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Abstract. The high-dimensionality of microarray datasets with a small number 

of samples presents a challenge for the microarray data classification task, 

especially when features vary through time. Feature selection has been widely 

used in data mining and machine learning as a preprocessing step to reduce 

number of features and to enhance classification performance. Even though 

various feature selection methods for microarray data classification have been 

proposed, most are not able to cope with temporal data. We proposed the 

temporal Relief (T-Relief) algorithm, which follows the main idea of the Relief 

algorithm, but is able to handle temporal nature of data. T-Relief uses 

dynamical time warping to calculate distance between two features varying 

through time. The proposed method is evaluated on an H3N2 virus gene 

expression dataset and obtained results provide evidence that the T-Relief 

algorithm outperforms alternatives widely used in gene expression studies. 
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1   Introduction 

In recent years, with the rapid advances of science and technology, datasets with large 

numbers of features and relatively small numbers of samples were produced. For 

example, biology researchers are able to measure in a single experiment thousands of 

gene expressions simultaneously. However, some of these experiments are expensive 

and, consequently, small numbers of samples are usually available. A classification in 



such a high-dimensional dataset with a small number of samples is a challenging task. 

High-dimensional nature of a dataset may lead to increased computational cost and 

decreased accuracy of machine learning models. However, usually among a large 

number of features just a small fraction is relevant for the particular classification 

task. For this purpose, application of methods that can reduce dimensionality of the 

dataset by extracting relevant features as a preprocessing step to classification can be 

of great importance. 

Feature selection has been widely used as a preprocessing step in machine learning 

to reduce dimensionality of data. There are three main categories of feature selection 

methods: filters [1], wrappers [2] and embedded methods [3]. Filter based methods 

evaluate the quality of feature subsets by observing only the intrinsic data 

characteristics, i.e. statistical measures, independently of a prediction model. Wrapper 

based methods employ learning algorithm to determine the goodness of a selected 

feature subset and usually the accuracy of the learning algorithm is used to guide the 

search process. Even though these methods are superior in terms of predictive 

accuracy, they are not suitable for high dimensional datasets since they suffer from 

high computational cost. Finally, the embedded methods merge feature selection with 

a specific machine learning model and then an optimal subset of features is obtained 

by the learning algorithm. 

Microarray data classification poses a serious task for machine learning 

researchers. A challenge in microarray data classification is the identification of 

discriminative genes for a specific problem, which can enhance the accuracy of the 

classification task. However, this task is a challenging one, especially when features 

are measured in time, i.e. the data records for each sample are multivariate time 

series. Even though various feature selection methods for microarray data 

classification have been proposed [4], most are not able to cope with temporal data 

without data flattening, i.e. transforming a temporal data into a single matrix, which 

results in a loss of temporal information in gene expression data.   

Recently, several feature selection approaches for temporal data have been 

proposed. For instance, in [5]-[6] authors proposed an approach where they project 

data to another space in order to learn new features. However, these methods 

represent dimensionality reduction rather than feature selection. In [7], authors 

proposed a margin-based feature selection where the objective is to maximize each 

subject's temporal margin in its own relevant subspace. However, the measure of 

distance between two multivariate time series defined in [7] is not able to capture 

similarities between two sequences. Multi-task Lasso method [8] is the embedded 

feature selection method, which employs the group lasso regularization using the L2,1 

- norm penalty. In this way, all classification models at different time point share a 

common set of features.  

Relief is a well-known feature selection algorithm, widely used for microarray 

data, developed by Kira and Rendel [9] and further improved by Kononenko et al.  

[10], which estimates the quality of attributes, but cannot deal with temporal data. In 

this paper, we propose a Relief inspired feature selection approach, temporal Relief 

(T-Relief), which is able to handle multivariate temporal data without flattening. We 

preserved the original idea of Relief algorithm, but we employ dynamical time 

warping (DTW) as a distance measure between gene expression time series in order to 

find the nearest neighbors.  



2   Methods 

Relief is a feature selection algorithm proposed for binary classification [9], which 

seems to be simple, efficient and very powerful in estimating the quality of attributes. 

An extension of original Relief (ReliefF) is proposed, which can deal with noisy, 

incomplete, and multi-class datasets [10].  

Let us denote by 
1{( , )} { 1,1}N p t

n n nD x y 

     a training set. The main idea of 

Relief is to iteratively estimate the feature weights based on their power to 

discriminate between neighboring patterns. In each iteration of the Relief algorithm, 

an instance R is randomly chosen and its two nearest neighbors are selected: one from 

the same class (H) and one from the opposite class (M). The weight of jth feature is 

updated as: ( , ) ( , )j j j j j jW W diff R H diff R M   , where ( , ) /diff a b a b r   and 

r is range for that particular feature.  In the updated version ReliefF [10], the K 

nearest neighbors from each class are selected and the average distance is used for 

updating feature weights. 

As might be noticed the Relief is not able to deal with features that have dynamical 

characteristics. One way to overcome this problem is data flattening, i.e. transforming 

a temporal data into a single matrix, which results in loss of temporal information. In 

order to overcome this problem, we proposed a new feature selection algorithm T-

Relief for extracting informative attributes from datasets where features vary through 

time. T-Relief preserves the original idea of Relief algorithm, but it employs DTW as 

a distance measure between time series data. 

DTW is a well-known algorithm for measuring similarity between time series 

sequences and has been used in various patter recognition applications, such as 

handwriting recognition [11], signature recognition [12] and elsewhere. Given two 

time series sequences 1 2... ra a a a  and 
1 2... sb bb b , DTW finds the optimal path 

between a  and b  using dynamical programming to calculate the minimal cumulative 

distance ( , ) ( , )dtw a b c r s , where ( , )c i j is recursively defined as: 

 ( , ) ( , ) min( ( 1, 1), ( 1, ), ( , 1)).i jc i j d a b c i j c i j c i j       (1) 

A data point in a time series sequence is usually a numerical value and ( , )i jd a b  can 

be calculated as 
2( )i ja b . Let , p t

i jx x   be two samples from D , where p  is the 

dimensionality of the feature space and each feature is measured in t  time steps. The 

distance between samples ix  and jx  can be calculated as: 

 
1

( , ) ( , )
p

i j il jl

l

dist x x dtw x x


  (2) 

Advantage of the proposed distance is that it is able to deal with missing values, 

since DTW is able to find the distance between two sequences of different size. In 

addition, DTW uses “elastic” alignment and is able to capture similarity between 

signals even if they are out of phase in time (in such cases Euclidean distance 

measure, which align corresponding time points, would fail to detect similarity). The 

T-Relief method follows the main idea of the Relief algorithm, but uses DTW 

distance to calculate the nearest neighbors. The T-Relief algorithm is given in Fig. 1.  



 
Algorithm: T-Relief 

Input: dataset 
1{( , )} { 1,1}N p t

n n nD x y 

     

Output: the vector W of estimations of the qualities of attributes 

1. (0,0,...,0)W  ; 

2. for i = 1 to m 

3.     Pick at random an instance 
ix  from D ; 

4.     Find K nearest neighbors 
kH  from the same class using distance measure given in (2); 

5.     Find K nearest neighbors 
kM  from the opposite class using distance measure given in (2); 

6.     for j = 1 to p 

7.         
1 1

( , ) ( , );
K K

j j ij kj ij kj

k k

W W dtw x H dtw x M
 

     

8.     end 

9. end 

Fig. 1. Pseudo code of the T-Relief algorithm. 

3   Results and discussion 

3.1   Dataset description 

In this study, we evaluated the T-Relief feature selected approach by comparing it 

with alternatives on the Influenza A virus gene expression dataset from human viral 

challenge study [13]. This dataset contains gene expression data for 17 human 

volunteers infected with H3N2 virus and then labeled based on severity of reaction to 

infection as “symptomatic” (9 subjects) or “asymptomatic” (8 subjects). In particular, 

symptoms were recorded twice daily and quantified using the modified Jackson score 

[14]. Thereafter, all patients with a modified Jackson score larger than or equal to 6 

over the quarantine period were labeled as “symptomatic”, while the other were 

labeled as “asymptomatic”. Gene expression values for 12023 genes are available at 

baseline (24h prior to inoculation), and then at 15 more time points after the virus was 

injected (at 8 hr intervals). To summarize, the H3N2 dataset is balanced and it 

contains gene expression values for 12023 genes for 17 subjects at 16 time points 

which makes it a good candidate for evaluation of the T-Relief approach.  

3.2   Comparison methods 

We compared the proposed T-Relief method with five feature selection approaches 

commonly used in gene expression studies:  

 

(1) mRMR: This method ranks features according to the minimal-redundancy-

maximal-relevance criterion [15], meaning that it tends to select features which 

are highly correlated with the class and uncorrelated between themselves. 

(2) ANOVA: A method that selects features based on F-statistic values. 



(3) ReliefF: An improved version of the Relief [9] algorithm, robust to incomplete 

data and generalized to work on multi-class problems [10]. According to this 

algorithm, a good feature should have similar values in nearest neighbors from 

the same class and different values in nearest neighbors from different classes. 

(4) Multi-task Lasso (MT-Lasso): One of the state-of-the-art methods for feature 

selection from temporal multivariate data [8] which employs the L2,1 

regularization term and thus ensures that all regression models at different time 

points (tasks) share a common set of features. 

(5) Feature Selection Temporal (FST): A feature selection approach for temporal 

multivariate data that transforms the original feature space into a weighted 

feature space where it performs optimization to maximize temporal margin [7].  

Two of the baseline approaches are designed to work on temporal data (MT-Lasso 

and FST), whereas remaining three (mRMR, ANOVA and ReliefF) require data 

flattening prior to feature selection. 

3.3   Performance evaluation procedure 

In this study, we evaluated the feature selection approaches on the H3N2 dataset by 

calculating the classification accuracy (which may serve as an appropriate metric 

since the dataset is balanced) of three classifiers: K-nearest neighbors (KNN), Naive 

Bayes classifier (NB) and Random Forest (RF). We tested classifiers by using leave-

one-out cross-validation (LOOCV) procedure where in each iteration, the left-out 

observation was used for testing purposes, while the remaining observations were 

used for feature selection followed by classifier training (training set). In each 

iteration of the LOOCV procedure we tuned parameters of the feature selection 

methods by applying nested 4-fold cross validation procedure on the training set. In 

this way we found optimal values of  1 1,2,3K   - parameter, which defines the 

number of nearest hits/misses in the ReliefF algorithm,  0.1,1,5  - regularization 

parameter in the MT-Lasso, and  2 1,2,3K   - parameter, which defines the number 

of nearest hits/misses in the T-Relief algorithm. In addition, we also tuned parameters 

of the classifiers by the internal 3-fold nested cross validation procedure applied on 

the same data on which feature selection is performed. In this way, we tuned the 

number of nearest neighbors in the KNN algorithm  1,3,5k  and the number of 

trees in the RF algorithm  10,50,100treeN  . Here, it should be noted that the testing 

observation was never used neither for feature selection nor for classifiers training 

(including parameter tuning of the feature selection methods and classifiers). 

3.4   Classification accuracy on gene expression data 

The proposed T-Relief feature selection approach was compared with five baseline 

feature selection algorithms (mRMR, ANOVA, ReliefF, MT-Lasso and FST) 

according to the evaluation procedure described in the previous section. By using the 

LOOCV procedure, the accuracy of KNN, NB and RF classifiers was calculated for 



the top  1,10,20,30,40,50,100m  genes selected by different feature selection 

methods. 

Table 1 summarizes the results for the H3N2 dataset. It shows that the proposed T-

Relief approach outperformed alternatives in most cases. In particular, the T-Relief 

approach achieved the highest accuracy in 16 out 21 cases, while the other methods 

outperformed it in no more than 3 experiments. These results indicate that the 

proposed T-Relief method has selected the most discriminative features (genes). 

Table 1.  Evaluation of feature selection methods on H3N2 dataset using the top m genes. 

Values represent classification accuracy (bold represents the best accuracy). 

Feature 

selection  

method 

KNN a NB a RF 

Number of features  Number of features  Number of features 

1 10 20 30 40 50 100  1 10 20 30 40 50 100  1 10 20 30 40 50 100 

mRMR 0.88 0.59 0.65 0.76 0.82 0.71 0.82  0.88 0.71 0.59 0.65 0.76 0.88 1.00  0.76 0.59 0.71 0.59 0.88 0.82 0.82 

ANOVA 0.88 0.82 0.76 0.88 0.88 0.94 0.94  0.88 0.88 0.88 0.94 0.94 0.94 0.88  0.76 0.82 0.88 0.94 0.82 0.88 0.88 

ReliefF 0.71 0.47 0.47 0.71 0.71 0.88 0.94  0.71 0.53 0.88 1.00 1.00 1.00 1.00  0.71 0.47 0.82 1.00 0.94 1.00 1.00 

MT-Lasso 0.53 0.82 0.88 0.94 1.00 1.00 1.00  0.41 0.94 0.94 0.94 0.94 1.00 1.00  0.35 0.88 0.94 0.94 0.94 1.00 0.94 

FST 0.29 0.76 0.88 0.94 0.88 0.82 0.88  0.18 0.76 0.88 0.88 0.88 0.94 1.00  0.24 0.82 0.88 1.00 0.94 0.94 0.88 

T-Relief 0.82 0.94 1.00 1.00 1.00 1.00 1.00  0.76 0.94 1.00 1.00 1.00 1.00 1.00  0.65 0.94 0.94 1.00 1.00 0.94 0.94 

 

The results are graphically depicted in the Fig. 2 where the accuracy of different 

classifiers is plotted as a function of m  (number of selected genes). This figure shows 

that classifiers benefit from the features selected by the T-Relief approach. In 

addition, Fig. 2 shows that temporal methods (MT-Lasso, FST and T-Relief) lead to 

monotonic improvement in accuracy of classifiers with the increase of m  which is a 

desirable property. This is not the case with other methods (mRMR, ANOVA and 

ReliefF) and thus, we can conclude that flattening of temporal data might lead to the 

selection of irrelevant genes which further cause unstable behavior of classifiers.  

 

Fig. 2. Classification accuracy obtained by using LOOCV procedure on the H3N2 dataset. 

Results are given for the three classifiers: KNN (left), NB (middle) and RF (right). 

3.5   Gene ontology enrichment analysis 

By analyzing the list of genes selected by the T-Relief method we found out that 62 

genes were selected among the top 100 genes in all folds of the LOOCV procedure. 

For this set of genes, we have performed enrichment analysis to find over-represented 

gene ontology (GO) terms. Annotations for the 62 genes were submitted to the 



PANTHER classification system (http://www.pantherdb.org/), which extracted 

significantly over-represented biological processes. The top 20 GO terms are reported 

in Table 2, where the last column represents the p-values corrected based on the 

Bonferroni procedure. This table shows that GO terms related to the immune system 

and response to viruses are dominant among the top 20 enriched GO terms.  This is 

consistent with the fact that the H3N2 dataset originates from human viral challenge 

study where human volunteers were infected with H3N2 influenza virus. 

Table 2.  Top 20 GO terms enriched in the 62 genes selected by the T-Relief algorithm. 

GO biological process GO ID No. Expected 
Fold 

enrichment 
P-value 

defense response to virus  GO:0051607 25 0.46 54.19 4.04E-33 

response to virus  GO:0009615 26 0.7 37.12 1.90E-30 

innate immune response  GO:0045087 30 1.73 17.31 2.26E-26 

type I interferon signaling pathway  GO:0060337 17 0.18 95.92 2.62E-25 

cellular response to type I interferon  GO:0071357 17 0.18 95.92 2.62E-25 

response to type I interferon  GO:0034340 17 0.19 90.19 7.41E-25 

immune effector process  GO:0002252 26 1.34 19.38 2.92E-23 

defense response  GO:0006952 34 3.45 9.84 7.07E-23 

immune response  GO:0006955 32 3.1 10.32 1.09E-21 

defense response to other organism  GO:0098542 25 1.38 18.06 2.04E-21 

response to cytokine  GO:0034097 26 2.04 12.73 1.10E-18 

response to other organism  GO:0051707 27 2.38 11.36 2.41E-18 

response to external biotic stimulus  GO:0043207 27 2.38 11.36 2.41E-18 

response to biotic stimulus  GO:0009607 27 2.46 10.96 6.08E-18 

cytokine-mediated signaling pathway  GO:0019221 22 1.3 16.96 1.10E-17 

negative regulation of viral process  GO:0048525 14 0.25 55.91 5.51E-17 

regulation of multi-organism process  GO:0043900 21 1.3 16.12 3.11E-16 

immune system process  GO:0002376 34 5.64 6.03 4.57E-16 

regulation of viral process  GO:0050792 16 0.51 31.42 5.90E-16 

negative regulation of viral life cycle  GO:1903901 13 0.24 53.73 2.54E-15 

4   Conclusions 

We proposed the filter-based feature selection method for temporal data, i.e. data in 

which features varies through time. The proposed method is mainly based on the 

Relief feature selection algorithm, but is adapted to deal with temporal data. In order 

to handle multivariate temporal data without data flattening, we modified the distance 

measure between samples. More specifically, the distance we proposed is based on 

dynamical time warping, which calculates the similarity between two features through 

time. The proposed method has been tested on H3N2 temporal gene expression 

dataset from viral study by three classification methods (KNN, NB and RF). We 

showed that in most cases the proposed T-Relief method outperforms alternatives. 

Our further research will be focused on testing the proposed method on other 

multivariate temporal datasets. In addition, other ideas for further research include 

using classifiers that are able to handle temporal data. 



 

Acknowledgments. This material is based upon work partially supported by the 

Defense Advanced Research Projects Agency (DARPA) and the Army Research 

Office (ARO) under Contract No. W911NF-16-C-0050, and partially supported by 

DARPA grant No. 66001-11-1-4183 negotiated by SSC Pacific grant, and Serbian 

Ministry of Education, Science and Technological Development grants III41007 and 

ON174028. 

References 

[1] Yu, L., and Liu, H.: Feature Selection for High-dimensional Data, A Fast Correlation-

based Filter Solution. In 20th International Conference on Machine Learning, pp. 856--

863 (2003). 

[2] Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in 

bioinformatics. Bioinformatics. 23(19), 2507--2517 (2007). 

[3] Maldonado, S., Weber, R., Basak, J.: Simultaneous feature selection and classification 

using kernel-penalized support vector machines. Information Science. 181(1), 115--128 

(2011). 

[4] Canedo, V.B., Marono, N.S., Betanzos, A.A., Benítez, J.M., Herrera, F.: A review of 

microarray datasets and applied feature selection methods. Information Sciences. 282, 

111--135 (2014). 

[5] Chen, B., Chen, M., Paisley, J., Zass, A., Woods, C., Ginsburg, G.S., Lucas, J., Dunson, 

D., Carin, L.: Bayesian Inference of the Number of Factors in Gene-expression Analysis: 

Application to Human Virus Challenge Studies. BMC bioinformatics, 11(552), (2010). 

[6] Chen, M., Zaas, A., Woods, C., Ginsburg, G.S., Lucas, J., Dunson, D., and Carin, L. 

Predicting Viral Infection From High Dimensional Biomarkers Trajectories. Journal of the 

American Statistical Association, 106(496), (2011). 

[7] Lou, Q., Obradovic, Z.: Classifying Temporal Microarray Data by Selecting Informative 

Genes. Journal of Bioinformatics and Computational Biology. 11(3), (2013) 

[8] Argyriou, A., Evgeniou, T., and Pontil, M.: Multi-task feature learning. Advances in 

neural information processing systems. 19, 41--48 (2007). 

[9] Kira K., and Rendell L.: A Practical Approach to Feature Selection. Proc. Ninth Int’l 

Conf. Machine Learning. pp. 249--256 (1992). 

[10] Kononenko, I., Simec, E., & Robnik-Sikonja, M.: Overcoming the myopia of inductive 

learning algorithms with RELIEFF. Applied Intelligence. 7, 39--55 (1997). 

[11] Bahlmann, C., Haasdonk, B., Burkhardt, H.: Online handwriting recognition with support 

vector machines - a kernel approach. Eighth International Workshop on Frontiers in 

Handwriting Recognition, pp. 49--54 (2002). 

[12] Faundez-Zanuy, M.: On-line signature recognition based on VQ-DTW. Pattern 

Recognition. 40(3), 981--992 (2007). 

[13] Zaas, A.K. et al.: Gene Expression Signatures Diagnose Influenza and Other Symptomatic 

Respiratory Viral Infection in Humans. Cell Host Microbe. 6(3), 207--217 (2009). 

[14] Jackson, G.G., Dowling, H.F., Spiesman I.G., and Boand, A.V.: Transmission of the 

common cold to volunteers under controlled conditions. I. The common cold as a clinical 

entity. AMA Arch Intern Med. 101, 267--278 (1958). 

[15] Ding, C., and Peng, H.: Minimum redundancy feature selection from micro-array gene 

expression data.  Journal of Bioinformatics and Computational Biology. 3(2), 185--205 

(2005). 

 


