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Abstract. The high-dimensionality of microarray datasets with a small number
of samples presents a challenge for the microarray data classification task,
especially when features vary through time. Feature selection has been widely
used in data mining and machine learning as a preprocessing step to reduce
number of features and to enhance classification performance. Even though
various feature selection methods for microarray data classification have been
proposed, most are not able to cope with temporal data. We proposed the
temporal Relief (T-Relief) algorithm, which follows the main idea of the Relief
algorithm, but is able to handle temporal nature of data. T-Relief uses
dynamical time warping to calculate distance between two features varying
through time. The proposed method is evaluated on an H3N2 virus gene
expression dataset and obtained results provide evidence that the T-Relief
algorithm outperforms alternatives widely used in gene expression studies.
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1 Introduction

In recent years, with the rapid advances of science and technology, datasets with large
numbers of features and relatively small numbers of samples were produced. For
example, biology researchers are able to measure in a single experiment thousands of
gene expressions simultaneously. However, some of these experiments are expensive
and, consequently, small numbers of samples are usually available. A classification in



such a high-dimensional dataset with a small number of samples is a challenging task.
High-dimensional nature of a dataset may lead to increased computational cost and
decreased accuracy of machine learning models. However, usually among a large
number of features just a small fraction is relevant for the particular classification
task. For this purpose, application of methods that can reduce dimensionality of the
dataset by extracting relevant features as a preprocessing step to classification can be
of great importance.

Feature selection has been widely used as a preprocessing step in machine learning
to reduce dimensionality of data. There are three main categories of feature selection
methods: filters [1], wrappers [2] and embedded methods [3]. Filter based methods
evaluate the quality of feature subsets by observing only the intrinsic data
characteristics, i.e. statistical measures, independently of a prediction model. Wrapper
based methods employ learning algorithm to determine the goodness of a selected
feature subset and usually the accuracy of the learning algorithm is used to guide the
search process. Even though these methods are superior in terms of predictive
accuracy, they are not suitable for high dimensional datasets since they suffer from
high computational cost. Finally, the embedded methods merge feature selection with
a specific machine learning model and then an optimal subset of features is obtained
by the learning algorithm.

Microarray data classification poses a serious task for machine learning
researchers. A challenge in microarray data classification is the identification of
discriminative genes for a specific problem, which can enhance the accuracy of the
classification task. However, this task is a challenging one, especially when features
are measured in time, i.e. the data records for each sample are multivariate time
series. Even though various feature selection methods for microarray data
classification have been proposed [4], most are not able to cope with temporal data
without data flattening, i.e. transforming a temporal data into a single matrix, which
results in a loss of temporal information in gene expression data.

Recently, several feature selection approaches for temporal data have been
proposed. For instance, in [5]-[6] authors proposed an approach where they project
data to another space in order to learn new features. However, these methods
represent dimensionality reduction rather than feature selection. In [7], authors
proposed a margin-based feature selection where the objective is to maximize each
subject's temporal margin in its own relevant subspace. However, the measure of
distance between two multivariate time series defined in [7] is not able to capture
similarities between two sequences. Multi-task Lasso method [8] is the embedded
feature selection method, which employs the group lasso regularization using the L,
- norm penalty. In this way, all classification models at different time point share a
common set of features.

Relief is a well-known feature selection algorithm, widely used for microarray
data, developed by Kira and Rendel [9] and further improved by Kononenko et al.
[10], which estimates the quality of attributes, but cannot deal with temporal data. In
this paper, we propose a Relief inspired feature selection approach, temporal Relief
(T-Relief), which is able to handle multivariate temporal data without flattening. We
preserved the original idea of Relief algorithm, but we employ dynamical time
warping (DTW) as a distance measure between gene expression time series in order to
find the nearest neighbors.



2 Methods

Relief is a feature selection algorithm proposed for binary classification [9], which
seems to be simple, efficient and very powerful in estimating the quality of attributes.
An extension of original Relief (ReliefF) is proposed, which can deal with noisy,
incomplete, and multi-class datasets [10].

Let us denote by D={(x,,y,)}\, e R”>{-11} a training set. The main idea of

Relief is to iteratively estimate the feature weights based on their power to
discriminate between neighboring patterns. In each iteration of the Relief algorithm,
an instance R is randomly chosen and its two nearest neighbors are selected: one from
the same class (H) and one from the opposite class (M). The weight of jth feature is
updated as: W; =W, —diff (R;, H;) +diff (R;,M;) , where diff (a,b) :|a—b|/r and
ris range for that particular feature. In the updated version ReliefF [10], the K
nearest neighbors from each class are selected and the average distance is used for
updating feature weights.

As might be noticed the Relief is not able to deal with features that have dynamical
characteristics. One way to overcome this problem is data flattening, i.e. transforming
a temporal data into a single matrix, which results in loss of temporal information. In
order to overcome this problem, we proposed a new feature selection algorithm T-
Relief for extracting informative attributes from datasets where features vary through
time. T-Relief preserves the original idea of Relief algorithm, but it employs DTW as
a distance measure between time series data.

DTW is a well-known algorithm for measuring similarity between time series
sequences and has been used in various patter recognition applications, such as
handwriting recognition [11], signature recognition [12] and elsewhere. Given two
time series sequences a=a,a,..a, and b=bb,.b,, DTW finds the optimal path

between a and b using dynamical programming to calculate the minimal cumulative
distance dtw(a,b) =c(r,s), where c(i, j) is recursively defined as:

c(i, j) =d(a;,b;)+min(c(i -1 j-1),c(i -1 j),c(, j-1)). (1)
A data point in a time series sequence is usually a numerical value and d(&,b;) can

be calculated as (& —bj)z. Let X, X; € R be two samples from D, where p is the

dimensionality of the feature space and each feature is measured in t time steps. The
distance between samples X; and X; can be calculated as:

dist(x;, x;) = Zp:dtW(X" Xj) (2)

Advantage of the proposed distance is that it is able to deal with missing values,
since DTW is able to find the distance between two sequences of different size. In
addition, DTW uses “elastic” alignment and is able to capture similarity between
signals even if they are out of phase in time (in such cases Euclidean distance
measure, which align corresponding time points, would fail to detect similarity). The
T-Relief method follows the main idea of the Relief algorithm, but uses DTW
distance to calculate the nearest neighbors. The T-Relief algorithm is given in Fig. 1.



Algorithm: T-Relief

Input: dataset D ={(x,,y,)}\, e R"*{-11}

Output: the vector W of estimations of the qualities of attributes
1. W=(0,0,..,0);

2. fori=1tom

3. Pick at random an instance X, from D ;

4. Find K nearest neighbors H, from the same class using distance measure given in (2);
5. Find K nearest neighbors M, from the opposite class using distance measure given in (2);
6. forj=1top
K K
7. W, =W, —kZ;dtW(xij,ij)+kz;dtw(xij,Mkj);
8. end
9. end

Fig. 1. Pseudo code of the T-Relief algorithm.

3 Results and discussion

3.1 Dataset description

In this study, we evaluated the T-Relief feature selected approach by comparing it
with alternatives on the Influenza A virus gene expression dataset from human viral
challenge study [13]. This dataset contains gene expression data for 17 human
volunteers infected with H3N2 virus and then labeled based on severity of reaction to
infection as “symptomatic” (9 subjects) or “asymptomatic” (8 subjects). In particular,
symptoms were recorded twice daily and quantified using the modified Jackson score
[14]. Thereafter, all patients with a modified Jackson score larger than or equal to 6
over the quarantine period were labeled as “symptomatic”, while the other were
labeled as “asymptomatic”. Gene expression values for 12023 genes are available at
baseline (24h prior to inoculation), and then at 15 more time points after the virus was
injected (at 8 hr intervals). To summarize, the H3N2 dataset is balanced and it
contains gene expression values for 12023 genes for 17 subjects at 16 time points
which makes it a good candidate for evaluation of the T-Relief approach.

3.2 Comparison methods

We compared the proposed T-Relief method with five feature selection approaches
commonly used in gene expression studies:

(1) mRMR: This method ranks features according to the minimal-redundancy-
maximal-relevance criterion [15], meaning that it tends to select features which
are highly correlated with the class and uncorrelated between themselves.

(2) ANOVA: A method that selects features based on F-statistic values.



(3) ReliefF: An improved version of the Relief [9] algorithm, robust to incomplete
data and generalized to work on multi-class problems [10]. According to this
algorithm, a good feature should have similar values in nearest neighbors from
the same class and different values in nearest neighbors from different classes.

(4) Multi-task Lasso (MT-Lasso): One of the state-of-the-art methods for feature
selection from temporal multivariate data [8] which employs the Lo
regularization term and thus ensures that all regression models at different time
points (tasks) share a common set of features.

(5) Feature Selection Temporal (FST): A feature selection approach for temporal
multivariate data that transforms the original feature space into a weighted
feature space where it performs optimization to maximize temporal margin [7].

Two of the baseline approaches are designed to work on temporal data (MT-Lasso
and FST), whereas remaining three (mRMR, ANOVA and ReliefF) require data
flattening prior to feature selection.

3.3 Performance evaluation procedure

In this study, we evaluated the feature selection approaches on the H3N2 dataset by
calculating the classification accuracy (which may serve as an appropriate metric
since the dataset is balanced) of three classifiers: K-nearest neighbors (KNN), Naive
Bayes classifier (NB) and Random Forest (RF). We tested classifiers by using leave-
one-out cross-validation (LOOCV) procedure where in each iteration, the left-out
observation was used for testing purposes, while the remaining observations were
used for feature selection followed by classifier training (training set). In each
iteration of the LOOCV procedure we tuned parameters of the feature selection
methods by applying nested 4-fold cross validation procedure on the training set. In

this way we found optimal values of K, € {l, 2,3} - parameter, which defines the
number of nearest hits/misses in the ReliefF algorithm, 4 e{0.1,1,5} - regularization

parameter in the MT-Lasso, and K, €{1,2,3} - parameter, which defines the number

of nearest hits/misses in the T-Relief algorithm. In addition, we also tuned parameters
of the classifiers by the internal 3-fold nested cross validation procedure applied on
the same data on which feature selection is performed. In this way, we tuned the

number of nearest neighbors in the KNN algorithm k € {1,3,5} and the number of
trees in the RF algorithm N, €{10,50,100} . Here, it should be noted that the testing

observation was never used neither for feature selection nor for classifiers training
(including parameter tuning of the feature selection methods and classifiers).

3.4 Classification accuracy on gene expression data

The proposed T-Relief feature selection approach was compared with five baseline
feature selection algorithms (mRMR, ANOVA, ReliefF, MT-Lasso and FST)
according to the evaluation procedure described in the previous section. By using the
LOOCYV procedure, the accuracy of KNN, NB and RF classifiers was calculated for



the top me {1,10,20,30,40,50,100} genes selected by different feature selection

methods.

Table 1 summarizes the results for the H3N2 dataset. It shows that the proposed T-
Relief approach outperformed alternatives in most cases. In particular, the T-Relief
approach achieved the highest accuracy in 16 out 21 cases, while the other methods
outperformed it in no more than 3 experiments. These results indicate that the
proposed T-Relief method has selected the most discriminative features (genes).

Table 1. Evaluation of feature selection methods on H3N2 dataset using the top m genes.
Values represent classification accuracy (bold represents the best accuracy).

Feature KNN NB RF
seler(;tign Number of features Number of features Number of features
metho

1 10 20 30 40 50 100 1 10 20 30 40 50 100 1 10 20 30 40 50 100

mRMR 0.880.59 0.65 0.76 0.82 0.71 0.82 0.88 0.71 0.59 0.650.76 0.88 1.00 0.76 0.59 0.71 0.59 0.88 0.82 0.82
ANOVA 0.880.82 0.76 0.88 0.88 0.94 0.94 0.88 0.88 0.88 0.940.940.94 0.88 0.76 0.82 0.88 0.94 0.82 0.88 0.88
ReliefF  0.710.47 0.47 0.71 0.71 0.88 0.94 0.71 0.53 0.88 1.00 1.00 1.00 1.00 0.71 0.47 0.82 1.00 0.94 1.00 1.00
MT-Lasso 0.53 0.82 0.88 0.94 1.00 1.00 1.00 0.41 0.94 0.94 0.940.941.00 1.00 0.35 0.88 0.94 0.94 0.94 1.00 0.94
FST 0.290.76 0.88 0.94 0.88 0.82 0.88 0.18 0.76 0.88 0.88 0.88 0.94 1.00 0.24 0.82 0.88 1.00 0.94 0.94 0.88
T-Relief  0.820.94 1.00 1.00 1.00 1.00 1.00 0.76 0.94 1.00 1.00 1.00 1.00 1.00 0.65 0.94 0.94 1.00 1.00 0.94 0.94

The results are graphically depicted in the Fig. 2 where the accuracy of different
classifiers is plotted as a function of m (number of selected genes). This figure shows
that classifiers benefit from the features selected by the T-Relief approach. In
addition, Fig. 2 shows that temporal methods (MT-Lasso, FST and T-Relief) lead to
monotonic improvement in accuracy of classifiers with the increase of m which is a
desirable property. This is not the case with other methods (mRMR, ANOVA and
ReliefF) and thus, we can conclude that flattening of temporal data might lead to the

selection of irrelevant genes which further cause unstable behavior of classifiers.
ANOVA  ----- Relieff ----- MT-lasso ----- FST ==—T-Relief
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Fig. 2. Classification accuracy obtained by using LOOCV procedure on the H3N2 dataset.
Results are given for the three classifiers: KNN (left), NB (middle) and RF (right).

3.5 Gene ontology enrichment analysis

By analyzing the list of genes selected by the T-Relief method we found out that 62
genes were selected among the top 100 genes in all folds of the LOOCV procedure.
For this set of genes, we have performed enrichment analysis to find over-represented
gene ontology (GO) terms. Annotations for the 62 genes were submitted to the



PANTHER classification system (http://www.pantherdb.org/), which extracted
significantly over-represented biological processes. The top 20 GO terms are reported
in Table 2, where the last column represents the p-values corrected based on the
Bonferroni procedure. This table shows that GO terms related to the immune system
and response to viruses are dominant among the top 20 enriched GO terms. This is
consistent with the fact that the H3N2 dataset originates from human viral challenge
study where human volunteers were infected with H3N2 influenza virus.

Table 2. Top 20 GO terms enriched in the 62 genes selected by the T-Relief algorithm.

Fold

GO biological process GO ID No. Expected . P-value
enrichment
defense response to virus GO:0051607 25 0.46 54.19 4.04E-33
response to virus GO:0009615 26 0.7 37.12 1.90E-30
innate immune response GO:0045087 30 1.73 17.31 2.26E-26
type I interferon signaling pathway GO:0060337 17 0.18 95.92 2.62E-25
cellular response to type I interferon GO:0071357 17 0.18 95.92 2.62E-25
response to type I interferon GO0:0034340 17 0.19 90.19 7.41E-25
immune effector process G0O:0002252 26 1.34 19.38 2.92E-23
defense response GO:0006952 34 345 9.84 7.07E-23
immune response GO:0006955 32 3.1 10.32 1.09E-21
defense response to other organism GO:0098542 25 1.38 18.06 2.04E-21
response to cytokine GO:0034097 26 2.04 12.73 1.10E-18
response to other organism GO:0051707 27 2.38 11.36 241E-18
response to external biotic stimulus GO:0043207 27 2.38 11.36 241E-18
response to biotic stimulus GO:0009607 27 2.46 10.96 6.08E-18
cytokine-mediated signaling pathway ~ GO:0019221 22 1.3 16.96 1.10E-17
negative regulation of viral process GO:0048525 14 0.25 5591 5.51E-17
regulation of multi-organism process GO:0043900 21 1.3 16.12 3.11E-16
immune system process G0:0002376 34 5.64 6.03 4.57E-16
regulation of viral process G0:0050792 16 0.51 31.42 5.90E-16
negative regulation of viral life cycle G0O:1903901 13 0.24 53.73 2.54E-15

4 Conclusions

We proposed the filter-based feature selection method for temporal data, i.e. data in
which features varies through time. The proposed method is mainly based on the
Relief feature selection algorithm, but is adapted to deal with temporal data. In order
to handle multivariate temporal data without data flattening, we modified the distance
measure between samples. More specifically, the distance we proposed is based on
dynamical time warping, which calculates the similarity between two features through
time. The proposed method has been tested on H3N2 temporal gene expression
dataset from viral study by three classification methods (KNN, NB and RF). We
showed that in most cases the proposed T-Relief method outperforms alternatives.
Our further research will be focused on testing the proposed method on other
multivariate temporal datasets. In addition, other ideas for further research include
using classifiers that are able to handle temporal data.
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