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Abstract

In health care predictive analytics, limited data is often

a major obstacle for developing highly accurate predictive

models. The lack of data is related to various factors:

minimal data available as in rare diseases, the cost of data

collection, and privacy regulation related to patient data.

In order to enable data enrichment within and between

hospitals, while preserving privacy, we propose a system

for data enrichment that adds a randomization component

on top of existing anonymization techniques. In order

to prevent information loss (inclusive loss of predictive

accuracy of the algorithm) related to randomization, we

propose a technique for data generation that exploits fused

domain knowledge and available data-driven techniques as

complementary information sources. Such fusion allows the

generation of additional examples by controlled random-

ization and increased protection of privacy of personally

sensitive information when data is shared between different

sites. The initial evaluation was conducted on Electronic

Health Records (EHRs), for a 30-day hospital readmission

prediction based on pediatric hospital discharge data from

5 hospitals in California. It was demonstrated that besides

ensuring privacy, this approach preserves (and in some cases

even improves) predictive accuracy.
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1 Introduction

Healthcare predictive analytics have a potential for
high-impact applications for many stakeholders. Hos-
pitals can benefit from healthcare predictive analytics

∗Faculty of Organizational Sciences, University of Bel-

grade, Belgrade, Serbia. {milan.vukicevic, sandro.radovanovic,
boris.delibasic}@fon.bg.ac.rs
†Faculty of Health Sciences, University of Maribor, Maribor,

Slovenia. gregor.stiglic@um.si
‡Department of Anesthesiology, Critical Care, Emergency

Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, Genk,

Belgium. svanpoucke@gmail.com
§Center for Data Analytics and Biomedical Informatics, Tem-

ple University, Philadelphia, USA. zoran@ist.temple.edu

by monitoring of quality indicators, planning of health-
care capacities, optimization of supply levels etc. Insur-
ance companies can define adequate charging policies;
medical doctors can optimize treatment using decision
support in diagnostics while patients can receive bet-
ter quality of care, assessment of real costs by different
hospitals etc. Prediction of 30-day hospital re-admission
takes a special place in predictive analytics research [22].
Timely identification of potential unplanned readmis-
sions can have a high impact on the improvement of
healthcare services for patients, by reducing the need
for unnecessary interventions and hospital visits. In ad-
dition, hospital readmission is considered as a major in-
dicator of quality of care for hospitals, with significant
economic impact. It is reported that readmission rate
was 19.6% within 30 days, 34.0% within 90 days, and
56.1% within one year following discharge. According
to the Institute for Healthcare Improvement, of the 5
million U.S. hospital readmissions, approximately 76%
can be prevented, generating the annual cost of about
$25 billion. [21]

Many researchers addressed this problem by build-
ing predictive models on secondary healthcare data, but
they often failed to develop highly accurate models be-
cause of the lack of data. Regulations and privacy con-
cerns often hinder the exchange of healthcare data be-
tween hospitals or other healthcare providers [22, 24].
This problem can be solved by two major strategies: se-
cure multi-party computation (SMC) [22, 14], and ran-
domization [8]. In the case of SMC, the sites cooperate
to build the global prediction model without sharing
the data itself, and these techniques have already shown
their usefulness in many application areas [22, 14].

On the other hand, these techniques cannot help in
situations where the lack of data originates from long
and expensive clinical trials [2] or in the case of data
from rarely observed diseases [1]. In such situations a
randomization based pre-processing could be applied,
where some noise is added to the original data prior
to predictive modeling. Still, randomization techniques
often hamper the utility of the model [14].

One way to address these problems is the inclusion



of additional training examples created from the current
set of examples by utilizing specic knowledge about the
task at hand (often called virtual examples VE [16]).
Compared to simple randomization techniques incorpo-
ration of VE as training examples in machine learning
not only preserves model accuracy (and data privacy)
but often improves it [25]. This is explained because
incorporation of prior knowledge may contain informa-
tion on a domain not present in the available domain
dataset [15, 18] and thus exploits advantages in domain
knowledge (knowledge driven) and data driven knowl-
edge as complementary information sources. In the area
of healthcare predictive modeling, virtual examples are
successfully used for sepsis analysis [17]. VEs are of cru-
cial significance for early sepsis prediction since patients
infected by this disease often die in the early stage, and
thus, temporal data cannot be gathered. Recently pro-
posed predictive models for addressing this problem are
based on VE that use differential equations [2] or med-
ical models [5] as prior knowledge sources. It can be
concluded that VE can be useful, and sometimes are
the only possible technique to compensate for the lack
of data in predictive modeling.

In this paper, we propose a method for VE genera-
tion which uses labeled examples and domain knowl-
edge in the form of the ICD-9-CM hierarchy of dis-
eases. The proposed technique is based on perturba-
tion techniques that preserve privacy, but also allow
generation of unobserved comorbidities. We consider
three perturbation techniques based on apriori proba-
bilities (data driven) and ICD-9-CM hierarchy informa-
tion (knowledge driven) in order to randomize examples
in a controlled manner while preserving privacy and ad-
dressing the problem of potentially existing, but non-
observed comorbidities in data at hand. Additionally,
features that indicate patient identity (patient identi-
fication, hospital identification and year of admission)
are excluded. The intuition for the inclusion of hierar-
chy of diseases is based on too specific diagnoses that
medical experts can assign. In case of similar symp-
toms, medical experts can make mistakes and assign
false diagnoses. However, such diagnoses often belong
to the same group of diagnoses due to their similarity.
Therefore, the inclusion of a hierarchy of diseases in or-
der to emphasize diagnoses from the same group or to
generate unseen comorbidities can be used as a privacy
preserving technique.

2 State of the art

Virtual examples are very popular in areas where
data are hard to obtain or where data interchange is
impossible due to regulations. This kind of problems
is defined as small sample data set problems. This

means that sample size is smaller compared to the
number of features which leads to a poor generalization
of classifiers.

One of the first efforts in investigating the effects of
virtual examples is presented in [19]. They compared
two ways for incorporation of domain knowledge in
learning algorithm. One approach was based on chang-
ing the learning algorithm and other by incorporating
virtual examples. The first approach may perform bet-
ter and faster, but it requires significant effort in chang-
ing the goal function, or optimization of the learning al-
gorithm. An approach based on virtual examples have
two major advantages. First, it improves accuracy of
the learning algorithm and second, it can be readily im-
plemented for any learning algorithm. However, the vir-
tual examples based approach increases overall training
time and specifically for support vector machines leads
to situation where many virtual examples becomes sup-
port vectors hence decreasing classification speed.

Virtual examples can be divided into two categories.
First, more popular category, is to generate virtual ex-
amples by extracting the nontrivial knowledge hidden
in the problem being solved. The task of extracting
nontrivial knowledge is being formulated as a probabil-
ity density function estimation [16]. This approach im-
proved performance of pattern recognition by, given a
3D view of an object, generating new images from other
angles through mathematical transformations. Extract-
ing prior knowledge is a highly challenging task which
requires a lot of efforts. This approach assures ratio-
nality, however adaptability to other problems is very
low. Our approach can be categorized as the extraction
of nontrivial knowledge. However, we added formally
specified domain knowledge in the form of ICD-9-CM
ontology (hierarchy). This way information about simi-
larity of features is included in the generation of virtual
examples.

Another approach, called perturbation, is to gener-
ate virtual examples by adding the noise to the orig-
inal examples. This approach often adds noise using
uniform or normal distribution. An interesting pertur-
bation examples are presented in [27] where training
samples of the rare class are divided into p groups using
the k nearest-neighbor algorithm, then generated vir-
tual examples by averaging every two samples of each
group, and leaving the labels unchanged. Compared to
the first approach, adaptability of these methods is more
evident, but rationality cannot be assured.

There are four problems the virtual generator needs
to address: inputs, the strategy of the virtual examples
generator, outputs and the number of virtual examples.
Most of the virtual example approaches differ in strat-
egy. To the best of our knowledge, there are several



strategies of virtual example generation.
The first strategy randomly picks a sample inside

of the hypersphere of a real samples input point, where
the hypersphere is defined by uniform or Gaussian
distribution. Since the point is selected near an original
data point, it is similar, but not the same as an original
data point. Further, the output is selected by a weighted
average of original data points in a hypersphere or using
evolutionary approach. This approach emphasizes that
utilizing virtual examples does improve the performance
of the classifier. [3]

Another approach of functional virtual population
generation [11] is developed for specific types of systems
such as manufacturing systems. The process of virtual
examples generation starts from one system attribute
and generate a specified number of virtual examples
in the neighborhood of selected attribute. To test
a virtual population, neural network is used, where
the real performance of manufacturing system is used
as an output. Once accuracy reaches its peak, a
different system attribute is selected and the process
is repeated. When all system attributes are processed,
an integrated virtual population is used for artificial
testing of the manufacturing process. Experimentally
this approach dramatically improved learning accuracy
and scheduling in a manufacturing system. This system
inspired our strategy of virtual example generation.
Similarly as selecting one system attribute, we select one
diagnosis from ICD-9-CM codes (the proposed system
is explained in more details in the following section).

The need for virtual examples in a small sample
studies is explained in [7]. They elaborate that a classi-
cal network cannot recognize a non-linear function with
a small sample. Therefore, they utilized the information
diffusion principle. This principle asserts that, when
an incomplete data set is used to estimate a relation-
ship between features, there must exist reasonable dif-
fusion means to change observations into fuzzy sets to
partly fill the gap. They proposed a random generator
controlled by probability density function as a diffusion
function. Derived patterns are controlled to match us-
ing BP networks.

Another paper demonstrationg the importance of
virtual examples in small data sets [9]. Small sam-
ple size learning cannot achieve high performance with
respect to the overall population independent of the
learning algorithm employed. However, small sample
has a certain distribution, and virtual examples can be
derived from density function obtained from interval-
ized kernel density estimation. This approach is shown
to improve the performance of the learning algorithm.
However, this approach seemed less suitable with nom-
inal attributes (which is the case in our problem).

Virtual examples are highly utilized in medical do-
main, especially for the problem of rare disease and mi-
croarray analysis, which are formulated as small sample
problems. One paper which utilizes virtual examples in
order to improve the performance of learning algorithm
for cancer identification is [12]. Their procedure for the
binary classification problems with small sample data
sets consists of three steps. First, a gene selection algo-
rithm, which selects genes based on t-statistic value is
employed to reduce dimensionality and improve learn-
ing ability (which is expected in gene expression prob-
lems due to high noise in attributes). Then, by utilizing
group discovery technique, they profile related charac-
teristics of each discriminative gene within a dataset.
This step primarily searches for sample grouping (clus-
ters) based on the spatial relationship between each
other. As such, outliers are presented as a separate
group. It is expected that clusters have the same label.
Further, random noise is added to real examples using
mean and standard deviation for each cluster. Simula-
tion on both synthetic and real world data sets have
shown that performance improved dramatically com-
pared to the original data set. This paper motivated
us to use groupings of features, not samples. Since we
can utilize domain knowledge in the form of ICD-9-CM
ontology (hierarchy) we grouped features which are sim-
ilar in terms of effects and charging.

Virtual examples are also utilized in scheduling. Be-
cause of limited information in early dynamic flexible
manufacturing systems, scheduling knowledge is diffi-
cult or impossible to obtain. Therefore, virtual exam-
ples must be generated and utilized for simulation. In
[13] mega-trend-diffusion technique is performed to de-
velop virtual examples. The mega-diffusion method dif-
fuses a set of data using a common diffusion function
with the objective to determine possible dataset cover-
age on a group consideration basis. When the group
is found (domain range) samples are randomly selected
from group and value of the diffusion function is added.
The idea of grouping of data is also implemented in
our research, where we grouped data based on hierar-
chy (domain knowledge). Namely, in the process of se-
lection of samples, we used samples which have a same
or similar diagnosis. Our approach is explained in more
details in the following section.

Smoothing aiming for better estimation of pdf is
used in [26]. Their virtual examples generator estimates
parameters of Normal distribution from data. Further,
using a random number generator they produce a vir-
tual example. Although, this seems obvious it is math-
ematically and empirically shown that virtual exam-
ples improve the performance of learning algorithms for
small size data sets and imbalanced data sets. These re-



sults motivated us to develop domain knowledge-based
virtual examples generator.

Metaheuristics have also been used for virtual ex-
amples generators. In [10] a genetic algorithm is used for
virtual example generation specially designed for small
data prediction problems. Their mathematical model
optimized mean absolute percentage error of linear re-
gression function with constraints. The acceptable value
of each attribute was determined with lower and upper
bound. Virtual examples were defined as units in ge-
netic algorithms, which were optimized in each itera-
tion. The output of virtual example is defined based on
real world samples with defined upper and lower bound.
If the output does not satisfy these conditions the pro-
cess is repeated. This way virtual examples are gen-
erated with an optimization procedure which reduces
the error of learning algorithm. However, since virtual
examples use class information adding the noise is es-
sential in order to prevent overfitting.

Medical records including rare diseases are one of
the most challenging prediction tasks where virtual ex-
amples generator is needed in order to obtain acceptable
performance of learning algorithm.

In [5] a population of virtual patients is generated
by random initialization of some parameters and by
random initialization of the states initial conditions.
Further, a patient is tracked over time using ordinary
differential equations and based on results it can be
either in survival group or in non-survival group. This
random initialization and random selection of states,
both using pdf from real data, have shown promising
results. Another paper [2] produced in silico or virtual
patients for sepsis prediction. Virtual examples were
created using dynamical equation, but each of the
patients has a unique set of parameters and therefore
unique response to the CLP induction of sepsis. This
is especially important since sepsis is highly progressive
disease and early prediction is a must. As in majority
of virtual example generator papers parameters are
randomly sampled from predefined intervals and and
if the likelihood for sepsis is high enough over time
then the virtual patient is accepted as valid. It has
been shown that this approach in combination with
domain knowledge improves performance of prediction
compared to a data driven approach. Therefore, we
find this motivating to include formally written domain
knowledge in order to improve performance of learning
algorithm. In same domain (sepsis prediction) there is
another approach for virtual patients generation which
shown promising results

In [23] a feasibility based programming method is
used as a virtual example generator. Model optimize
mean absolute prediction error. Inputs are chosen ran-

domly while outputs are defined using a genetic algo-
rithm and backup propagation neural networks based
feasibility-based programming model, with a constraint
on output (must be inside lower and upper bound).
When a virtual example is created latent spectral fea-
tures are extracted which simplify model (thus reduc-
ing model training time). It has been shown that this
approach improves the performance of learning algo-
rithm for shell vibration and acoustic spectral data of a
laboratory-scale ball mill.

This paper extends the first method for generat-
ing virtual examples which utilizes structured domain
knowledge in the form of ontology (hierarchy) [25]. The
hypothesis in this work is that using higher level con-
cepts for probability smoothing and selection of diag-
noses (as a step of virtual example construction) would
positively influence readmission prediction and that this
approach would enable data sharing between hospitals.

3 Proposed System

In order to address problems discussed above we
propose a system for data enrichment and sharing
of information about EHRs between hospitals that
adds an additional layer of privacy protection into
existing predictive modeling systems (Figure 1).The
process of privacy protection starts with traditional
anonymization techniques, which map personal and
hospital identity into encrypted form. Additionally,
time and duration of hospital visits are presented in
relative form (number of days from initial admission),
while exact dates are removed. Even though these
techniques can substantially reduce the risk of patient
identification, the state of the art predictive techniques
theoretically can still identify the person based on
procedures, diagnoses, and other data that cannot be
encrypted if they serve as a basis for collaborative
building and evaluation of predictive models. In order
to increase privacy protection and allow data sharing
and building of the more accurate predictive models,
we propose a data enrichment mechanism that is based
on randomization. However, data enrichment based on
simple probabilistic randomization most often reduces
the predictive performance, because of additional noise
that is added to data. In order to prevent data
quality loss by randomization we introduce a mechanism
for fusion of data randomization techniques with the
domain knowledge sources (ontologies or rules), and
thus, randomization of the original data in a controlled
manner.

We consider three types of EHR randomization: a
priori, knowledge-based and hybrid. For the purpose
of clarity, this will be more thoroughly explained later
in the text. After anonymization and randomization,



this additional example can be used for data enrichment
within or between hospitals. Further, each hospital can
build predictive models on enriched data (generated on
its own or by other hospitals) and these models can
be used for assessment of the risk of readmission for
new patients. Finally, predictive models (classification,
regression, etc.) can be built on enriched data sources
and applied for many different problems in healthcare
e.g. prediction of re-admission risk, a number of
admissions in hospitals, cost-to-charge ratios, etc. In
this research, we built and evaluated predictive models
for readmission risk prediction. These models should
serve as decision support for medical doctors when
making a decision about diagnoses and/or therapy.
High readmission risk can indicate that diagnosis or
therapy are not adequate for the given patient and
that doctor should re-examine the patient, or send
him to additional testing in order to prevent potential
readmission. The proposed system is depicted on Figure
1.

Figure 1: DSS for privacy-preserving sharing of data

In the further text, we explain in more detail the
procedures for enabling data sharing through a priory
(probability) based and knowledge guided randomiza-
tion. These techniques are similar to one recently pro-
posed [25], which was previously used for the gener-
ation of rare diseases and improved generalization of
predictive algorithms. Here it will be used as a general
knowledge-based randomization mechanism that allows
more secure data sharing.

The additive (a priori) randomization approach
uses a technique for smoothing the probabilities of ev-
ery diagnosis, in a similar way as Laplace smoothing in
the Naive Bayes algorithm. For each new VE, we start
the generation process by selecting a diagnosis based on

a priori probabilities of all diagnoses that are smoothed
(increased) with parameter . The initial disease may be
selected based on the highest probability of appearance
(if most common disease from the hospitals should be
shared), or inverted probabilities (if rare diseases should
be shared). When the first feature (disease) is selected,
the next disease (comorbidity) is selected in the follow-
ing way: First, the comorbidity subset (CS) is formed
with all diagnoses that have comorbidities with the pre-
viously selected diagnosis. Next, features are chosen
based on λ-updated probabilities from CS. This pro-
cedure is iteratively repeated by forming CS based on
conditional probabilities of comorbidities for already se-
lected features. It is intuitively clear that this procedure
will result in feature distribution that is similar to the
original data. Namely, all new features will have the
same or reduced set of features compared to the origi-
nal dataset, where privacy will be preserved, but there
is no chance of generating unseen comorbidities.

Knowledge-based randomization - enables gen-
eration of features (i.e. comorbidities) that are not
observed in the original dataset. This generation can
preserve privacy, but also, could be useful in situations
when hospitals did not have patients with a specific set
of diseases (and it is known that such a set can appear in
the future). Of course, by using simple randomization
such VE cannot be generated, and thus the process of
randomization has to be guided by some form of domain
knowledge.

In this study, we use hierarchical ICD-9 (excerpt of
hierarchy is given in Figure 2) classification of diseases
as a knowledge source. The ICD-9 codes are organized
in a hierarchy where an edge represents an is-a relation-
ship between a parent and its children. Hence, the codes
become more specific as we go down the hierarchy [20].
When leveraging the ICD-9 hierarchy for generating vir-
tual examples, we can assume that the child nodes have
a correlated relationship with the feature of interest (se-
lected feature). There are about 15,000 diagnostic codes
in the ICD-9-CM hierarchy. Each three-digit diagnostic
code is associated with a hierarchy tree. In this pa-
per, we refer to it as a top-level diagnostic code. Figure
2 shows a part of hierarchy within the top-level (most
general) diagnostic code that represents infectious and
parasitic diseases. Top-level can be represented as a set
of lower level concept group of diagnoses, which present
more specific diagnoses. Further, that set of diagnoses
can be specified to more specific concepts (five digit
codes). Hierarchy used in this paper is Clinical Classifi-
cation Software (CCS) which clusters patient diagnoses
and procedures into clinically meaningful categories. [4]

When leveraging the ICD-9 hierarchy for generating
virtual examples, we can assume that the child nodes



Algorithm 1 Pseudo-code for VE generator

Inputs: dataset D, # examples n, smoothing λ,
continue parameter cp, number of examples k
Output: list of virtual examples VE

VE = ∅ //initialize list of virtual examples
while k virtual examples are created do

set CS = D //create comorbidity subset CS
V = ∅ //initialize virtual example
while cp is true do

//calculate probabilities of diagnoses in CS
//smooth probabilities of every ICD-9 code
//smooth probabilities of similar diagnoses

P =
|X|+ λ× |X|+ λ× |Xcs|

ncs

if first step then
//invert probabilities

P =
1

P

end if
//add disease i to V
//using roulette wheel selection
Add(V, i)
//select CS with examples having at least
//one diagnosis from three level group of
//selected diagnosis
CS = Dcs

//calculate ratio of examples in CS with
//higher number of diagnoses and number of
//examples with lower number of diagnosis

ratio =
|CS>|+ λ× |CS>|
|CS|+ 2λ× |CS>|

if random number ≥ ratio then
cp = false

end if
end while
//roulette wheel selection for other features
//excluding hospital and date of admission

//add virtual example to list
Add(VE, V)

end while

Figure 2: ICD-9 hierarchy of diseases

and a parent node are both correlated with the fea-
ture of interest (in this case, the risk of 30-day hospital
readmission). So the main idea is to generate VEs with
similar readmission outcome for diseases or comorbidi-
ties (combination of diseases) from the same hierarchy
group.

The first step is the same as in Additive smoothing:
the first diagnosis is chosen from rare diagnoses that
are favored for selection. The main contribution is
the iterative step, where CS is formed not only from
comorbidities with previously selected diseases but all
comorbidities of 3-digit hierarchy level that selected
diagnoses to originate from. This extends the space
of possible diagnosis (now not only comorbidities with
one diagnosis are considered, but comorbidities with the
hierarchy group) and allows knowledge-guided selection
of unseen cases. Intuition behind this approach is that
diagnoses from the same hierarchical group are often
treated the same way and that on the low level of
hierarchy diagnosis could be too specific, since various
diagnoses from the same group at symptom level seem
to share similar behavioral symptoms and diagnostic
criteria [28], meaning that real diagnosis could be
overlooked.

This way it is possible to adapt models for the
unseen cases, but also to randomize them in a controlled
manner and thus preserve privacy when sharing data.

Integrated randomization (Additive and ICD9
based) smoothing combines previously described ap-
proaches by executing Additive and ICD9 smoothing,
respectively. After execution, feature probabilities are
updated by the sum of aforementioned smoothing up-
dates. Further CS is formed the same way as in the
ICD9 smoothing. The level of randomization and ICD9
influence is controlled by smoothing parameters that
control smoothing levels for each type of smoothing.
Users also provide the number of examples to be gen-



Table 1: Accuracy of logistic regression (AUC) when using enriched data of a single hospital versus using an
individual hospital data alone or shared data from all hospitals.

# Examples # Readmitted % Readmitted Individual Shared Enriched
7884 1,336 16.95 0.695 0.820 0.815
6394 1,450 22.68 0.693 0.793 0.771
6317 1,064 16.84 0.644 0.782 0.762
5103 705 13.82 0.621 0.780 0.794
4405 813 18.46 0.636 0.728 0.761
7884 1,336 16.95 0.695 0.825 0.817
6394 1,450 22.68 0.693 0.802 0.810
6317 1,064 16.84 0.644 0.791 0.741

erated and a parameter for smoothing variables other
than diagnoses. Pseudo-code is given in Algorithm 1.

4 Experimental Evaluation

In this research, we addressed the problem of hos-
pital readmission prediction in situations where EHRs
are not shared between hospitals. Our main hypothesis
was that the controlled (knowledge guided) randomiza-
tion of data can provide additional examples that can
be shared in a more secure way and increase the perfor-
mance of predictive models built by each hospital.

4.1 Data In Hospital discharge data from California,
State Inpatient Databases (SID), Healthcare Cost and
Utilization Project (HCUP), Agency for Healthcare Re-
search and Quality was used [6]. This data tracks all
hospital admissions at the individual level, having a
maximum of 15 diagnoses for each admission. Since
there are over 14,000 ICD-9-CM codes, and using diag-
noses as 15 polynomial attributes would be unfeasible
for any learning algorithm to handle, we transformed
the feature space by presenting each code as a feature.
Therefore, we have about 14,000 binary features, where
positive value marks the presence of the diagnosis. The
final data set was preprocessed as in [22], with 850 input
features (diagnoses) and as predictors for single binary
output (patient was re-admitted within 30 days or not).

4.2 Experimental setup Since Data from 2009 and
2010 (about 2/3 of the entire data set) were used for
training, while data from 2011 was used for testing.
As a learning algorithm, we used logistic regression
(LR), since it often showed good performance in medical
applications, also performing well on this type of data
and most importantly, providing interpretable models.
Interpretability of models is especially important in
Healthcare predictive analytics because of high costs

of wrong decisions. We used all pediatric patient data
from 8 hospitals with the highest numbers of patients
and highest numbers of different diseases and highest
number of patients.

Hybrid strategy (both additive and knowledge
based randomization) was used in order to generate ad-
ditional examples in a controlled (knowledge guided)
manner. For each hospital, the same number of ran-
domized examples is created, leading to a repository of
30,103 examples that were used for data enrichment of
each hospital. In order to show usefulness of enrich-
ing data from specific hospitals with virtual examples,
we made the following sets of data (on which logistic
regression is applied and evaluated):

• Individual LR was trained on data from a single
hospital.to predict readmission at that hospital.

• Shared LR model is developed on integrated data
from all hospitals.

• Enriched LR was trained on data from an individ-
ual hospital enriched with data from VE repository.

Since the data has a high class imbalance (about
20% of all patients were readmitted), we evaluated
all models with Area Under Curve (AUC) instead of
classification accuracy.

4.3 Results In contrast to medical applications
where data sharing is not applied or not allowed, the
proposed method can generate additional examples,
which can allow developing more accurate and with bet-
ter generalization power. Since there are a lot of hos-
pitals with a relatively small number of admissions, at
these hospitals this method can supplement missing ex-
amples. Table 1 shows brief data description and AUC
values for each experiment on each hospital (larger val-
ues are better and the best performance is presented in
bold letters).



It can be seen at Table 1 that sharing the data dras-
tically improves model performance. All models that
are built on Original data have AUC less than 0.696,
while models on Shared data had AUC performance
from 0.728, up to 0.825. Still, such sharing of data is of-
ten not possible due to strict data privacy regulations.
On the other hand, models built using data from VE
repository allow sharing the data without compromis-
ing privacy. It can be seen that models that are built on
data from VE repository (and original data from each
hospital) achieved results comparable to using shared
data. Performance on all hospitals was very similar and
for hospitals 4, 5 and 7 results were even slightly better.

5 Conclusion and Future Research

In this paper we proposed a method that allows
privacy while preserving data sharing between hospitals.
The system is based on domain knowledge guided
randomization techniques, where domain knowledge is
presented in the form of a hierarchy of diagnoses.
It is shown that sharing the data through generated
virtual examples as such improves model performance
for hospital readmission prediction. We conclude that
hospitals could reduce costs for readmitted patients by
using data sharing and virtual examples.

In future work, we plan to extend the system to
other types of domain knowledge sources, such as other
hierarchies and ontologies, where additional information
about relations between diseases is present.
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