in the neighborhood of the standard trajectory 
as indicated in the figure. 

Branching anglea E 

- - - - - 
- Standard trajectory 

A better trajectory 

X 

Figure 4: Standard and better trajectories 

For non-trivial learning problems it is reasonable to 
assume that there are such better trajectories in the 
vicinity of the standard one. Consequently, for the 

construction of branching trajectories we decided to 
uae limited variations in the branching parameter a 
(the angle between the standard and the new trajec- 
tories). 

E #  branching angle a 1 

branching angle u2 

----- A better trajectory 

- Standard traJcctory 

xl x2 x3 x4 

Figure 5: Avoiding local minimum using branching 

In branching algorithms it is important to construct 
a variety of trajectories. For example in Figure 5 
at the branching point ( c 2 , E z )  the training error is 
smaller than in point (z3,ES) obtained by the back- 
propagation from (21, El). However the branching 
should not be stopped at ( 2 2 , & )  since the global 
minimum is at ( 2 4 ,  E4). Consequently the branch- 
ing parameter a has to be large enough to generate 
a trajectory that leads to  the global minimum. Also, 
branching would not be efficient using small learning 
rates because branching trajectory will stay too close 
to the standard one. 

We will derive some expressions for the branching 
parameters in order to determine efficient methods for 
the construction of branching trajectories consistent 
with previous observations. Let 

W =  [Wl, ..., wp] 

be a weight vector which is composed by all weights 
in the network. A network updating step implies a 
change in W which will eventually affect all compo- 
nents 

W + AW = [WI + 6.~1,. . . , wP + SW,] 

The weight space is spanned by w1, w2,. . . , wp, and so 
AW could be expressed as a vector in this space. Let 

AW = alW+ aa=+ * - e  + up'wp 

where m, i = 1, . . . , p ,  are normalised vectors repre- 
senting a basis in the weight space and ai = -QE 
is the weight update in 'UI; direction. We are looking 
for a vector AW* which will generate the first point 
W' = W + AW* of a new trajectory. This unknown 
vector could be expressed as 



Let a be the angle between AW and AW*. The scalar 
product will give the expression for cosa 

AWAW' 
cosa = law law* I 

Or, in terms of projection in the weight space 

1, 

aibi 

We assumed earlier that there is a better trajectory in 
the vicinity of the standard one. We can use equation 
( 3 )  to constrain the angle between these two trajecto- 
ries. 

Another desired feature of a branching algorithm is 
computational efficiency. A simple efficient approach 
is to compute the branching vector AW* as 

ai otherwise (4) 

However that could generate too small variation for a 
large p as now 

cosa = Ip 1 - - 

For small p an acceptable large variation can be ob- 
tained by selecting aj = m u x { a i } .  

Based on all those observations we explored five 
methods for determining branching trajectories. In 
our experiments the first neural network W + AW* = 
[wl + bl ,  . . . , wp + bp] o f  a new trajectory W* is con- 
structed from the previous W network using one of 
the following methods: 

1. Compute bi, i = 1,  . . . , p ,  using equation (4), 
where j is given by a, = min(a;}. 

2. Compute bi ,  i = 1 , .  . . , p ,  using equation (4), 
where j is given by a, = m x { a i ) .  

3 .  Compute bi as [bl,...,b,] = [ O , ~ ~ ~ , O , a ~ + l ,  
- - - , a p ]  where k is the largest integer such that a < 45" 
(a is computed using equation ( 3 ) ) .  

4. Compute bj as [ b l , . . . , b , ]  = [a~,~-~,aj-l, 
2 0 j ,  aj+l,  * ,  a p ] ,  where j is given by aj = mux{ai} .  

5. Compute bi, i = l , . .  . , p ,  as b; = - q * a  aw; I 

q* # 11, where and q* are the learning rates for 
the standard back-propagation trajectory and for the 
new trajectory. 

Method 1 generates very small branching angles 
and is useful only for large learning rates. A large 
branching angle is obtained using method 2. However 
it still does not guarantee success if the update process 
consists of only the largest weight change. Method 3 
ensures an appropriate variety in exploring the weight 
space but it implies a large amount of computation. 
Method 4 is similar to method 2 except that it achieves 
a larger variety of trajectories. Finally, method 5 uses 
a number of different learning rates with the objec- 
tive to explore a large neighborhood along the stan- 
dard trajectory. Observe that in method 5 there is no 
need to compute the branching angle since COSQ = 1. 
However, this simple method does not give good gen- 
eralization results as it will be discussed in the next 
section. In the following section we present a quanti- 
tative approach to the comparison between these five 
methods. 

4.2 Simulation results 

We focused our simulation on two classification 
problems previously used in benchmark tests. In both 
problems input vectors should be classified to one of 
two classes. The first is the well known two spirals 
problem [3] which is designed to be hard to learn and 
the second is a real-life problem concerning breast- 
cancer diagnosis [5]. 

1 Algorithm I Run time I %.err. I 
1 Standard back-DroDaaation I 45 min. I 10% 1 

Construction method 1 
Construction method 2 
Construction method 3 
Construction method 4 
Construction method 5 45 min. 

Table 1: Trajectory construction methods comparison 

The sequential implementation of the branching al- 
gorithms id significantly more time consuming than 
the standard back-propagation. Consequently our 
first goal was to test which of the five proposed meth- 
ods for construction of the branching trajectories (dis- 
cussed in the previous section) generates most useful 
branches in the same amount of time needed for stan- 
dard back-propagation convergence. Table 1 presents 
a comparison between the proposed trajectory con- 
struction methods. The results where obtained using 
a neural network structure with 2 inputs, 6 hidden 
units and one output trained for the two spirals prob- 
lem (learning rate 11 = 0.05, 50 training patterns). 



As expected, none of the five networks correspond- 
ing to the proposed trajectory construction methods 
converged in 45 minutes using sequential short term 
branching algorithm. The results confirm theoreti- 
cal assertions made in the previous section concern- 
ing quality of learning for each of the five methods. 
Methods 2 and 4 appeared to generate most useful 
trajectories in a given amount of time. The removal 
of the largest weight change (method 2) was slightly 
more efficient and so for further testing of the branch- 
ing algorithms we used this trajectory construction 
method. 

Data 
Configuration 
Learning rate 
Number of patterns 

Generalization 
Epochs 
Run time 

Training error 

Spirals Breast cancer 

0.05 0.05 
100 250 
21% 4% 
73% 76% 
50000 25000 
45 min. 65 min. 

2-6-1 10-10-1 

Table 2: Standard back-propagation 

[ Data 1 Spirals I Breast cancer I 

Table 3: Short term branching algorithm 

Tables 2 and 3 present the network structure, learn- 
ing parameters and the results obtained on those two 
problems for the standard back-propagation and for 
the short term branching algorithm. The structure 
of the neural network architecture for each of the 
problems was selected according to the complexity of 
the input data space. The training process stopped 
when learning trajectories became stationary. In the 
branching algorithm we used larger learning rates than 
in the back-propagation algorithm in order to reduce 
the number of epochs for convergence, which turned 
out to be a valid assumption. In both experiments 
the branching algorithm converged in smaller num- 
ber of epochs with improved generalization. Running 
the standard back-propagation for only 7000 epochs 
(as for the branching algorithm) will result in a large 

training error (32% after 7000 versus 21% after 50000 
epochs) and a poor generalization (~60% versus 73%). 
Using learning rate q = 0.1 (as for the branching algo- 
rithm) the standard back-propagation requires a much 
longer time for convergence than using q = 0.05. 

For the parallel run time we considered P = 256 
processing units organized in a mesh structure like the 
Touchstone Delta System [2]. The time required for 
branch selection t , ,  for network parameters transfer 
tt, for cross validation test tu,  and for network up- 
date using one pattern cp were computed based on 
Touchstone Delta System characteristics. For a neu- 
ral network structure corresponding to the two spirals 
problem (2 inputs, 6 hidden units, one output) we 
have t ,  = lms, tt = lops, tu = lms and cp = 50ps. 
Using these values in equation (1) for the two spirals 
problem we have Tp,,/Ta = 7.43. Parallel run time 
(47 minutes) is computed using this ratio and branch- 
ing algorithm convergence in 7000 epochs versus 50000 
needed by the standard back-propagation. 

The neural network for the breast cancer problem 
is larger (10 inputs, 10 hidden units, one output) and 
consequently tt  = 20~3, tu = 2ms and cp = loops 
while t ,  remains the same as in the two spirals prob- 
lem since the same number of branches is generated. 
This gives T,,,/T, = 4.84 and a parallel run time of 
63 minutes which is less than run time for the stan- 
dard back-propagation convergence. Here the parallel 
branching algorithm is faster then the standard one 
since it converges in 5000 epochs versus 25000 needed 
by the back-propagation. 

It is easy to see that the parallel branching algo- 
rithm is more appropriate for larger than for smaller 
neural networks. This follows from equation (1) since 
tt, tu and cp grow a t  the same rate with the size of the 
problem while t ,  remains constant. jFrom equation 
(1) it is also easy to see that the branching algorithm 
is more appropriate for highly parallel rather than dis- 
tributed systems. In the case of a distributed system 
the transmission time tt is dominant and much larger 
then t ,  and tu which together with cp can be derived 
exactly running a test program on a network of work- 
stations. 

Figures 6 and 7 presents learning speed in terms 
of epochs an d time for the spirals problem using the 
back-propagation and the short term branching algo- 
rithm. Figure 6 shows that a better learning perfor- 
mance is attained in a smaller number of epochs using 
the branching algorithm. Figure 7 shows the superior- 
ity of the standard algorithm versus sequential imple- 
mentation of the branching algorithm in terms of com- 
puting time. Figure 7 also shows a trajectory resulting 
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Figure 6: Number of training epochs comparison 
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Figure 7: Computing time comparison 

from a parallel implementation. This trajectory was 
computed based on the equation (1) derived earlier. 
It indicates that branching algorithms are highly effi- 
cient when implemented on a parallel machine. 

Simulation results indicate that the long term 
branching algorithm requires considerably more 
epochs for convergence comparing to the short term 
branching algorithm. In fact we stopped the training 
before the error function became stationary and at 
that time the testing showed a small improvement in 
generalization (1%). This is consistent with theoret- 
ical observations from Section 2.2 that the long term 
branching algorithm requires a much larger number of 
update steps to achieve a useful variety of the learning 
trajectories. 

5 Summary 

We have proposed and analyzed a bounded depth 
branching approach to neural network learning. The 
experimental results show improved generalization 

compared to the standard back-propagation learning 
algorithm. This branching process is very expensive 
if implemented on a sequential machine as it requires 
a large amount of hardware resources. The proposed 
parallel implementation dramatically improves the al- 
gorithm efficiency to the level that computing time is 
no longer a critical factor in achieving improved gen- 
eralization. 

The idea of bounded depth branching is applicable 
to other neural network learning algorithms. Exten- 
sion from the back-propagation to improvement of any 
other gradient descent learning algorithm is straight- 
forward. Further research topics include application of 
this branching idea to non-gradient descent methods 
such as constructive learning algorithms. 
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