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Abstract – Motivated by known preferences for certain amino

acids in positions around a-helices, we developed neural

network-based predictors of both N and C a-helix ends, which

achieved about 88% accuracy. We applied a similar approach for 

predicting the ends of three types of secondary structure seg-

ments. The predictors for the ends of H, E and C segments were

then used to create input for protein secondary-structure

prediction. By incorporating this new type of input, we

significantly improved the basic one-stage predictor of protein

secondary structure in terms of both per-residue (Q3) accuracy

(+0.8%) and segment overlap (SOV3) measure (+1.4).

I. INTRODUCTION

Prediction of secondary structure from amino acid sequence 

is useful for developing and testing structure-function hy-

potheses, for improving sequence alignments of remote

homologues, for improving homology models of sequences

with low sequence identity compared to the template mole-

cule, and as the starting point for prediction of 3-D structure

[1,2]. Secondary structure prediction is mature problem that

may be reaching the upper bound of the accuracy that can be

achieved [3].

Most current state-of-the-art methods use data obtained

from sequence alignment profiles to classify each residue as

one of three general structure types, helix – H, sheet – E and

coil – C [3-7]. These methods now achieve near 78% Q3 accu-

racy [8]. Another very important measure of prediction quality 

is “segment overlap” (SOV3) measure [9].  SOV3 measures

how similar the distribution of predicted segments is to the

distribution of actual segments, as well as how close the ends

of the overlapping predicted segment are to the ends of the

actual segment.

Empirical evidence has been presented indicating

preferences of certain amino acids at specific positions around 

the ends of a-helices [10-12] and also indicating preferences

for positions throughout the entire lengths of a-helices [13].

The idea that structural boundaries are accompanied by

particular amino acid biases motivated us to attempt to

develop a predictor of the boundaries between structured and

intrinsically unstructured regions in proteins. This boundary

predictor was fairly successful and led to modest

improvements in predicting intrinsically unstructured regions

in proteins [14].

The success on structured/unstructured boundary prediction

encouraged us to consider the possibility of predicting the

ends of a-helices; the latter problem has the advantage of a

much larger set of data compared to the former. Here we test

a-helix/non-a-helix boundary prediction using neural

networks. We also test whether the ends of other structural

types are predictable. To the best of our knowledge, no

significant results regarding this problem have been reported

to date. Finally, we test whether prediction of ends (or

boundaries) can be used to improve overall secondary

structure predictions.

Based on neural networks, we built predictors for the N-

ends and C-ends of a-helices from the protein sequence that

achieve true accuracy of 88.2% and 88.5%, respectively. The

importance of correctly predicted boundaries between secon-

dary-structure segments, coupled with the successful predic-

tion of a-helix ends motivated us to generalize the prediction

of a-helix ends and predict the N- and C- ends of segments of 

types H, E and C with six predictors – two for each segment

type. We assumed that if these predictors were fairly success-

ful, their outputs could be used as input to predict secondary

structure. The rationale for this assumption is simple. Assum-

ing we were given perfect predictors (i.e. with 100% accu-

racy) for these 6 problems and applied them on some protein

sequence, we would be able to make a perfect prediction of

secondary structure by using a deterministic algorithm. For

each residue, we would have to find the nearest residue that is 

predicted to be the N-end and the nearest residue that is pre-

dicted to be the C-end of a secondary-structure segment. For

perfect segment-end predictors, the nearest N-end residue and

nearest C-end residue would be of the same type, so observed

residue should be classified as belonging to that type.

Furthermore, it is easy to prove that only four out of the six

perfect predictors are sufficient for perfect secondary-structure

prediction (given that they are perfect and that we throw out a 

pair of N-end and C-end predictors of the same segment type). 

Although predictors for the six segment-ends problems cannot

be perfect, we still hoped that we would be able to use them to 

improve secondary structure prediction.

Our goal was to compare predictions based on data, which

was obtained from sequence alignment profiles, and predic-



tions based on output from segment-ends predictors. We used

the same simple prediction model based on neural networks.

We also tried several methods of combining two types of data 

to achieve even better prediction accuracy.

II. METHODS

A.   Dataset

The data source was a non-redundant set of 4460 protein

chains with a known 3D structure (resolution<2.5 and R-

factor<0.25). All pairs of chains in the set have less than 30%

pairwise sequence identity [15].

Several methods have been used for encoding amino acid

residues as numerical values.

Binary (or sparse) representation is a vector of 20 binary

numbers assigned to each residue. One of these 20 numbers

(depending on the type of amino acid) is 1 and the remaining

19 numbers are 0. Datasets produced by using binary encoding 

are very sparse, with only 5% of nonzero values. This affects

the process of training, due to the “curse of dimensionality”

problem.

Substitution matrix representation (sometimes called PAM

encoding or BLOSUM encoding) encodes each residue as a

corresponding row of 20 numbers from a substitution matrix,

e.g. BLOSUM62. This improves generalization ability of a

predictor, since similar amino acid residues are represented

with similar vectors.

Sequence profile representation encodes each residue as a

vector of 20 substitution scores from a sequence profile. This

further improves generalization ability of a predictor, since

sequence profiles include additional evolutionary information. 

We used it for both of our problems, prediction of secondary

structure and prediction of ends of secondary-structure seg-

ments.
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Sequence Position-Specific Scoring Matrix

Fig. 1. 300 input attributes that encode for one residue are rows taken from the 

position-specific scoring matrix for a window of 15 residues. Additional 15 

attributes indicate when residue positions are out of sequence bounds.

The substitution scores were taken from a position-specific

scoring matrix (PSSM) generated by PSI-BLAST [16]. PSI-

BLAST was run for three iterations, using the nr database, the 

BLOSUM62 substitution matrix and an e-value threshold of

0.0001. PSSM generated by PSI-BLAST contains rows of 20

log-odds values, one for each residue. We constructed 300

input attributes that represent a residue by joining rows from

PSSM for a window of 15 residues with the observed residue

in the center of the window (Fig. 1). If some position in the

window extended beyond an end of the sequence, we inserted

BLOSUM62 substitution scores for X, i.e. unknown residue.

This scheme produces 15*20 = 300 input attributes. We added 

15 additional input attributes, each of which had a value 1 if

the corresponding residue is known or a value -1 if the corre-

sponding residue is unknown, i.e. that position in a window

falls outside of a sequence. All 315 input attributes were nor-

malized to obtain the Gaussian distribution.

We used the DSSP assignment method [17] to obtain an 8-

state secondary-structure assignment from PDB files. These 8

states – G, H, I, T, E, B, S and _ (i.e. blank) – can be further

reduced to three more general states – H (helix), E (sheet) and 

C (coil) – using various schemes. The choice of the scheme

can affect the prediction accuracy [3]. We chose the scheme

used by the EVA server [18], to assign H, G and I to H; E and

B to E; and S, T and _ to C. For the remainder of this paper,

we will simply use H, E and C to denote the three general

states of secondary structure.

B. Model, training and prediction

We chose a neural network with a single hidden-layer as our 

prediction model. Neural networks were trained using stan-

dard back-propagation [19] (for prediction of ends of seg-

ments) or resilient propagation [20] (for prediction of secon-

dary structure). For secondary-structure problem, we trained

three separate networks. All networks used the same input.

Each of them had a separate (smaller) hidden layer and pro-

duced one of three outputs (Fig. 2). Three networks with the

same input and separate hidden layers and outputs can still be

observed as a single composite neural network with three out-

puts. The corresponding composite neural network has a hid-

den layer that is three-times larger, where two-thirds of the

COMMON INPUT LAYER

HIDDEN LAYER #1 HIDDEN LAYER #2 HIDDEN LAYER #3

3 OUTPUTS

INPUT LAYER

HIDDEN LAYER

3 OUTPUTS

Fig. 2. Three neural networks with common input and separate hidden layers, 

interpreted as one composite neural network (top), are used instead of a 

regular neural network with one hidden layer (bottom).



weights and biases have zero value. Training of separate net-

works was necessary due to the high memory requirements of

the resilient propagation algorithm. Tests on smaller-scale

networks showed that the results obtained by the composite

neural networks were comparable to regular neural networks.

The dataset was divided into 16 disjoint subsets, each con-

taining an approximately equal number of residues. Residues

from one protein chain were always grouped in one subset to

enable the evaluation of SOV3 (introduced in section G). For

each of the problems, we trained 16 separate predictors, one

using each subset. We then integrated those separately trained

predictors into one ensemble predictor by averaging their out-

puts. E.g. when prediction is tested on one of the 16 subsets,

we use an ensemble predictor consisting of 15 predictors

trained on the other 15 subsets. For the remainder of this pa-

per, we will use “predictor” for this ensemble predictor and

“single predictor” or “component predictor” for predictors that 

are components of the ensemble predictor.

C.   Prediction of the ends of a-helices

We repeated the analysis (from [10]) of position-specific

amino acid propensities around the ends of a-helices on our

larger set of proteins. Position-specific (relative) propensity

for amino acid j (AAj) at position i is defined as Pri(AAj) =

Fri(AAj)/Fr(AAj), i.e. the ratio of the frequency of AAj at posi-

tion i over the overall frequency of AAj. If Pri(AAj) is signifi-

cantly larger than 1, there is a positive preference for amino

acid j in position i. Conversely, if Pri(AAj) is significantly

smaller than 1, there is a negative preference for amino acid j

in position i. Since certain propensities become more empha-

sized when short a-helices are filtered out, we decided to keep 

only a-helices with at least 8 residues.

Every a-helix has two ends, the N-end and the C-end. We

define two problems: the prediction of N-ends of a-helices

(labeled NA) and the prediction of C-ends of a-helices (labeled 

CA). We composed the dataset for NA problem by including all 

residues at the N-ends of a-helices (with at least 8 residues) as 

positive instances, and an equal number of randomly selected

remaining residues as negative instances. Each residue is as-

signed 315 input attributes (as discussed above). Instance class 

was encoded as a numerical pair, (0.9, 0.1) for positive in-

stances and (0.1, 0.9) for negative instances. The dataset for

the CA problem was constructed using the same approach.

We used neural networks with 20 hidden neurons and two

outputs, and trained them using standard back-propagation

algorithm, with learning rate 0.2 and momentum 0.8. Part of

the training set (20%) was used as a validation set to avoid

over-fitting. During prediction, two output values are com-

pared and the greater value decides how the observed residue

will be classified. We will label the two predictors as PNA

(NA problem) and PCA (CA problem)

D.   Prediction of the ends of 3-state secondary structure seg-

ments

The problem of predicting the ends of a-helices can be gen-

eralized to any other type of sequence segment. We experi-

mented with three types of secondary structure segments (re-

duced to 3-state from DSSP’s 8-state assignment): helix (H),

sheet (E) and coil (C). For each of these three types of seg-

ments, we define two distinct problems: prediction of the N-

ends and prediction of the C-ends. Overall we have 3*2 = 6

distinct problems, that we will label as <segment-end type>-

<segment type>, i.e. NH, CH, NE, CE, NC and CC.

Datasets for these 6 problems were constructed in a way

similar to the construction of datasets for NA and CA. The

main difference was that we did not perform any filtering of

short segments. Note that a-helices are not equivalent with H

segments. To be more precise, every a-helix is part of an H

segment that may be equivalent to the a-helix but can also

include some 310 and p-helix residues. A residue that is

located at an end of the a-helix may lie in the middle of an H

segment. Therefore, problems NH and CH are not identical to

NA and CA.

We will label six predictors for problems NH, CH, NE, CE,

NC and CC as PNH, PCH, PNE, PCE, PNC and PCC, respec-

tively. We used the same neural network architecture and

training procedure as for PNA and PCA predictors. Due to

more heterogeneous character of H, E and C segments, we

expected a lower prediction accuracy than was obtained for

NA and CA problems.

E.   Prediction of secondary structure using inputs obtained

from sequence profiles
Many existing predictors of secondary structure use a neural 

network with a single hidden layer and profile score data as

input. Most of predictors also filter their results, usually by

using a second stage of prediction.

Our basic predictor of secondary structure (labeled PSSPROF)

uses 315 inputs obtained from the sequence alignment pro-

files. The type of 3-state secondary structure assigned to each

residue was encoded as a triplet of numbers: (0.9, 0.1, 0.1) for 

H, (0.1, 0.9, 0.1) for E and (0.1, 0.1, 0.9) for C. As already

discussed, each individual predictor consisted of three neural

networks that were trained separately, but we observe them

together as one composite neural network. During the predic-

tion phase, the largest of the three output values decides how

the observed residue will be classified. Neural networks had

50 hidden neurons and were trained using resilient propaga-

tion.

F.   Prediction of secondary structure using the output of

segment-ends predictors

To test whether outputs of predictors for problems NH, CH,

NE, CE, NC and CC could be used as input to predict secondary 

structure, we first submitted the protein sequences to six

segment-ends predictors (PNH, PCH, PNE, PCE, PNC and

PCC). The result for each sequence was a matrix of L*6 val-

ues, where L is the length of sequence. We then constructed

90 new input attributes for each residue by joining rows from

this matrix for a window of 15 residues with observed residue 

in the center of the window (Fig. 3). If a position in the

window extended beyond an end of the sequence, we inserted

zeros (because such a position cannot be at an end of an H, E

or C segment).



Dataset w ith 315 attributes

Sequence

(from sequence profile scores)

PNH
PCH
PNE
PCE
PNC
PCC

PNH output
PCH output
PNE output
PCE output
PNC output
PCC output

Dataset w ith 90 attributes

(from segment-ends predictors)

PSSPROF

PSSHEC

PSSPROF+HEC PSSMEAN

Fig. 3. The flowchart of data from sequence to secondary-structure predictors.

We used this new data (90 input attributes) – instead of the

previously described 315 input attributes – as input for pre-

dictor of secondary structure (labeled PSSHEC). We used the

same model, training and prediction techniques used for

PSSPROF.

We first examined the effects of various sizes of the input

window by using subsets of the set of input attributes. We

trained and evaluated predictors with input window sizes of 7, 

9, 11, 13 and 15 residues (labeled PSSHEC;7, PSSHEC;9, etc.), i.e. 

using 42, 54, 66, 78 and 90 input attributes.

We then compared the importance of attributes coming

from six segment-ends predictors by excluding attributes ob-

tained from one pair of predictors for the same segment type,

and using only the attributes obtained from the remaining two

pairs of predictors. Window size was set to 15 residues, so the 

number of input attributes was always 60 (out of 90 possible).

We label these three predictors PSSHC (uses only data obtained 

form PNH, PCH, PNC and PCC), PSSHE and PSSEC.

Performance of the PSSHEC predictor was then compared to

the performance of PSSPROF predictor. Both predictors used

the same input window size (15 residues) and had the same

size of hidden layers in neural networks (50 neurons).

We took two approaches for using sequence profile data and 

output of the segment-ends predictors together. The first ap-

proach was to train another predictor (labeled PSSPROF+HEC)

that used 405 input attributes, 315 attributes coming from se-

quence profile data and 90 from predictors of segment ends.

Once again we used the same input window and hidden layers 

sizes.

The second approach was to use PSSPROF and PSSHEC sepa-

rately, obtain two sets of outputs, and use means of pairs of

values from those two sets to make the final prediction. We

label this predictor as PSSMEAN.

G.   Second stage of secondary-structure prediction

Many secondary-structure prediction methods involve two

stages of prediction [4,5,21]. The stage-two predictor usually

takes the outputs from the main (stage-one) predictor over a

window of residues around the observed residue. The role of

the stage-two predictor is to improve accuracy by filtering

output from the stage-one predictor.

Stage Tw o

PSSPROF PSSHEC

PSSPROF+HEC

PSSMEAN

S2[PSSPROF] S2[PSSHEC]S2[PSSPROF,HEC]

Dataset w ith 315 attributes
(from sequence profiles)

Dataset w ith 90 attributes
(from segment-ends

predictors)

S2[PSSPROF+HEC]

S2ME AN

Stage One

Fig. 4. Stage two of secondary-structure prediction.

We used a window of 15 residues to create the input for

stage-two predictors from outputs of main predictors. All

stage-two predictors were based on neural networks with 50

hidden neurons and were trained using resilient propagation.

Basic stage-two predictor S2[PSSPROF] uses output from

PSSPROF. Predictor S2[PSSHEC] uses output from PSSHEC,

while S2[PSSPROF+HEC] uses output from PSSPROF+HEC. We also 

trained a second-stage predictor with “hybrid” input:

S2[PSSPROF, HEC] uses output from stage-one predictor

PSSPROF and direct output from predictors of segment-ends

(Fig 4.). Similar to PSSMEAN, stage-two predictor S2MEAN takes

outputs from S2[PSSPROF+HEC] and S2[PSSPROF, HEC], and

calculates means of pairs of values from those two sets to

make the final prediction.

H.   Prediction & Evaluation Procedure

Cross-validation was performed by testing the predictor –

which is an ensemble of single predictors trained on 15 sepa-

rate subsets – using the remaining subset as a test set. This

procedure was repeated 16 times, where each time a different

subset was used as a test set. All reported results are average

over those 16 tests. Note that the standard deviation was cal-

culated over all tests and not over individual proteins. Its pur-

pose is solely to measure the stability of prediction methods

and not to estimate the distribution of values of performance

indicators when they are measured on individual proteins.

We also tested 16 single predictors individually to check

prediction improvements when single predictors are integrated 

into an ensemble. We will not report these results, except in a 

few interesting cases.

Predictors of segment ends were evaluated using four meas-

ures. Sensitivity = positivesallofnumber

positivespredictedcorrectlyofnum.
 measures the

accuracy of a predictor on the subset of positive instances,

while specificity = negativesallofnumber

negativespredictedcorrectlyofnum.
 measures the

accuracy of a predictor on the subset of negative instances.

True accuracy =
2

yspecificitysensitivit +
 is preferred over plain

accuracy (fraction of correctly predicted instances) for binary

classification problems, where one class dominates the set of

possible instances.  (E.g. the number of residues that are not at 

an N-end of a helix segment is much larger than the number of 

residues that are at N-ends of helix segments.)



The fourth measure is the integral of the ROC curve. Our

predictors classify instances by comparing two output values.

However, depending on application, it might be appropriate to 

add a parameter ? to one of the two outputs, and thus intro-

duce positive (when ? > 0) or negative (when ? < 0) bias

towards the class represented by that output. The ROC curve

is a plot obtained by changing the value of ? from -1 to 1,

measuring specificity and sensitivity of the biased predictor

and plotting specificity against sensitivity. The area beneath

the ROC curve (integral on interval [0, 1]) is a measure of the 

quality of a predictor. This measure will be 1 for a perfect

predictor and 0.5 for a “random” predictor. If a predictor is

biased towards a class that is dominant in a distribution (e.g.

negative class in the case of our segment-ends problems), it

can have a very good plain accuracy because it correctly

predicts many instances in the dominant class, but a very low

ROC curve integral. Note that two predictors can have a

similar true accuracy, but dissimilar ROC curve integrals. A

high value of the ROC curve integral means that the predictor

can be finely tuned by changing parameter ?, e.g. to minimize 

false negative predictions while retaining good sensitivity.

We evaluated predictors of secondary structure using Q3 ac-

curacy (overall fraction of residues with correctly predicted 3-

state secondary structure), Q3-H accuracy (fraction of correctly

predicted helix residues), Q3-E accuracy (fraction of correctly

predicted sheet residues) , Q3-C accuracy (fraction of correctly

predicted coil residues), and SOV3 measure (as defined in [9]).

TABLE I

POSITION-SPECIFIC AMINO ACID PROPENSITIES NEAR N-ENDS OF A-HELICES;
N1 IS THE FIRST RESIDUE INSIDE HELIX, FOLLOWED BY N2, N3, ETC.;

NCAP IS THE FIRST RESIDUE OUTSIDE HELIX, FOLLOWED BY N', N? AND N?';

VALUES LARGER THAN 1.5 ARE BOLD; SMALLER THAN 0.67 UNDERLINED

Outside helix Inside helix

N?' N? N' Ncap N1 N2 N3 N4 N5 N6

A 0.93 0.93 0.80 0.43 1.07 1.20 1.17 1.49 1.52 1.74

C 0.90 0.93 0.77 0.84 0.47 0.49 0.64 0.92 0.83 0.74

D 1.04 1.02 0.99 2.61 0.84 1.57 1.54 0.37 0.84 0.84

E 0.94 1.01 0.80 0.60 1.34 2.60 2.21 0.53 1.41 1.57

F 0.89 0.95 1.01 0.49 0.99 0.58 0.80 1.45 0.89 0.81

G 1.24 1.62 1.20 1.26 0.69 0.78 0.61 0.37 0.37 0.38

H 1.12 1.13 0.92 1.16 0.78 0.92 0.99 0.71 0.78 0.80

I 0.82 0.74 1.06 0.26 0.81 0.52 0.69 1.79 1.14 0.79

K 0.97 0.94 0.88 0.55 1.05 1.10 0.83 0.85 1.34 1.53

L 0.87 0.74 1.22 0.33 0.97 0.55 0.84 1.74 1.30 1.02

M 1.00 0.76 1.52 0.43 1.00 0.65 0.89 1.63 1.22 0.97

N 1.03 1.09 1.06 2.38 0.55 0.88 0.63 0.47 0.82 0.86

P 1.30 1.42 1.21 1.24 2.72 1.04 0.59 0.00 0.00 0.24

Q 1.00 0.86 0.82 0.60 1.00 1.26 1.83 1.15 1.41 1.59

R 1.06 0.84 0.83 0.58 1.00 0.95 0.74 1.36 1.38 1.61

S 1.13 1.12 1.02 2.67 0.80 1.07 0.78 0.50 0.70 0.76

T 1.00 1.07 1.03 2.15 0.80 0.85 1.13 0.70 0.74 0.77

V 0.88 0.83 0.99 0.24 0.86 0.57 0.90 1.51 1.00 0.67

W 0.83 0.81 0.94 0.45 1.25 0.83 0.71 1.21 0.90 0.88

Y 1.02 0.92 0.88 0.58 0.91 0.65 0.84 1.07 0.80 0.80

III. RESULTS & DISCUSSION

Prediction of the ends of a-helices and ends of 3-state secon-
dary structure segments

Position-specific amino acid propensities for positions

around the ends of a-helices are listed in Tables I and II. Val-

ues larger than 1.5 are printed in bold (positive preference),

while values smaller than 1/1.5=0.67 are underlined (negative

preference). There is a high level of consistency with previ-

ously published findings. Since we used the DSSP method for

secondary structure assignment, some of the propensities are

less emphasized than in studies that use assignment methods

based on the geometry of a protein’s backbone (e.g. prefer-

ence for Glycine in position Ccap is lower while preference

for Glycine in neighboring position C' is higher). On the other 

hand, some propensities are more emphasized, due to the lar-

ger set of protein chains (e.g. preference for Proline in posi-

tions C'-C?').

Evaluation results for predicting the ends of a-helices

(problems NA and CA) and segments of types H, E and C

(problems NH, CH, NE, CE, NC and CC) are listed in Table III. 

The performance of predictors PNA and PCA was very good.

Both predictors have a very high value of ROC curve integral

(0.954 in both cases). This ensures that the predictors can be

finely tuned (by introducing a bias parameter in the prediction, 

i.e. classification phase) to increase sensitivity (or specificity), 

while retaining a fairly high level of specificity (or sensitivity

in the reverse case).

TABLE II

POSITION-SPECIFIC AMINO ACID PROPENSITIES NEAR C-ENDS OF A-HELICES;
C1 IS THE FIRST RESIDUE INSIDE HELIX, FOLLOWED BY C2, C3, ETC.;

CCAP IS THE FIRST RESIDUE OUTSIDE HELIX, FOLLOWED BY C',C? AND C?'.

Inside helix Outside helix

C6 C5 C4 C3 C2 C1 Ccap C' C? C?'

A 1.51 1.43 1.66 1.69 1.37 1.49 1.13 0.64 0.81 0.82

C 0.70 0.71 1.09 1.01 0.71 0.78 0.98 0.65 0.72 0.77

D 0.80 0.69 0.54 0.63 0.61 0.62 0.80 0.98 1.33 1.25

E 1.29 1.23 1.11 1.21 1.49 1.33 0.80 0.79 1.02 0.98

F 0.93 1.18 1.29 1.04 0.78 1.05 0.81 0.62 0.92 0.88

G 0.35 0.28 0.34 0.31 0.23 0.29 2.41 2.55 1.17 0.94

H 0.90 0.83 0.82 0.83 1.03 1.24 1.42 0.96 1.14 1.01

I 1.17 1.44 1.31 1.01 1.16 0.71 0.40 0.62 0.90 0.91

K 1.18 1.14 1.07 1.43 1.77 1.40 1.19 1.23 1.23 1.14

L 1.38 1.49 1.56 1.70 1.47 1.50 0.95 0.68 0.92 0.86

M 1.32 1.34 1.66 1.56 1.28 1.25 0.93 0.64 0.80 0.72

N 0.75 0.68 0.58 0.71 0.70 1.05 1.70 1.23 1.06 1.05

P 0.15 0.08 0.10 0.10 0.02 0.00 0.00 2.08 1.59 1.94

Q 1.40 1.24 1.19 1.17 1.37 1.29 1.25 0.98 0.90 0.84

R 1.33 1.30 1.15 1.45 1.50 1.27 1.07 1.00 0.93 0.93

S 0.66 0.62 0.62 0.72 0.71 1.10 1.11 0.96 0.91 0.98

T 0.75 0.67 0.59 0.52 0.71 1.00 0.66 0.77 0.85 1.05

V 1.09 1.02 1.00 0.67 0.87 0.57 0.43 0.59 0.78 0.99

W 0.95 1.28 1.36 1.08 0.88 0.61 0.46 0.54 0.68 0.74

Y 0.89 1.19 1.18 0.92 0.82 1.12 0.91 0.57 1.01 0.88



TABLE III

EVALUATION OF PREDICTORS OF A-HELIX AND H, E & C SEGMENT ENDS

True
Accuracy (%)

Sensitivity
(%)

Specificity
(%)

ROC Curve
Integral

PNA 88.2 ± 0.6 87.5 ± 1.0 88.9 ± 0.8 0.954 ± 0.005

PCA 88.6 ± 0.7 89.2 ± 1.4 88.0 ± 0.6 0.954 ± 0.005

PNH 80.5 ± 0.7 74.9 ± 1.2 86.1 ± 0.7 0.890 ± 0.006

PCH 78.2 ± 0.7 74.2 ± 0.9 82.2 ± 1.0 0.865 ± 0.005

PNE 77.3 ± 0.6 74.4 ± 0.8 80.2 ± 0.9 0.855 ± 0.006

PCE 76.7 ± 0.6 75.1 ± 0.7 78.3 ± 1.1 0.849 ± 0.006

PNC 74.7 ± 0.5 77.1 ± 0.6 72.2 ± 0.8 0.826 ± 0.005

PCC 75.5 ± 0.6 76.8 ± 0.7 74.1 ± 0.8 0.839 ± 0.006

Performance of the other six predictors was also quite good. 

Out of 3 segment types, predictors of the ends of H segments

(PNH, PCH) achieved the best accuracy, though they are not

as accurate as predictors of ends of a-helices. The reason for

this difference is that 310-helix and p-helix residues, which are 

often surrounding a-helices, introduce noise that hinders

prediction of the ends of H segments. Ends of C segments are

least predictable, which is an expected result when we

consider that C segments have the least regular structure.

Prediction of secondary structure using the output of H, E and 
C segment-ends predictors

We first compare the effect of various window sizes on the

quality of prediction. The values of performance indicators

gradually increased as window size increases, and they practi-

cally converged when window size was 15 (Table IV). It is

very important that the improvement of Q3 results from the

improvement of two component accuracies, Q3H and Q3E,

while Q3C stays practically the same (i.e. none of the compo-

nent accuracies decrease). In further experiments, we used a

window of 15 residues. This window size was previously es-

timated to be optimal for predictors based on sequence profile 

data [3,21,22].

We proceed with ranking input attributes – obtained from

different segment-ends predictors – by importance for quality

of prediction. Table V contains results of predictors that use

only input attributes obtained from 2 out of 3 pairs of the seg-

ment-ends predictors (one of the pairs is omitted in each turn), 

as well as the predictors that use all input attributes. Results

show that omitting input attributes from one pair of segment-

ends predictors does not have a great impact on prediction

accuracy, therefore indicating that there is some redundancy in 

the data that makes it less noise-sensitive.

Improving basic predictors of secondary structure by intro-

ducing the output of segment-ends predictors

Results for our basic secondary structure predictor based on 

sequence profile data (PSSPROF), and for secondary structure

predictor based on the output of segment-ends predictors

(PSSHEC) is listed in Table VI. PSSHEC is not only comparable

to PSSPROF, it actually has a small advantage in both Q3

(0.3%) and SOV3 (1.0), though the standard deviation

intervals still overlap. This is a very important result since

PSSHEC uses only 6 input attributes per residue position in a

window (compared with 20+1 for PSSPROF), and values for

those 6 input attributes come from segment-ends predictors

that are far from perfect (note that segment-ends predictors

use the same type of input as PSSPROF.) In other words, a

window of 15*6=90 segment-ends predictions appears to

carry as much information as a window of 15*21=315 original

attributes.

When comparing single predictors – components of ensem-

ble predictors PSSPROF and PSSHEC – we noted an interesting

phenomenon. Difference in Q3 accuracy of ensemble and sin-

gle predictors is only +0.3% for PSSHEC, compared to +2.0%

for PSSPROF. Even more interesting is the difference in SOV3

between ensemble and single predictors: +2.0 for PSSHEC,

compared to +7.0 for PSSPROF. We believe that the reason for

this is that PSSHEC is less subject to the “curse of dimensional-

ity” problems. Component predictors are trained on smaller

training sets (only a sixteenth part of the whole dataset).

PSSHEC takes 90 inputs and small training sets appear to be

sufficient to successfully train component predictors. This is

the reason why there is only a small improvement when these 

component predictors are integrated into an ensemble. On the 

other hand, PSSPROF takes 315 inputs. Small training sets ap-

pear to be insufficient for training component predictors.

When these (far from optimal) component predictors are inte-

grated into an ensemble, the accuracy of prediction increases

to a much higher level.

TABLE IV

EVALUATION OF SECONDARY STRUCTURE PREDICTORS THAT USE INPUTS

OBTAINED FROM SEGMENT-ENDS PREDICTORS (COMPARISON OF VARIOUS

INPUT WINDOW SIZES); Q3 IS PER-RESIDUE ACCURACY; Q3H, Q3E, Q3C ARE 

PER-RESIDUE ACCURACIES ON H, E AND C PARTS OF PROTEINS;

SOV3 IS SEGMENT OVERLAP MEASURE

Q3 (%) Q3H (%) Q3E (%) Q3C (%) SOV3

PSSHEC;7 77.7 ± 0.5 79.7 ± 0.7 66.4 ± 0.9 82.5 ± 0.6 73.8 ± 0.7

PSSHEC;9 77.9 ± 0.5 80.0 ± 0.7 67.0 ± 0.8 82.4 ± 0.6 74.4 ± 0.7

PSSHEC;11 78.1 ± 0.5 80.1 ± 0.7 67.5 ± 0.8 82.4 ± 0.6 74.7 ± 0.7

PSSHEC;13 78.1 ± 0.5 80.2 ± 0.7 67.7 ± 0.8 82.3 ± 0.6 74.8 ± 0.6

PSSHEC;15 78.1 ± 0.5 80.2 ± 0.7 67.9 ± 0.7 82.2 ± 0.6 74.9 ± 0.7

TABLE V
COMPARISON OF PREDICTORS OF SEC. STRUCTURE THAT USE INPUTS

OBTAINED FROM VARIOUS SELECTIONS OF SEGMENT-ENDS PREDICTORS

(WINDOW SIZE 15)

Q3 (%) Q3H (%) Q3E (%) Q3C (%) SOV3

PSSHE 77.7 ± 0.4 80.1 ± 0.7 67.5 ± 0.8 81.5 ± 0.5 74.5 ± 0.7

PSSEC 77.9 ± 0.5 79.9 ± 0.7 67.2 ± 0.7 82.2 ± 0.5 74.5 ± 0.7

PSSHC 78.0 ± 0.5 80.0 ± 0.6 67.3 ± 0.7 82.3 ± 0.6 74.7 ± 0.7

PSSHEC 78.1 ± 0.5 80.2 ± 0.7 67.9 ± 0.7 82.2 ± 0.6 74.9 ± 0.7

TABLE VI

EVALUATION OF STAGE-ONE PREDICTORS (WINDOW SIZE 15)

Q3 (%) Q3H (%) Q3E (%) Q3C (%) SOV3

PSSPROF 77.8 ± 0.4 80.3 ± 0.6 67.8 ± 0.7 81.3 ± 0.6 73.9 ± 0.7

PSSHEC 78.1 ± 0.5 80.2 ± 0.7 67.9 ± 0.7 82.2 ± 0.6 74.9 ± 0.7

PSSPROF+HEC 78.3 ± 0.5 80.9 ± 0.6 69.0 ± 0.7 81.4 ± 0.6 74.5 ± 0.7

PSSMEAN 78.6 ± 0.4 80.6 ± 0.6 68.7 ± 0.7 82.4 ± 0.5 75.3 ± 0.7



We continue by evaluating two predictors that use both se-

quence profile data and segment-ends predictors data.

PSSPROF+HEC is a neural network based predictor that takes

both types of inputs, 415 in total (Table VI). It achieves an

even higher Q3 accuracy than PSSHEC, but its SOV3 score is

lower (although it is still higher than SOV3 score for PSSPROF).

We noted that the average SOV3 score of its component pre-

dictors was quite low (67.9), as was the case with PSSPROF.

We believe that this is due to the imbalance in the number

of inputs of two types (315 versus 90), and that sequence-

profile based inputs dominate the training and prediction

process.

PSSMEAN also uses both types of inputs, but does not “mix”

them. It separately obtains raw outputs (triplets of real num-

bers) from both PSSPROF and PSSHEC and then produces its

own prediction based on mean values of two row outputs. It

achieved the best Q3 accuracy (78.6%) and the best SOV3

score (75.3) of all first-level predictors. These results are sig-

nificantly better than those of basic PSSPROF, because their

standard deviation intervals do not overlap.

Stage-two predictors

Results for various stage-two predictors are listed in Table

VII. Basic stage-two predictor S2[PSSPROF] greatly improved

the Q3 accuracy and SOV3 score of its basic stage-one prede-

cessor PSSPROF. Stage-two predictor S2[PSSHEC] did not pro-

vide such a great improvement to results of its stage-one

predecessor. We believe that this model for stage-two predic-

tion is inappropriate for the output produced by PSSHEC.

S2[PSSPROF] probably outperformed S2[PSSHEC] because

PSSPROF produces output with higher level of noise than

PSSHEC, so S2[PSSPROF] is able to generalize better when

trained on such noisy input.

Other stage-two predictors that involve data obtained from

predictors of segment-ends (S2[PSSPROF+HEC] and S2[PSSPROF,

HEC]) performed better than basic predictor S2[PSSPROF].

However, these differences are smaller than standard devia-

tions. Additionally, S2[PSSPROF, HEC] has a higher Q3 accu-

racy, but a lower SOV3.

Predictor S2MEAN seems to inherit qualities of both its com-

ponents: high Q3 accuracy of S2[PSSPROF, HEC], and high

SOV3 score of  S2[PSSPROF+HEC]. It achieved the best Q3

accuracy (79.2%) and the best SOV3 score (76.4) of all evalu-

ated predictors.

IV. CONCLUSION

Position-specific amino acid propensities for positions near

the ends of a-helices, listed in Tables I and II are consistent

with previous findings and suggest that it is possible to predict 

the ends of a-helices (problems NA and CA). This assumption

was clearly confirmed by our experiments. 

Results of the next set of experiments show that it is feasible 

to generalize problems NA and CA to other types of secondary

structure segments (H, E and C). 

We used outputs from H, E and C segment-ends predictors

as input for secondary structure prediction. Secondary

structure predictors that use only data obtained from segment-

TABLE VII
EVALUATION OF STAGE-TWO PREDICTORS

Q3 (%) Q3H (%) Q3E (%) Q3C (%) SOV3

S2[PSSPROF] 78.6 ± 0.5 80.6 ± 0.7 68.7 ± 0.7 82.6 ± 0.6 76.1 ± 0.8

S2[PSSHEC] 78.4 ± 0.5 80.6 ± 0.7 67.7 ± 0.7 82.6 ± 0.6 75.4 ± 0.7

S2[PSSPROF+HEC] 78.8 ± 0.5 80.9 ± 0.7 69.0 ± 0.7 82.6 ± 0.6 76.4 ± 0.7

S2[PSSPROF,HEC] 79.3 ± 0.5 81.5 ± 0.7 69.6 ± 0.7 82.7 ± 0.6 75.7 ± 0.8

S2MEAN 79.2 ± 0.5 81.3 ± 0.7 69.5 ± 0.7 82.9 ± 0.6 76.4 ± 0.7

ends predictors have performance comparable to predictors

that use larger-dimensional sequence profile-based data.

Success of prediction of secondary structure only from the

outputs of segment-ends predictors brings up a challenge to

find the best way of improving regular secondary structure

predictors by incorporating data obtained from segment-ends

predictors.

We tackled this challenge by using two approaches. A

predictor that uses both types of input simultaneously shows

some improvement over a basic predictor, but it is not better

than a predictor that uses only data from segment-ends

predictors. A much better approach was to obtain two separate 

“raw” outputs (one from the basic predictor using data from

the sequence profile, another from the predictor that uses only

output from segment-ends predictors) and perform prediction

based on the means of these two “raw” outputs. This predictor 

has significant improvement compared to the basic predictor,

+0.8% for Q3 and +1.4 for SOV3 score.

We also tried to improve two-stage prediction by incorpo-

rating data obtained from segment-ends predictors. It is not yet 

clear how this can be done in an efficient way. We were able

to achieve some improvement, although it was not statistically 

significant. We believe that the simple method that we used

for all stage-two predictors might not be appropriate for fil-

tering of outputs from stage-one predictors that already pro-

duce very accurate prediction.

Protein secondary-structure prediction is a mature problem,

and there are some indications that methods might be reaching 

a theoretical upper-limit of Q3 accuracy. This makes the im-

provement of Q3 accuracy and particularly SOV3 score that we 

achieved for basic stage-one predictor even more significant.

Open questions remains whether prediction of segment-ends

can be used to improve current state-of-the-art secondary-

structure predictors, and whether this could lead to

improvement of methods that use secondary-structure

prediction as intermediate source of data.
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