Parallel Neural Network Learning Through Repetitive Bounded
Depth Trajectory Branching

Iuri Mehr

Abstract

The neural network learning process is a sequence
of network updates and can be represented by sequence
of points in the weight space that we call a learning
trajectory. In this paper a new learning approach
based on repetitive bounded depth trajectory branching
is proposed. This approach has objectives of improving
generalization and speeding up convergence by avoid-
ing local minima when selecting an alternative trajec-
tory. The ezperimental results show an tmproved gen-
eralization compared to the standard back-propagation
learning algorithm. The proposed parallel implemen-
tation dramatically improves the algorithm efficiency
to the level that computing time is not a critical factor
in achieving improved generalization.

1 Introduction

With most currently known algorithms, neural net-
work learning has to be done sequentially resulting
with a large amount of computational time and non-
optimal generalization. For example, the well known
back-propagation algorithm requires a huge amount of
nonlinear computations and scales up poorly as tasks
become larger and more complex [1]. By increasing
the number of hidden units and layers we also increase
the probability of experiencing the so called local min-
ima problem where the error function is not minimized
by further learning (although there exists a lower min-
imum) [6]. We believe that more efficient and more
accurate learning is possible through parallelization.

The state of a neural network can be represented
as a single point in the weight space. Each update
of the neural network generates a new point in this

*Z. Obradovié’s research is sponsored in part by the NSF
research grant NSF-IR1-9308523. He is also affiliated with the
Mathematical Institute, Belgrade, Yugoslavia.

0-8186-5602-6/94 © 1994 IEEE

Zoran Obradovié*
School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164-2752

784

space. Consequently the learning process can be rep-
resented by a sequence of points in the weight space
that we call a learning trajectory. We will refer to the
standard trajectory as the trajectory of the weight vec-
tor during the learning phase of a standard algorithm
which can be any gradient-descent learning technique
(back-propagation in our experiments it is). The ob-
Jjective of this paper is both more efficient and more
accurate neural network learning by exploring a num-
ber of learning trajectories in parallel in order to find
one that avoids local minima. Trajectories have the
same starting point and the best one is selected after
a bounded depth branching in weight space during the
learning phase. At the first branching point, which
could be after a single pattern presentation or a whole
epoch, a number of new neural network structures are
constructed with the same architecture as the original
one but with the weight vector branching in various di-
rections. At each following branching point the num-
ber of neural networks is increased. When the number
of trajectories reaches the maximum supported on the
hardware a cross-validation test is performed on all
generated networks (trajectories) and a small num-
ber of trajectories are kept for further evolution again
using bounded depth branching. The proposed algo-
rithm allows a faster minimization of the error func-
tion (a smaller number of epochs for convergence) as a
result of frequent comparison among several learning
trajectories.

2 Branching Algorithms

In real life problems a neural network’s error func-
tion usually generates a complex surface. Conse-
quently a better trajectory could be found in the vicin-
ity of the standard one using small variations in the
branching parameters. In the proposed algorithm new
branching points are generated systematically during
the weight updating phase and one new trajectory is

added at each branching point. The general branching
algorithm implies several steps:

1. Inmitially follow a single learning trajectory cor-
responding to the standard learning algorithm.

2. Generate new branching points after a specified
number of learning steps.

3. At each new branching point start exploring new
learning trajectories in addition to the existing ones.

4. Continue with step 2 until 2X trajectories are
generated such that 2X < C < 2X+! where C is max-
imum number of trajectories supported by the hard-
ware.

5. Using a cross-validation test on all existing tra-
jectories select M of those and abandon the remainder.

6. Starting from M selected trajectories of step 5
continue constucting and exploring new trajectories
on new branching points until 2° M trajectories are
constructed such that 2XM < C < 28+ M,

7. Continue with step 5 until the training error
is within a prespecified tolerance or for a prespecified
number of steps.

In the general branching algorithm initially there
is a single trajectory corresponding to the standard
algorithm. At the first branching point the learning
trajectory is split into one corresponding to the stan-
dard algorithm and one constructed using branching
parameters (discussed in detail in Section 4). The se-
lection of trajectories (step 5) is based on performance
on a cross-validation data set. This data set should be
fairly small due to the large number of trajectories and
computing time requirements. In our experiments we
select three trajectories (M = 3): the very best on the
cross-validation test, the standard (generated by the
standard algorithm) and a random choice of the exist-
ing trajectories. We propose two ways of generating
new branching points. In the short term branching
algorithm new branching points are generated on all
existing trajectories. In contrast the long term branch-
ing algorithm generates a single new branching point
on each of the M selected trajectories. The details of
these two algorithms follow.

2.1 Short Term Branching Algorithm

In the short term branching algorithm new branch-
ing points are generated after each training pattern is
presented (Figure 1).

After weight initialization the first training pattern
is used to update the network and the learning trajec-
tory is split. The number of trajectories is doubled on
each new training pattern (each trajectory is split in
two). Let C be the maximum number of trajectories
supported by the hardware. Once B trajectories are

785

Weights Inftialization
Trajectories = 1
T

No
Select M trajectories
Trajectories = M
Yes Bnd of the epoch No

Compute error functions

TrajectoriescMAXIM Yes

1

[Split each trajectory lm two

Trajectories = 2 * Trajectories

Error<Tolerance

or
Epochs = Max. epochs No

Select the beat trajectory
End of training

Figure 1: Short term branching algorithm

generated (B = 2 M where 2°M < C < 2LHIM), M
of them are selected and all others are abandoned.
This selection is performed using a cross-validation
data set which should be fairly small in order to avoid
a long testing time, but at the same time should be
representative enough for the learning problem distri-
bution. The process continues and after each epoch
the error function is computed for each trajectory.
The training terminates when the error function be-
comes smaller than a specified tolerance on one of the
existing trajectories or when a prespecified number of
epochs is reached.

It is easy to see that in the short term branching al-
gorithm the number of training patterns used between
two selections of M trajectories (step 5 of the gen-
eral branching algorithm) is given by [log, B] on initial
branching (steps 1-4 of the general algorithm) and by
[loga£] otherwise (step 6 of the general algorithm).
Consequently, a large variety of useful learning trajec-
tories is generated quickly (after a small number of
update steps) in the short term branching algorithm.

2.2 Long Term Branching Algorithm

The long term branching algorithm is similar to the
previous one except the location of branching points
and the number of generated trajectories is different.
In contrast to the short term, in the long term branch-
ing algorithm (Figure 2), a new trajectory is generated
at the end of each epoch. Branching points are always
located on one of the M trajectories selected at the

Weights initialization
Trajectoctes = 1

Update using all patterns

No Trajectories<MAXIMUM Yes.

Select M trajectories Split each of M selected trajectories in two
Trajectories « M Trajectories = Trajectories + M

No

Select the best trajectory
End of training

Figure 2: Long term branching algorithm

previous cross-validation test (rather than on all ex-
isting trajectories as in the short term branching al-
gorithm). In the long term branching algorithm the
number of epochs between two selections of M tra-
jectories (step 5 of the general branching algorithm)
is given by B on initial branching (steps 1-4 of the
general algorithm) and by £ otherwise (step 6 of the
general algorithm). Consequently in the long term
branching algorithm, a large variety of useful learning
trajectories is generated after a much larger number
of update steps than in the short term branching al-
gorithm. Although in the short term branching algo-
rithm a large variety is obtained quickly (after a few
training patterns), those trajectories are not necessar-
ily of high quality (a few patterns are not necessarily
representative for the whole input data set). Superior-
ity of one or the other algorithm must be determined
experimentally.

3 Parallelization

It was observed during simulations that a sequen-
tial implementation of the proposed branching algo-
rithms takes much more time to achieve an acceptable
value for the error function than a standard back-
propagation (to be discussed in the results section).
The most time consuming phase is the cross-validation
check on all trajectories. It occurs when a system limit
is reached due to the amount of generated trajectories.
The computing time can be drastically reduced by dis-

786

tributing all trajectories on separate processing units
and running the back-propagation on them in parallel.
In such a distributive environment cross-validation can
be easily performed on all trajectories in parallel. In
Section 3.1 the proposed parallelization is discussed in
detail and in 3.2 the efficiency of the parallel algorithm
is analyzed.

3.1 Parallel Branching Algorithm
H
g Branching

Processing | | Processing
Unit 32 Unit 33

i | Crost tion Test
Processing | | Processing | | Processing
Unit 31 Unit 33 Unit 33
H SN SN SN
: B . . . 0}
£
B e eemeecicceecietcessccccceceeceomnccmneeeas
iE I. '\ A}
z
Processing | | Processing anij‘
Unit 1,y L % Unit [, 39;
: Cross-Validstion Test i

Figure 3: Short term branching paralelization

Figure 3 presents the initial phase (steps 1-4 from
Section 2) and further phases (steps 5-6) for the short
term branching algorithm implemented on a parallel
system. The Unity; is a processor loaded with the
initial neural network parameters. When an updat-
ing step occurs a new neural network is constructed
by copying the modified network parameters to a new
processor Unity ;. The original network could be also
copied to a new processor Unitz; or kept on the old

one that we rename as Unit ;. The process repeats
for K steps, when 2% processing units contain 2% dif-
ferent neural networks. Obviously this number is lim-
ited by the maximum number of available processing
units. Each of these units then performs in parallel
a cross-validation test evaluating its local neural net-
work. After selection of M of those networks (M =3
on Figure 3) the algorithm continues for L branching
steps, such that M . 2L < 2K < M .25+, Again M
trajectories are selected using parallel cross-validation
and the process repeats as indicated by the arrow in
the figure. The parallelization of the long term branch-
ing algorithm is similar.

Observe that the amount of interprocessor commu-
nication in the proposed parallel algorithm is quite
small. In fact, the algorithm has a tree structure with
one-directional communication from parent to child
units only. Consequently, the parallel learning algo-
rithm is applicable for a hypercube implementation us-
ing one dimension of egdes per step and using consec-
utive dimensions of edges in consecutive steps. Such
algorithms (called normal algorithms) are suitable for
efficient implementation on any bounded-degree vari-
ation of the hypercube such as the butterfly and the
shuffle-exchange graph network [4].

3.2 Performance Analysis

In our analyzis P is the number of available process-
ing units; ¢; is the time required for network param-
eters transfer between two processors; t, is the time
required for a single cross-validation test and t. is the
time required for selecting the three branches after a
cross-validation step. For simpler analyses in branch-
ing algorithms after a cross-validation testing we will
assume selection of three trajectories (M = 3).

Let us first analyze the short term branching algo-
rithm. By ¢, we denote the computing time needed by
the standard algorithm to update the neural network
when a new training pattern is presented. If the neu-
ral network is updated after each pattern presentation
then the computing time of an epoch for the standard
algorithm on a sequential machine is

T, =Ng,

where N is size of the training set. In the short term
branching algorithm the number of branches for a
cross-validation test (except for the initial test) is

B =3.2llcs: %]

If we implement the short term branching algorithm
on a sequential machine emulating P processing units,

787

the computing time of an epoch (except the initial
epoch) is

N B
Tla,.sN P [Cp (B+_+"+3)+tuB+tc]
[log23] 2
Consequently,
T, s 1 [B B t,B +t¢]
Y - (B+ -4+ —+-+3)+ —m
T, [loggg] (2 4) ¢

which shows that a sequential implementation of the
short term branching algorithm is computationally
very expensive,

On the other side, the computing time of an epoch
(except the initial epoch) for the short term branching

algorithm on a parallel system of P processors is
P N

Ty s = T, t t tilogy— | —5+=

Py a+(c+ v+t0923> [1092‘5;]

So, for a parallel implementation

Tp s tt tc + tv
ke JLAPOS PR L S (1)
T & cp[loga%]

which shows that the algorithm is more suitable for
parallel system rather that distributed system imple-
mentation where £, is significantly larger.

Let us now analyze the long term branching algo-
rithm. In this case the underlying standard sequential
algorithm performs one neural network update per one
epoch. We define c. to be the computing time be-
tween two neural network updates by this standard
algorithm. As earlier let B be the number of branches
for the cross-validation test (except the initial test).

If we implement the long term branching algorithm
on a sequential machine emulating P processing units,
the computing time between two cross-validation (%
epochs) is

B
T,,wa(1+2+---+—3-) ce + Bty +1c

or, after simplification

B+3

T~ B c. + Bty + 1.
The computing time for those % epochs on a parallel
system of P processors is

B
Tpu ~ ?(c‘ + 1) + 1, +tc

The computing time for % epochs for the standard

algorithm is
B
T = 362

Consequently
T,i B+3 3t 3t
T 2 Be,
and T 3()
2,1 ti tc + tu
T Y et T B @

which shows that a sequential implementation of the
long term branching algorithm is still expensive (B is
large) but a parallel implementation is time efficient.

The analyzis also shows that a parallel implemen-
tation of the long term branchin g algorithm is more
efﬁaent than the short term branching implementa-
tion (—,}J— < Zl-—) However, better experimental gen-
era.hzatlon results were obtained using the short term
branching algorithm as will be discussed in the follow-
ing section.

4 Results

The proposed branching technique can be used
to improve the generalization of any gradient de-
scent learning algorithm. In our experiments back-
propagation is used as the standard algorithm. The-
oretical results concerning the efficient method for
branching as well as simulation results are presented
further in this section.

4.1 Branching Trajectories Construction

It is known that the back-propagation algorithm
is not an optimal minimization technique. Figure 4
represents an example of a standard trajectory gen-
erated by the back-propagation algorithm. From the
branching point (2o, Eo) a better trajectory could be
found in the neighborhood of the standard trajectory
as indicated in the figure.

E |
Eg

Branching angle o

A better trajectory

hes ——— Standard trajectory

Figure 4: Standard and better trajectories

For non-trivial learning problems it is reasonable to
assume that there are such better trajectories in the
vicinity of the standard one. Consequently, for the

788

construction of branching trajectories we decided to
use limited variations in the branching parameter a
(the angle between the standard and the new trajec-
tories).

E r branching angle o}
branching angle oty
Ey
s
Ej A N, A better trajectory
E;
——— Standard trajectory

Ey

Figure 5: Avoiding local minimum using branching

In branching algorithms it is important to construct
a variety of trajectories. For example in Figure 5
at the branching point (23, E;) the training error is
smaller than in point (23, Es) obtained by the back-
propagation from (z1, E;). However the branching
should not be stopped at (z3, E;) since the global
minimum is at (z4, E4). Consequently the branch-
ing parameter a has to be large enough to generate
a trajectory that leads to the global minimum. Also,
branching would not be efficient using small learning
rates because branching trajectory will stay too close
to the standard one.

We will derive some expressions for the branching
parameters in order to determine efficient methods for
the construction of branching trajectories consistent
with previous observations. Let

W = [wl,...,wp]

be a weight vector which is composed by all weights
in the network. A network updating step implies a
change in W which will eventually affect all compo-
nents

W+ AW = [wy + dwy, ..., wp + Swp)

The weight space is spanned by wy, wy, ..., wp, and so
AW could be expressed as a vector in this space. Let
AW = aywy + aqwz + -+ + a,Wp
where w;, ¢ = 1,...,p, are normalized vectors repre-
senting a basis in the weight space and a; = —r):TE:
is the weight update in w; direction. We are looking
for a vector AW* which will generate the first point

* = W+ AW* of a new trajectory. This unknown
vector could be expressed as

AW?® = byW1 + baW3 + -+ - + bWy

Let o be the angle between AW and AW™*. The scalar
product will give the expression for cosa

AWAW*

%= Taw AW

Or, in terms of projection in the weight space

P

Z a;b;
t=1
)4
>
=1

?
> a
Va

We assumed earlier that there is a better trajectory in
the vicinity of the standard one. We can use equation
(3) to constrain the angle between these two trajecto-
ries.

Another desired feature of a branching algorithm is
computational efficiency. A simple efficient approach
is to compute the branching vector AW™* as

0

However that could generate too small variation for a
large p as now

cosa =

if i=j
otherwise

(4)

For small p an acceptable large variation can be ob-
tained by selecting a; = maz{a;}.

Based on all those observations we explored five
methods for determining branching trajectories.
our experiments the first neural network W+ AW* =
[wy + by,...,wp + bp] of a new trajectory W* is con-
structed from the previous W network using one of
the following methods:

1. Compute b;, ¢ = 1,...,p, using equation (4),
where j is given by a; = min{a;}.

2. Compute b;, + = 1,...,p, using equation (4),
where j is given by a; = maz{a:}.

3. Compute b; as [by, -+, b)) = [0,--,0,ax41,
-++,ap] where k is the largest integer such that o < 45°
(o is computed using equation (3)).

4. Compute b; as [by,---,bp] = [a1,"+,a5-1,
2aj,a541,**, Gy}, where j is given by a; = maz{a;}.

5. Compute b;, ¢ = 1,...,p, as b; = —n*;’f‘,
7" # 7, where n and n* are the learning rates for
the standard back-propagation trajectory and for the
new trajectory.

In

789

Method 1 generates very small branching angles
and is useful only for large learning rates. A large
branching angle is obtained using method 2. However
it still does not guarantee success if the update process
consists of only the largest weight change. Method 3
ensures an appropriate variety in exploring the weight
space but it implies a large amount of computation.
Method 4 is similar to method 2 except that it achieves
a larger variety of trajectories. Finally, method 5 uses
a number of different learning rates with the objec-
tive to explore a large neighborhood along the stan-
dard trajectory. Observe that in method 5 there is no
need to compute the branching angle since cosa = 1.
However, this simple method does not give good gen-
eralization results as it will be discussed in the next
section. In the following section we present a quanti-
tative approach to the comparison between these five
methods.

4.2 Simulation results

We focused our simulation on two classification
problems previously used in benchmark tests. In both
problems input vectors should be classified to one of
two classes. The first is the well known two spirals
problem (3] which is designed to be hard to learn and
the second is a real-life problem concerning breast-
cancer diagnosis [5].

[Algorithm I Run time | Tr.err. |
Standard back-propagation | 45 min. 10%
Construction method 1 45 min. 46%
Construction method 2 45 min. 40%
Construction method 3 45 min. 44%
Construction method 4 45 min. 40%
Construction method & 45 min. 45%

Table 1: Trajectory construction methods comparison

The sequential implementation of the branching al-
gorithms i¢ significantly more time consuming than
the standard back-propagation. Consequently our
first goal was to test which of the five proposed meth-
ods for construction of the branching trajectories (dis-
cussed in the previous section) generates most useful
branches in the same amount of time needed for stan-
dard back-propagation convergence. Table 1 presents
a comparison between the proposed trajectory con-
struction methods. The results where obtained using
a neural network structure with 2 inputs, 6 hidden
units and one output trained for the two spirals prob-
lem (learning rate n = 0.05, 50 training patterns).

As expected, none of the five networks correspond-
ing to the proposed trajectory construction methods
converged in 45 minutes using sequential short term
branching algorithm. The results confirm theoreti-
cal assertions made in the previous section concern-
ing quality of learning for each of the five methods.
Methods 2 and 4 appeared to generate most useful
trajectories in a given amount of time. The removal
of the largest weight change (method 2) was slightly
more efficient and so for further testing of the branch-
ing algorithms we used this trajectory construction
method.

[Data | Spirals [Breast cancer |
Configuration 2-6-1 10-10-1
Learning rate 0.05 0.05
Number of patterns | 100 250
Training error 21% 4%
Generalization 73% 76%

Epochs 50000 25000
Run time 45 min. | 65 min.

Table 2: Standard back-propagation

rData I Spirals l Breast canceu
Configuration 2-6-1 10-10-1
Learning rate 0.1 0.4
Number of patterns | 100 250
Training error 18% 3.5%
Generalization 7% 78%
Epochs 7000 5000
Sequential run time | 14 hours | 24 hours
Parallel run time 47 min. | 63 min.

Table 3: Short term branching algorithm

Tables 2 and 3 present the network structure, learn-
ing parameters and the results obtained on those two
problems for the standard back-propagation and for
the short term branching algorithm. The structure
of the neural network architecture for each of the
problems was selected according to the complexity of
the input data space. The training process stopped
when learning trajectories became stationary. In the
branching algorithm we used larger learning rates than
in the back-propagation algorithm in order to reduce
the number of epochs for convergence, which turned
out to be a valid assumption. In both experiments
the branching algorithm converged in smaller num-
ber of epochs with improved generalization. Running
the standard back-propagation for only 7000 epochs
(as for the branching algorithm) will result in a large

790

training error (32% after 7000 versus 21% after 50000
epochs) and a poor generalization (~60% versus 73%).
Using learning rate n = 0.1 (as for the branching algo-
rithm) the standard back-propagation requires a much
longer time for convergence than using n = 0.05.

For the parallel run time we considered P = 256
processing units organized in a mesh structure like the
Touchstone Delta System [2]. The time required for
branch selection ., for network parameters transfer
t;, for cross validation test t,, and for network up-
date using one pattern c, were computed based on
Touchstone Delta System characteristics. For a neu-
ral network structure corresponding to the two spirals
problem (2 inputs, 6 hidden units, one output) we
have t. = 1ms, ¢, = 10us, t, = 1ms and ¢, = 50us.
Using these values in equation (1) for the two spirals
problem we have T, ,/T, = 7.43. Parallel run time
(47 minutes) is computed using this ratio and branch-
ing algorithm convergence in 7000 epochs versus 50000
needed by the standard back-propagation.

The neural network for the breast cancer problem
is larger (10 inputs, 10 hidden units, one output) and
consequently #; = 20us, t, = 2ms and ¢, = 100us
while ¢, remains the same as in the two spirals prob-
lem since the same number of branches is generated.
This gives T, ,/T, = 4.84 and a parallel run time of
63 minutes which is less than run time for the stan-
dard back-propagation convergence. Here the parallel
branching algorithm is faster then the standard one
since it converges in 5000 epochs versus 25000 needed
by the back-propagation.

It is easy to see that the parallel branching algo-
rithm is more appropriate for larger than for smaller
neural networks. This follows from equation (1) since
t, ty and c, grow at the same rate with the size of the
problem while ¢, remains constant. ;From equation
(1) it is also easy to see that the branching algorithm
is more appropriate for highly parallel rather than dis-
tributed systems. In the case of a distributed system
the transmission time ¢; is dominant and much larger
then ¢, and t, which together with ¢, can be derived
exactly running a test program on a network of work-
stations.

Figures 6 and 7 presents learning speed in terms
of epochs an d time for the spirals problem using the
back-propagation and the short term branching algo-
rithm. Figure 6 shows that a better learning perfor-
mance is attained in a smaller number of epochs using
the branching algorithm. Figure 7 shows the superior-
ity of the standard algorithm versus sequential imple-
mentation of the branching algorithm in terms of com-
puting time. Figure 7 also shows a trajectory resulting

60

Training error

20

10000 20000 30000

epochs

40000 50000

Standard backpropagation

Branching aligorithm (sequentia or parallel)

Figure 6: Number of training epochs comparison

20 ;. s

time [hours]

Standard backpropagation

Branchi

algorithm

Branching algorithm (parallel implementation)

Figure 7: Computing time comparison

from a parallel implementation. This trajectory was
computed based on the equation (1) derived earlier.
It indicates that branching algorithms are highly effi-
cient when implemented on a parallel machine.

Simulation results indicate that the long term
branching algorithm requires considerably more
epochs for convergence comparing to the short term
branching algorithm. In fact we stopped the training
before the error function became stationary and at
that time the testing showed a small improvement in
generalization (1%). This is consistent with theoret-
ical observations from Section 2.2 that the long term
branching algorithm requires a much larger number of
update steps to achieve a useful variety of the learning
trajectories.

5 Summary
We have proposed and analyzed a bounded depth

branching approach to neural network learning. The
experimental results show improved generalization

791

compared to the standard back-propagation learning
algorithm. This branching process is very expensive
if implemented on a sequential machine as it requires
a large amount of hardware resources. The proposed
parallel implementation dramatically improves the al-
gorithm efficiency to the level that computing time is
no longer a critical factor in achieving improved gen-
eralization.

The idea of bounded depth branching is applicable
to other neural network learning algorithms. Exten-
sion from the back-propagation to improvement of any
other gradient descent learning algorithm is straight-
forward. Further research topics include application of
this branching idea to non-gradient descent methods
such as constructive learning algorithms.

Acknowledgement

The authors would like to thank Justin Fletcher
for programming help and for useful comments on the
first draft of this paper.

References

[1] S. E. Fahlman. Faster-learning variations on back-
propagation: An empirical study. In D. Touret-
zky, editor, Proceedings, 1988 Connectionist Mod-
els Summer School, volume 1, pages 38-51. Mor-
gan Kaufmann, San Mateo, 1988.

[2] Intel Supercomputer Systems Division, Beaverton,
OR. Touchstone Delta System User’s Guide, Oc-

tober 1991.

K. J. Lang and M. J. Withbrock. Learning to tell
two spirals apart. In D. Touretzky, editor, Proceed-
ings, 1988 Connectionist Models Summer School,
volume 1, pages 52-59. Morgan Kaufmann, San
Mateo, 1988.

F. T. Leighton, editor. Introduction to Parallel
Algorithms and Architectures. Morgan-Kaufmann,
San Mateo, CA 94403, 1992.

S. M. Weiss et al. An empirical comparison of pat-
tern recognition, neural nets, and machine learn-
ing classification methods. Machine Learning,
3(6):781-787, November 1990.

L. F. Wessels and E. Barnard. Avoiding false lo-
cal minima by proper initialization of connections.
IEEE Transactions on Neural Networks, 3(6):899—
905, November 1992.

