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Abstract — Motivated by known preferences for certain amino
acids in positions around a-helices, we developed neural
network-based predictors of both N and C a-helix ends, which
achieved about 88% accuracy. We applied a similar approach for
predicting the ends of three types of secondary structure seg-
ments. The predictors for the ends of H, E and C segments were
then used to create input for protein secondary-structure
prediction. By incorporating this new type of input, we
significantly improved the basic one-stage predictor of protein
secondary structure in terms of both per-residue (Q;) accuracy
(+0.8%) and segment overlap (SOV;) measure (+1.4).

1. INTRODUCTION

Prediction of secondary structure from amino acid sequence
is useful for developing and testing structure-function hy-
potheses, for improving sequence alignments of remote
homologues, for improving homology models of sequences
with low sequence identity compared to the template mole-
cule, and as the starting point for prediction of 3-D structure
[1,2]. Secondary structure prediction is mature problem that
may be reaching the upper bound of the accuracy that can be
achieved [3].

Most current state-of-the-art methods use data obtained
from sequence alignment profiles to classify each residue as
one of three general structure types, helix — H, sheet — E and
coil — C [3-7]. These methods now achieve near 78% Qs accu-
racy [8]. Another very important measure of prediction quality
is “segment overlap” (SOV;) measure [9]. SOV; measures
how similar the distribution of predicted segments is to the
distribution of actual segments, as well as how close the ends
of the overlapping predicted segment are to the ends of the
actual segment.

Empirical evidence has been presented indicating
preferences of certain amino acids at specific positions around
the ends of a-helices [10-12] and also indicating preferences
for positions throughout the entire lengths of a-helices [13].
The idea that structural boundaries are accompanied by
particular amino acid biases motivated us to attempt to
develop a predictor of the boundaries between structured and
intrinsically unstructured regions in proteins. This boundary
predictor was fairly successful and led to modest
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improvements in predicting intrinsically unstructured regions
in proteins [14].

The success on structured/unstructured boundary prediction
encouraged us to consider the possibility of predicting the
ends of a-helices; the latter problem has the advantage of a
much larger set of data compared to the former. Here we test
a-helix/non-a-helix boundary prediction using neural
networks. We also test whether the ends of other structural
types are predictable. To the best of our knowledge, no
significant results regarding this problem have been reported
to date. Finally, we test whether prediction of ends (or
boundaries) can be used to improve overall secondary
structure predictions.

Based on neural networks, we built predictors for the N-
ends and C-ends of a-helices from the protein sequence that
achieve true accuracy of 88.2% and 88.5%, respectively. The
importance of correctly predicted boundaries between secon-
dary-structure segments, coupled with the successful predic-
tion of a-helix ends motivated us to generalize the prediction
of a-helix ends and predict the N- and C- ends of segments of
types H, E and C with six predictors — two for each segment
type. We assumed that if these predictors were fairly success-
ful, their outputs could be used as input to predict secondary
structure. The rationale for this assumption is simple. Assum-
ing we were given perfect predictors (i.e. with 100% accu-
racy) for these 6 problems and applied them on some protein
sequence, we would be able to make a perfect prediction of
secondary structure by using a deterministic algorithm. For
each residue, we would have to find the nearest residue that is
predicted to be the N-end and the nearest residue that is pre-
dicted to be the C-end of a secondary-structure segment. For
perfect segment-end predictors, the nearest N-end residue and
nearest C-end residue would be of the same type, so observed
residue should be classified as belonging to that type.
Furthermore, it is easy to prove that only four out of the six
perfect predictors are sufficient for perfect secondary-structure
prediction (given that they are perfect and that we throw out a
pair of N-end and C-end predictors of the same segment type).
Although predictors for the six segment-ends problems cannot
be perfect, we still hoped that we would be able to use them to
improve secondary structure prediction.

Our goal was to compare predictions based on data, which
was obtained from sequence alignment profiles, and predic-



tions based on output from segment-ends predictors. We used
the same simple prediction model based on neural networks.
We also tried several methods of combining two types of data
to achieve even better prediction accuracy.

II. METHODS

A. Dataset

The data source was a non-redundant set of 4460 protein
chains with a known 3D structure (resolution<2.5 and R-
factor<0.25). All pairs of chains in the set have less than 30%
pairwise sequence identity [15].

Several methods have been used for encoding amino acid
residues as numerical values.

Binary (or sparse) representation is a vector of 20 binary
numbers assigned to each residue. One of these 20 numbers
(depending on the type of amino acid) is 1 and the remaining
19 numbers are 0. Datasets produced by using binary encoding
are very sparse, with only 5% of nonzero values. This affects
the process of training, due to the “curse of dimensionality”
problem.

Substitution matrix representation (sometimes called PAM
encoding or BLOSUM encoding) encodes each residue as a
corresponding row of 20 numbers from a substitution matrix,
e.g. BLOSUMSG62. This improves generalization ability of a
predictor, since similar amino acid residues are represented
with similar vectors.

Sequence profile representation encodes each residue as a
vector of 20 substitution scores from a sequence profile. This
further improves generalization ability of a predictor, since
sequence profiles include additional evolutionary information.
We used it for both of our problems, prediction of secondary
structure and prediction of ends of secondary-structure seg-
ments.
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Fig. 1. 300 input attributes that encode for one residue are rows taken from the
position-specific scoring matrix for a window of 15 residues. Additional 15
attributes indicate when residue positions are out of sequence bounds.

The substitution scores were taken from a position-specific
scoring matrix (PSSM) generated by PSI-BLAST [16]. PSI-
BLAST was run for three iterations, using the nr database, the
BLOSUMG62 substitution matrix and an e-value threshold of
0.0001. PSSM generated by PSI-BLAST contains rows of 20
log-odds values, one for each residue. We constructed 300
input attributes that represent a residue by joining rows from
PSSM for a window of 15 residues with the observed residue
in the center of the window (Fig. 1). If some position in the
window extended beyond an end of the sequence, we inserted
BLOSUMG62 substitution scores for X, i.e. unknown residue.
This scheme produces 15*20 = 300 input attributes. We added
15 additional input attributes, each of which had a value 1 if
the corresponding residue is known or a value -1 if the corre-
sponding residue is unknown, i.e. that position in a window
falls outside of a sequence. All 315 input attributes were nor-
malized to obtain the Gaussian distribution.

We used the DSSP assignment method [17] to obtain an 8-
state secondary-structure assignment from PDB files. These 8
states — G, H, I, T, E, B, S and _ (i.e. blank) — can be further
reduced to three more general states — H (helix), E (sheet) and
C (coil) — using various schemes. The choice of the scheme
can affect the prediction accuracy [3]. We chose the scheme
used by the EVA server [18], to assign H, G and / to H; E and
Bto E;and S, Tand _to C. For the remainder of this paper,
we will simply use H, E and C to denote the three general
states of secondary structure.

B. Model, training and prediction

We chose a neural network with a single hidden-layer as our
prediction model. Neural networks were trained using stan-
dard back-propagation [19] (for prediction of ends of seg-
ments) or resilient propagation [20] (for prediction of secon-
dary structure). For secondary-structure problem, we trained
three separate networks. All networks used the same input.
Each of them had a separate (smaller) hidden layer and pro-
duced one of three outputs (Fig. 2). Three networks with the
same input and separate hidden layers and outputs can still be
observed as a single composite neural network with three out-
puts. The corresponding composite neural network has a hid-
den layer that is three-times larger, where two-thirds of the
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Fig. 2. Three neural networks with common input and separate hidden layers,
interpreted as one composite neural network (top), are used instead of a
regular neural network with one hidden layer (bottom).




weights and biases have zero value. Training of separate net-
works was necessary due to the high memory requirements of
the resilient propagation algorithm. Tests on smaller-scale
networks showed that the results obtained by the composite
neural networks were comparable to regular neural networks.

The dataset was divided into 16 disjoint subsets, each con-
taining an approximately equal number of residues. Residues
from one protein chain were always grouped in one subset to
enable the evaluation of SOVj; (introduced in section G). For
each of the problems, we trained 16 separate predictors, one
using each subset. We then integrated those separately trained
predictors into one ensemble predictor by averaging their out-
puts. E.g. when prediction is tested on one of the 16 subsets,
we use an ensemble predictor consisting of 15 predictors
trained on the other 15 subsets. For the remainder of this pa-
per, we will use “predictor” for this ensemble predictor and
“single predictor” or “component predictor” for predictors that
are components of the ensemble predictor.

C. Prediction of the ends of a-helices

We repeated the analysis (from [10]) of position-specific
amino acid propensities around the ends of a-helices on our
larger set of proteins. Position-specific (relative) propensity
for amino acid j (44,) at position 7 is defined as Pri(44;) =
Fri(A4;)/Fr(AA;), i.e. the ratio of the frequency of A4; at posi-
tion i over the overall frequency of A4;. If Pri(A4)) is signifi-
cantly larger than 1, there is a positive preference for amino
acid j in position i. Conversely, if Pri(44;) is significantly
smaller than 1, there is a negative preference for amino acid j
in position i. Since certain propensities become more empha-
sized when short a-helices are filtered out, we decided to keep
only a-helices with at least 8 residues.

Every a-helix has two ends, the N-end and the C-end. We
define two problems: the prediction of N-ends of a-helices
(labeled N,) and the prediction of C-ends of a-helices (labeled
Ca). We composed the dataset for N, problem by including all
residues at the N-ends of a-helices (with at least 8 residues) as
positive instances, and an equal number of randomly selected
remaining residues as negative instances. Each residue is as-
signed 315 input attributes (as discussed above). Instance class
was encoded as a numerical pair, (0.9, 0.1) for positive in-
stances and (0.1, 0.9) for negative instances. The dataset for
the C, problem was constructed using the same approach.

We used neural networks with 20 hidden neurons and two
outputs, and trained them using standard back-propagation
algorithm, with learning rate 0.2 and momentum 0.8. Part of
the training set (20%) was used as a validation set to avoid
over-fitting. During prediction, two output values are com-
pared and the greater value decides how the observed residue
will be classified. We will label the two predictors as PNA
(N4 problem) and PCA (C, problem)

D. Prediction of the ends of 3-state secondary structure seg-
ments

The problem of predicting the ends of a-helices can be gen-
eralized to any other type of sequence segment. We experi-
mented with three types of secondary structure segments (re-

duced to 3-state from DSSP’s 8-state assignment): helix (H),
sheet (E) and coil (C). For each of these three types of seg-
ments, we define two distinct problems: prediction of the N-
ends and prediction of the C-ends. Overall we have 3*2 = 6
distinct problems, that we will label as <segment-end type>-
<segment type>, i.e. Ny, Cy, N, Cg, Nc and Ce.

Datasets for these 6 problems were constructed in a way
similar to the construction of datasets for N, and C,. The
main difference was that we did not perform any filtering of
short segments. Note that a-helices are not equivalent with H
segments. To be more precise, every a-helix is part of an H
segment that may be equivalent to the a-helix but can also
include some 3;, and p-helix residues. A residue that is
located at an end of the a-helix may lie in the middle of an H
segment. Therefore, problems Ny and Cy are not identical to
N, and Cy.

We will label six predictors for problems Ny, Cy, Ng, Cg,
Nc and C¢ as PNH, PCH, PNE, PCE, PNC and PCC, respec-
tively. We used the same neural network architecture and
training procedure as for PNA and PCA predictors. Due to
more heterogeneous character of H, E and C segments, we
expected a lower prediction accuracy than was obtained for
Na and C, problems.

E.  Prediction of secondary structure using inputs obtained

from sequence profiles

Many existing predictors of secondary structure use a neural
network with a single hidden layer and profile score data as
input. Most of predictors also filter their results, usually by
using a second stage of prediction.

Our basic predictor of secondary structure (labeled PSSpror)
uses 315 inputs obtained from the sequence alignment pro-
files. The type of 3-state secondary structure assigned to each
residue was encoded as a triplet of numbers: (0.9, 0.1, 0.1) for
H, (0.1, 0.9, 0.1) for E and (0.1, 0.1, 0.9) for C. As already
discussed, each individual predictor consisted of three neural
networks that were trained separately, but we observe them
together as one composite neural network. During the predic-
tion phase, the largest of the three output values decides how
the observed residue will be classified. Neural networks had
50 hidden neurons and were trained using resilient propaga-
tion.

F.  Prediction of secondary structure using the output of
segment-ends predictors

To test whether outputs of predictors for problems Ny, Cy,
N, Cg, Nc and Cc could be used as input to predict secondary
structure, we first submitted the protein sequences to six
segment-ends predictors (PNH, PCH, PNE, PCE, PNC and
PCC). The result for each sequence was a matrix of L*6 val-
ues, where L is the length of sequence. We then constructed
90 new input attributes for each residue by joining rows from
this matrix for a window of 15 residues with observed residue
in the center of the window (Fig. 3). If a position in the
window extended beyond an end of the sequence, we inserted
zeros (because such a position cannot be at an end of an H, E
or C segment).
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Fig. 3. The flowchart of data from sequence to secondary-structure predictors.
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We used this new data (90 input attributes) — instead of the
previously described 315 input attributes — as input for pre-
dictor of secondary structure (labeled PSSygc). We used the
same model, training and prediction techniques used for
PSSpror-

We first examined the effects of various sizes of the input
window by using subsets of the set of input attributes. We
trained and evaluated predictors with input window sizes of 7,
9, 11, 13 and 15 residues (labeled PSSygc.7, PSSk, etc.), i.e.
using 42, 54, 66, 78 and 90 input attributes.

We then compared the importance of attributes coming
from six segment-ends predictors by excluding attributes ob-
tained from one pair of predictors for the same segment type,
and using only the attributes obtained from the remaining two
pairs of predictors. Window size was set to 15 residues, so the
number of input attributes was always 60 (out of 90 possible).
We label these three predictors PSSyc (uses only data obtained
form PNH, PCH, PNC and PCC), PSSyg and PSSgc.

Performance of the PSSygc predictor was then compared to
the performance of PSSpror predictor. Both predictors used
the same input window size (15 residues) and had the same
size of hidden layers in neural networks (50 neurons).

We took two approaches for using sequence profile data and
output of the segment-ends predictors together. The first ap-
proach was to train another predictor (labeled PSSpror+mec)
that used 405 input attributes, 315 attributes coming from se-
quence profile data and 90 from predictors of segment ends.
Once again we used the same input window and hidden layers
sizes.

The second approach was to use PSSpror and PSSygc sepa-
rately, obtain two sets of outputs, and use means of pairs of
values from those two sets to make the final prediction. We
label this predictor as PSSyzax.

G. Second stage of secondary-structure prediction

Many secondary-structure prediction methods involve two
stages of prediction [4,5,21]. The stage-two predictor usually
takes the outputs from the main (stage-one) predictor over a
window of residues around the observed residue. The role of
the stage-two predictor is to improve accuracy by filtering
output from the stage-one predictor.

PNH J\ PNH output XI
PCH PCH output
PNE PNE output
PCE PCE output [PSSPROF*HEC] [ PSSMEAN]
PNC v—V PNC output
PcCl| PCC output
— - L

Dataset w ith 90 attributes
(from segment-ends
predictors)

PSSerortec Stage One

PSSpror | |

Dataset with 315 attributes
(from sequence profiles) ::>

Fig. 4. Stage two of secondary-structure prediction.

We used a window of 15 residues to create the input for
stage-two predictors from outputs of main predictors. All
stage-two predictors were based on neural networks with 50
hidden neurons and were trained using resilient propagation.

Basic stage-two predictor S2[PSSpror] uses output from
PSSpror. Predictor S2[PSSpgc] uses output from PSSpgc,
while Sz[PSSpROF+HEc] uses output from PSSPROF+HEC- We also
trained a second-stage predictor with “hybrid” input:
S2[PSSpror, HEC] uses output from stage-one predictor
PSSpror and direct output from predictors of segment-ends
(Fig 4.). Similar to PSSy, Stage-two predictor S2p.y takes
outputs from S2[PSSPR0F+HEC] and SZ[PSSPROF, HEC], and
calculates means of pairs of values from those two sets to
make the final prediction.

H. Prediction & Evaluation Procedure

Cross-validation was performed by testing the predictor —
which is an ensemble of single predictors trained on 15 sepa-
rate subsets — using the remaining subset as a test set. This
procedure was repeated 16 times, where each time a different
subset was used as a test set. All reported results are average
over those 16 tests. Note that the standard deviation was cal-
culated over all tests and not over individual proteins. Its pur-
pose is solely to measure the stability of prediction methods
and not to estimate the distribution of values of performance
indicators when they are measured on individual proteins.

We also tested 16 single predictors individually to check
prediction improvements when single predictors are integrated
into an ensemble. We will not report these results, except in a
few interesting cases.

Predictors of segment ends were evaluated using four meas-

num. of correctly predicted positives
number of all positives

accuracy of a predictor on the subset of positive instances,

measures the

ures. Sensitivity =

num. of correctly predicted negatives
number of all negatives

accuracy of a predictor on the subset of negative instances.

measures the

while specificity =

sensitivity-+specificity

True accuracy = is preferred over plain
2

accuracy (fraction of correctly predicted instances) for binary
classification problems, where one class dominates the set of
possible instances. (E.g. the number of residues that are not at
an N-end of a helix segment is much larger than the number of
residues that are at N-ends of helix segments.)



The fourth measure is the integral of the ROC curve. Our
predictors classify instances by comparing two output values.
However, depending on application, it might be appropriate to
add a parameter ? to one of the two outputs, and thus intro-
duce positive (when ? > 0) or negative (when ? < 0) bias
towards the class represented by that output. The ROC curve
is a plot obtained by changing the value of ? from -1 to I,
measuring specificity and sensitivity of the biased predictor
and plotting specificity against sensitivity. The area beneath
the ROC curve (integral on interval [0, 1]) is a measure of the
quality of a predictor. This measure will be 1 for a perfect
predictor and 0.5 for a “random” predictor. If a predictor is
biased towards a class that is dominant in a distribution (e.g.
negative class in the case of our segment-ends problems), it
can have a very good plain accuracy because it correctly
predicts many instances in the dominant class, but a very low
ROC curve integral. Note that two predictors can have a
similar true accuracy, but dissimilar ROC curve integrals. A
high value of the ROC curve integral means that the predictor
can be finely tuned by changing parameter ?, e.g. to minimize
false negative predictions while retaining good sensitivity.

We evaluated predictors of secondary structure using Q; ac-
curacy (overall fraction of residues with correctly predicted 3-
state secondary structure), Q;.y accuracy (fraction of correctly
predicted helix residues), Q;_g accuracy (fraction of correctly
predicted sheet residues) , Q;.c accuracy (fraction of correctly
predicted coil residues), and SOV; measure (as defined in [9]).

TABLE I
POSITION-SPECIFIC AMINO ACID PROPENSITIES NEAR N-ENDS OF A-HELICES;
N1 1S THE FIRST RESIDUE INSIDE HELIX, FOLLOWED BY N2, N3, ETC.;
NCAP IS THE FIRST RESIDUE OUTSIDE HELIX, FOLLOWED BY N', N? AND N?';
VALUES LARGER THAN 1.5 ARE BOLD; SMALLER THAN 0.67 UNDERLINED

II1. RESULTS & DISCUSSION

Prediction of the ends of a-helices and ends of 3-state secon-
dary structure segments

Position-specific amino acid propensities for positions
around the ends of a-helices are listed in Tables I and II. Val-
ues larger than 1.5 are printed in bold (positive preference),
while values smaller than 1/1.5=0.67 are underlined (negative
preference). There is a high level of consistency with previ-
ously published findings. Since we used the DSSP method for
secondary structure assignment, some of the propensities are
less emphasized than in studies that use assignment methods
based on the geometry of a protein’s backbone (e.g. prefer-
ence for Glycine in position Ccap is lower while preference
for Glycine in neighboring position C' is higher). On the other
hand, some propensities are more emphasized, due to the lar-
ger set of protein chains (e.g. preference for Proline in posi-
tions C'-C?").

Evaluation results for predicting the ends of a-helices
(problems N, and C,) and segments of types H, E and C
(problems Ny, Cy, N, Cg, N¢ and Cc) are listed in Table III.
The performance of predictors PNA and PCA was very good.
Both predictors have a very high value of ROC curve integral
(0.954 in both cases). This ensures that the predictors can be
finely tuned (by introducing a bias parameter in the prediction,
i.e. classification phase) to increase sensitivity (or specificity),
while retaining a fairly high level of specificity (or sensitivity
in the reverse case).

TABLE IT
POSITION-SPECIFIC AMINO ACID PROPENSITIES NEAR C-ENDS OF A-HELICES;
C1 1S THE FIRST RESIDUE INSIDE HELIX, FOLLOWED BY C2, C3, ETC.;
CCAP IS THE FIRST RESIDUE OUTSIDE HELIX, FOLLOWED BY C',C? AND C?'.
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TABLE III
EVALUATION OF PREDICTORS OF A-HELIX AND H, E & C SEGMENT ENDS

True Sensitivity | Specificity ROC Curve
Accuracy (%) (%) (%) Integral
PNA| 88.2+0.6 875+1.0 88.9+0.8 0.954 +0.005
PCA| 88.6%0.7 89.2+14 88.0£0.6 0.954 £ 0.005
PNH| 80.5+0.7 749+1.2 86.1 +0.7 0.890 +0.006
PCH| 782+0.7 742+0.9 822+1.0 0.865 +0.005
PNE| 77.3+0.6 74.4+0.8 80.2+0.9 0.855 +0.006
PCE| 76.7+0.6 75.1+£0.7 783+ 1.1 0.849 £ 0.006
PNC| 74.7+0.5 77.1+0.6 722+0.8 0.826 +0.005
PCC| 755+0.6 76.8+£0.7 74.1+0.8 0.839 £ 0.006

Performance of the other six predictors was also quite good.
Out of 3 segment types, predictors of the ends of H segments
(PNH, PCH) achieved the best accuracy, though they are not
as accurate as predictors of ends of a-helices. The reason for
this difference is that 3;yp-helix and p-helix residues, which are
often surrounding a-helices, introduce noise that hinders
prediction of the ends of H segments. Ends of C segments are
least predictable, which is an expected result when we
consider that C segments have the least regular structure.

Prediction of secondary structure using the output of H, E and
C segment-ends predictors

We first compare the effect of various window sizes on the
quality of prediction. The values of performance indicators
gradually increased as window size increases, and they practi-
cally converged when window size was 15 (Table IV). It is
very important that the improvement of Qs results from the
improvement of two component accuracies, Q:H and QsE,
while Q;C stays practically the same (i.e. none of the compo-
nent accuracies decrease). In further experiments, we used a
window of 15 residues. This window size was previously es-
timated to be optimal for predictors based on sequence profile
data [3,21,22].

We proceed with ranking input attributes — obtained from
different segment-ends predictors — by importance for quality
of prediction. Table V contains results of predictors that use
only input attributes obtained from 2 out of 3 pairs of the seg-
ment-ends predictors (one of the pairs is omitted in each turn),
as well as the predictors that use all input attributes. Results
show that omitting input attributes from one pair of segment-
ends predictors does not have a great impact on prediction
accuracy, therefore indicating that there is some redundancy in
the data that makes it less noise-sensitive.

Improving basic predictors of secondary structure by intro-
ducing the output of segment-ends predictors

Results for our basic secondary structure predictor based on
sequence profile data (PSSpror), and for secondary structure
predictor based on the output of segment-ends predictors
(PSShec) is listed in Table VI. PSSygc is not only comparable
to PSSpror, it actually has a small advantage in both Q3
(0.3%) and SOV3 (1.0), though the standard deviation
intervals still overlap. This is a very important result since
PSSyuec uses only 6 input attributes per residue position in a

window (compared with 20+1 for PSSpror), and values for
those 6 input attributes come from segment-ends predictors
that are far from perfect (note that segment-ends predictors
use the same type of input as PSSpror.) In other words, a
window of 15*6=90 segment-ends predictions appears to
carry as much information as a window of 15*21=315 original
attributes.

When comparing single predictors — components of ensem-
ble predictors PSSpror and PSSygc — we noted an interesting
phenomenon. Difference in Q3 accuracy of ensemble and sin-
gle predictors is only +0.3% for PSSygc, compared to +2.0%
for PSSpror. Even more interesting is the difference in SOV;
between ensemble and single predictors: +2.0 for PSSygc,
compared to +7.0 for PSSpror. We believe that the reason for
this is that PSSygc is less subject to the “curse of dimensional-
ity” problems. Component predictors are trained on smaller
training sets (only a sixteenth part of the whole dataset).
PSSygc takes 90 inputs and small training sets appear to be
sufficient to successfully train component predictors. This is
the reason why there is only a small improvement when these
component predictors are integrated into an ensemble. On the
other hand, PSSpror takes 315 inputs. Small training sets ap-
pear to be insufficient for training component predictors.
When these (far from optimal) component predictors are inte-
grated into an ensemble, the accuracy of prediction increases
to a much higher level.

TABLE IV
EVALUATION OF SECONDARY STRUCTURE PREDICTORS THAT USE INPUTS
OBTAINED FROM SEGMENT-ENDS PREDICTORS (COMPARISON OF VARIOUS
INPUT WINDOW SIZES); Q; IS PER-RESIDUE ACCURACY; Q;H, Q;E, Q;C ARE
PER-RESIDUE ACCURACIES ON H, E AND C PARTS OF PROTEINS;
SOV; IS SEGMENT OVERLAP MEASURE

Qs (%) | QsH (%) | Q:E (%) | Q:C (%) | SOVs

PSShkcs | 77.7+0.5(79.7+0.7|66.4£0.9|82.5+£0.6|73.8+0.7
PSSurcs | 77.9£0.5|80.0£0.7|67.0£0.8 | 82.4£0.6 | 74.4 0.7
PSSykc | 78.1 0.5 80.1 0.7 |67.5+0.8|82.4+0.6 | 74.7+0.7
PSSk | 78.1£0.5|80.2+0.7 |67.7+0.8 | 82.3+0.6 | 74.8 0.6
PSSkc.is | 78.1£0.5|80.2 0.7 |67.9+0.7 | 82.2+0.6 | 74.9 0.7

TABLE V
COMPARISON OF PREDICTORS OF SEC. STRUCTURE THAT USE INPUTS
OBTAINED FROM VARIOUS SELECTIONS OF SEGMENT-ENDS PREDICTORS
(WINDOW SIZE 15)

Qs (%) | QH(%) | QE(%) | Q:C (%) | SOVs
PSSue | 77.7+0.4|80.1£0.7|67.5+0.8 | 81.5+0.5 [ 74.5+0.7
PSSgc | 77.9+0.5(79.9+0.7|67.2+0.7 | 822+0.5 [ 74.5+0.7
PSSpc | 78.0£0.5|80.0£0.6 | 67.3+0.7 | 82.3+£0.6 | 74.7£0.7
PSSuec | 78.1+0.5|802+0.7|67.9+0.7 | 82.2+0.6 [74.9+0.7

TABLE VI
EVALUATION OF STAGE-ONE PREDICTORS (WINDOW SIZE 15)

Qs (%) | QH (%) | QE (%) | QC (%) | SOV,
PSSpror | 77.8+0.4|80.3+0.6|67.8+0.7|81.3+0.6(73.9+0.7
PSSuec | 78.140.5(|80.2+0.7|67.9+0.7 822+0.6 | 74.9+0.7

PSSpror+iec | 78.3£0.5(80.9+£0.6 | 69.0+£0.7|81.4+£0.6|74.5+0.7
PSSmean [ 78.6£0.4(80.6+£0.6(68.7+0.7|824+0.5|753+0.7




We continue by evaluating two predictors that use both se-
quence profile data and segment-ends predictors data.
PSSproruec 18 @ neural network based predictor that takes
both types of inputs, 415 in total (Table VI). It achieves an
even higher Q; accuracy than PSSygc, but its SOV; score is
lower (although it is still higher than SOV; score for PSSprop).
We noted that the average SOV; score of its component pre-
dictors was quite low (67.9), as was the case with PSSprop.

We believe that this is due to the imbalance in the number
of inputs of two types (315 versus 90), and that sequence-
profile based inputs dominate the training and prediction
process.

PSSyian also uses both types of inputs, but does not “mix”
them. It separately obtains raw outputs (triplets of real num-
bers) from both PSSpror and PSSygc and then produces its
own prediction based on mean values of two row outputs. It
achieved the best Q; accuracy (78.6%) and the best SOV;
score (75.3) of all first-level predictors. These results are sig-
nificantly better than those of basic PSSpror, because their
standard deviation intervals do not overlap.

Stage-two predictors

Results for various stage-two predictors are listed in Table
VII. Basic stage-two predictor S2[PSSpror] greatly improved
the Q3 accuracy and SOV; score of its basic stage-one prede-
cessor PSSprop. Stage-two predictor S2[PSSygc] did not pro-
vide such a great improvement to results of its stage-one
predecessor. We believe that this model for stage-two predic-
tion is inappropriate for the output produced by PSSygc.
S2[PSSpror] probably outperformed S2[PSSygc] because
PSSpror produces output with higher level of noise than
PSShec, so S2[PSSpror] is able to generalize better when
trained on such noisy input.

Other stage-two predictors that involve data obtained from
predictors of segment-ends (S2[PSSpror+uec] and S2[PSSpror,
HEC]) performed better than basic predictor S2[PSSpror].
However, these differences are smaller than standard devia-
tions. Additionally, S2[PSSpror, HEC] has a higher Q5 accu-
racy, but a lower SOV;.

Predictor S2y;4y Seems to inherit qualities of both its com-
ponents: high Qs accuracy of S2[PSSpror, HEC], and high
SOV; score of S2[PSSpror+urc]. It achieved the best Qs
accuracy (79.2%) and the best SOV; score (76.4) of all evalu-
ated predictors.

IV. CONCLUSION

Position-specific amino acid propensities for positions near
the ends of a-helices, listed in Tables I and II are consistent
with previous findings and suggest that it is possible to predict
the ends of a-helices (problems N, and C,). This assumption
was clearly confirmed by our experiments.

Results of the next set of experiments show that it is feasible
to generalize problems N, and C, to other types of secondary
structure segments (H, E and C).

We used outputs from H, E and C segment-ends predictors
as input for secondary structure prediction. Secondary
structure predictors that use only data obtained from segment-

TABLE VII
EVALUATION OF STAGE-TWO PREDICTORS

Qs (%) | QH (%) | QE (%) | QC (%) | SOV,
S2[PSSpror] | 78.6%0.5|80.6+ 0.7 | 68.7 £0.7 [ 82.6 0.6 | 76.1 +0.8
S2[PSSprec] | 78.4+0.5(80.6+0.7 | 67.7+0.7|82.6+0.6|75.4+0.7

S2[PSSpror+1ec] | 78.8+0.5(80.9+0.7[69.0+0.7[82.6+0.6 | 76.4=0.7

S2[PSSpror,HEC] [ 79.3 +0.5[81.5+ 0.7 69.6 0.7 82.7+ 0.6 | 75.7+ 0.8

S2Meax 79.2+0.5|81.3+0.7|69.5+0.7|82.9+0.6|76.4+0.7

ends predictors have performance comparable to predictors
that use larger-dimensional sequence profile-based data.

Success of prediction of secondary structure only from the
outputs of segment-ends predictors brings up a challenge to
find the best way of improving regular secondary structure
predictors by incorporating data obtained from segment-ends
predictors.

We tackled this challenge by using two approaches. A
predictor that uses both types of input simultaneously shows
some improvement over a basic predictor, but it is not better
than a predictor that uses only data from segment-ends
predictors. A much better approach was to obtain two separate
“raw” outputs (one from the basic predictor using data from
the sequence profile, another from the predictor that uses only
output from segment-ends predictors) and perform prediction
based on the means of these two “raw” outputs. This predictor
has significant improvement compared to the basic predictor,
+0.8% for Q3 and +1.4 for SOV; score.

We also tried to improve two-stage prediction by incorpo-
rating data obtained from segment-ends predictors. It is not yet
clear how this can be done in an efficient way. We were able
to achieve some improvement, although it was not statistically
significant. We believe that the simple method that we used
for all stage-two predictors might not be appropriate for fil-
tering of outputs from stage-one predictors that already pro-
duce very accurate prediction.

Protein secondary-structure prediction is a mature problem,
and there are some indications that methods might be reaching
a theoretical upper-limit of Qs accuracy. This makes the im-
provement of Qs accuracy and particularly SOV; score that we
achieved for basic stage-one predictor even more significant.
Open questions remains whether prediction of segment-ends
can be used to improve current state-of-the-art secondary-
structure predictors, and whether this could lead to
improvement of methods that use secondary-structure
prediction as intermediate source of data.
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