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Machine Learning Approach for Predicting Wall
Shear Distribution for Abdominal Aortic
Aneurysm and Carotid Bifurcation Models

Milos Jordanski, Milos Radovic, Zarko Milosevic, Nenad Filipovic, and Zoran Obradovic

Abstract—Computer simulations based on the finite ele-
ment method represent powerful tools for modeling blood
flow through arteries. However, due to its computational
complexity, this approach may be inappropriate when re-
sults are needed quickly. In order to reduce computa-
tional time, in this paper, we proposed an alternative
machine learning based approach for calculation of wall
shear stress (WSS) distribution, which may play an im-
portant role in mechanisms related to initiation and de-
velopment of atherosclerosis. In order to capture relation-
ships between geometric parameters, blood density, dy-
namic viscosity and velocity, and WSS distribution of geo-
metrically parameterized abdominal aortic aneurysm (AAA)
and carotid bifurcation models, we proposed multivariate
linear regression, multilayer perceptron neural network and
Gaussian conditional random fields (GCRF). Results ob-
tained in this paper show that machine learning approaches
can successfully predict WSS distribution at different car-
diac cycle time points. Even though all proposed methods
showed high potential for WSS prediction, GCRF achieved
the highest coefficient of determination (0.930-0.948 for
AAA model and 0.946-0.954 for carotid bifurcation model)
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demonstrating benefits of accounting for spatial correla-
tion. The proposed approach can be used as an alternative
method for real time calculation of WSS distribution.

Index Terms—Abdominal aortic aneurysm (AAA), carotid
bifurcation, finite element (FE) modeling, machine learning,
wall shear stress (WSS).

|. INTRODUCTION

TROKE is one of the most common causes of death world-
S wide. Often it occurs as a result of carotid artery stenosis,
which may produce infarction by embolization or thrombosis
at the site of narrowing. Local hemodynamics, affecting both
thrombosis and embolization processes, can be investigated by
computer simulations.

There are many factors that may increase the risk of stroke,
such as systolic and diastolic hypertension, cigarette smoking,
diabetes, etc. It has been shown that stenosis may occur as a
consequence of geometrical vessel dimensions changes in the
region of the carotid bifurcation [1], [2]. In fact, these geomet-
rical changes affect blood flow and, thus, the entire local hemo-
dynamics, including wall shear stress (WSS) distribution. Large
changes of the WSS values may affect the embolic mechanism
by which carotid lesions can induce stroke [3].

An aneurysm is a blood-filled balloon-like bulge in the blood
vessel wall usually growing at regions of low WSS [4]. Its
rupture can cause severe hemorrhaging and even death. It has
been shown that hemodynamics plays a fundamental role in the
mechanisms of initiation, growth, and rupture of aneurysm [5].

A number of papers show that WSS has significant impact
on atherosclerosis emergence and development processes [6],
[7]. Therefore, calculation and analysis of this quantity is of
great importance. Simulations based on the finite element (FE)
method can accurately calculate WSS distribution. However,
this approach may be prohibitively computationally costly in
medical applications when results should be provided quickly.
For this purpose, alternative approaches based on machine learn-
ing algorithms may be more suitable. It has been shown that
several machine learning algorithms like neural networks, lin-
ear regression, k-nearest neighbors, random forest, and support
vector machine have high potential for modeling relationships
between WSS and parameters of geometrically parameterized
models of abdominal aortic aneurysm (AAA) and carotid bifur-
cation [8], [9]. However, these algorithms are all unstructured
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predictors and do not account for spatial dependencies between
output variables (WSS). In addition, previous studies [8], [9]
were based on steady state simulation and do not incorporate
temporal evolution of WSS.

Unstructured regression is designed to model input—output
dependencies disregarding relationships among outputs. Mul-
tivariate linear regression (MLR) and multilayer perceptron
(MLP) neural network are two techniques commonly used for
unstructured regression problems. Unlike MLR, which is a sim-
ple model that uses a linear combination of predictor variables
to model a continuous response vector, MLP is a complex model
in which data from predictor variables flow through a network
consisting of multiple layers of nodes called neurons providing
the response vector at the output. On the other hand, Gaus-
sian conditional random fields (GCRF) are a type of structured
regression model that incorporates multiple predictors and mul-
tiple graphs [10]. One of the main problems with structured
regression is related to the fact that models are usually not con-
vex and thus, they do not guarantee global optimum and efficient
optimization. It has been shown that if the relationships among
the outputs are represented in a specific form, then the tradi-
tional continuous conditional random field model has the form
of a multivariate Gaussian distribution, which facilitates learn-
ing and inference. So far, different extensions of GCRF have
been developed [11], [12] and GCRF has been successfully ap-
plied for solving various challenging problems [13], [14].

In this paper, we evaluated two unstructured prediction mod-
els, MLP neural network and MLR, as well as a GCRF model
to capture temporal relationships between geometric parame-
ters, blood density, dynamic viscosity and blood velocity (input
variables), and WSS distributions (output variable). To ana-
lyze the influence of previously mentioned input variables on
WSS distributions in the human carotid bifurcation and AAA,
computer simulations were run to generate data pertaining to
this phenomenon. In this paper, we test the following two
hypotheses:

1) WSS distributions at different cardiac cycle time points
for geometrically parameterized models of AAA and
carotid bifurcation can be modeled by using machine
learning approaches.

2) The use of GCRF model for capturing spatial relation-
ships may lead to improvement in overall WSS distri-
butions prediction accuracy when comparing to unstruc-
tured predictors.

Il. METHODOLOGY
A. Datasets

In order to demonstrate the applicability of machine learning
techniques for capturing relationships between geometric pa-
rameters, density, viscosity and velocity, and WSS distribution,
datasets containing 4000 samples for both AAA carotid bifurca-
tion models were created by using in-house software packages
[15], [16]. Input variables (predictors) were chosen based on
their known influence on WSS calculation. In particular, shear
stress in a general laminar flow is proportional to the gradi-
ent of fluid velocity in the direction perpendicular to the flow

TABLE |
AVERAGE VALUES OF INPUT PARAMETERS FOR AAA MODEL

Parameter Mean value Unit
Length 100 mm
Aneurysm length 40 mm
A 30 mm
Aorta diameter 20 mm
C 20 mm
B 20 mm
Density 0.00105 er/mm?
Dynamic viscosity 0.003675 Pa-s
Peak systolic velocity 300 mm/s
TABLE Il

AVERAGE VALUES OF INPUT PARAMETERS FOR CAROTID
BIFURCATION MODEL

Parameter Mean value Unit
Angle ICA-CCA 25 deg
Angle ECA-CCA 25 deg
Diameter of CCA 6.2 mm
Diameter of CBRE 3.658 mm
Diameter of CBRI 49 mm
Length of CCA 7.44 mm
Length of CBR 7.316 mm
Length of ECA 18.6 mm
Length of ICA 26.04 mm
Diameter at end of ICA 4.34 mm
Diameter of ICB 6.49 mm
Distance to ICB 5.39 mm
Density 0.00105 er/mm?
Dynamic viscosity 0.00367 Pa-s
Peak systolic velocity 437.22 mm/s

where the dynamic viscosity is a constant of proportionality. In
computational fluid dynamics (CFD), governing equations for
the blood flow in lumen domain are three-dimensional Navier—
Stokes equations (which incorporate the density of the blood
and dynamic viscosity) together with the continuity equation
[16]. The solution, for a particular set of boundary conditions
(e.g., prescribed inlet velocity profile which simulates cardiac
cycle), provides the fluid velocity in a given geometry, which is
in our case defined by geometric parameters.

Sampling is performed from uniform distributions with per-
turbation of each parameter up to 30% of the corresponding
mean values [16]. Tables I and II show the mean values of in-
put variables used for sampling of AAA and carotid bifurcation
model parameters, respectively.

The geometric parameters shown in Figs. 1 and 2 were used
to generate internal blood vessel surfaces. Generated surfaces
represent the boundaries for blood flow domain. We assumed
that both AAA and carotid bifurcation have the same symmetry
plane. Therefore, FE models were generated for half of the
domain, but the results can be presented for the entire domain.

Unsteady simulations with parabolic inflow velocity profiles
were undertaken and WSS distributions for each geometry were
computed for 10 time steps (N = 10). We assumed the entering
flow was pulsatile, with a typical waveforms shown in Fig. 3
for AAA [17] and carotid bifurcation [18] models. For each
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| Aneurysm length

Fig. 1. Geometrically parameterized model of AAA. Geometrical pa-
rameters of AAA model: ‘Length’ is the parameter that defines the total
horizontal projection of the generated AAA model;'A’ is the height of the
arc of the central line; 'Aorta diameter’ is the abdominal aorta diameter;
'B’ is the radius from the central line to the inner wall of the aneurysm;
'C’ is the radius from the central line to the outer wall of the aneurysm;
'Aneurysm length’ is the average length of the aneurysm.

Diameter at
end of ICA

Diameter of CBRI
Length of CCA

Angle
ICA-CCA
Flow
Diameter
of CCA
Angle
Length of CBR ECA-CCA
Diameter of CBRE

Length of ECA,

Fig. 2. of carotid bifurca-

Geometrically parameterized model
tion. The abbreviations here are: CCA—common carotid artery,
CBR-—carotid bifurcation region, CBRE—carotid bifurcation region ex-
ternal, ECA—external carotid artery, CBRI—carotid bifurcation region in-
ternal, ICA—internal carotid artery, ICB—internal carotid bulbus.
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Fig. 3.  Input velocity profile for the AAA [17] and carotid bifurcation [18]
models. Inlet peak systolic velocity (PSV) corresponds to t/T = 0.305 and
t/T = 0.1 for AAA and carotid bifurcation models respectively, where t/T
is the relative time with respect to the cycle period T.

generated sample of both aneurysm and carotid bifurcation mod-
els, peak systolic velocity is sampled from the uniform distribu-
tion (bounded with 30% perturbation of the corresponding mean
value) while velocity values in other time steps are calculated by
multiplying the sampled peak systolic velocity value with the
corresponding function given in Fig. 3. Mean values of the peak
systolic velocity for aneurysm and carotid bifurcation models
are adopted from [17] and [18], respectively.

All velocity components at the fixed walls are set to be zero.
Similarly, the velocity components at the plane of symmetry in
the direction normal to the plane, are set to zero. It is assumed
that the end cross-sections of both AAA and carotid bifurcation
models are stress-free, i.e., normal and tangential stresses are
set to zero. The flow was assumed to be laminar, Newtonian,
and incompressible. Also, the walls are assumed to be rigid. All
calculations were performed using an open source FE program
for fluid flow and fluid-solid interaction - PAK [15]. The CFD
postprocessing results give an insight into the local hemody-
namics and the blood mechanical action on the vessel walls,
including the distribution of WSS.

In order to test whether the accuracy of the proposed ma-
chine learning based method for prediction of WSS distribution
depends on the mesh resolution, we generated three datasets,
each containing 4000 samples, with different mesh resolutions
for both AAA and carotid bifurcation models. In these datasets,
generated samples of the AAA FE model contain 375, 1125, and
2205 nodes, where 195, 597, and 885 lie on the wall surface, re-
spectively. On the other hand, samples of the carotid bifurcation
FE model contain 1854, 3877, and 5641 nodes, of which 642,
1303, and 1987 lie on the wall surface respectively. By using
CFD simulations, WSS values were calculated in all surface
nodes at the vessel wall for all datasets and for all samples for
10 time steps (NV; = 10; ¢/T = {0.1,0.2,...,1}, where t/T is
the relative time with respect to the cycle period T').

B. Unstructured Regression

Let us denote by D = {x;,yi};=1,. m the dataset con-
taining M observations, where x; = (x;1,...,x;p) is one
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observation with P features and y; = (y;1,...,¥y;n ) is a vector
of real-valued output variables. The aim of multivariate (or mul-
tioutput) regression models is to learn a mapping f : R” — RY
that predicts the vector of output variables y; given an input
vector Xj.

1) Multivariate Linear Regression: The MLR model ex-
presses an /N -dimensional continuous response vector (y;) as a
linear combination of predictor terms (X;) plus a vector of error
terms (¢;) with a multivariate normal distribution. In general,
model may be written as

Y =XW+e ey

where Y is a MxN matrix with a series of multivariate measure-
ments, X is a MxP design matrix, W is a PxN matrix containing
parameters to be estimated, and e is a matrix containing errors
or noise. The errors are assumed to be uncorrelated across mea-
surements.

2) MLP Neural Network: The MLP is a prediction model
consisting of an input layer, one or more hidden layers and
an output layer of simple elements called neurons. Neurons
between different layers are connected with parameters called
weights, which should be estimated through an optimization
procedure (training). The objective of the training is to find a
set of neural network parameters that minimize the error be-
tween the neural network predictions and the desired outputs.
The most commonly used optimization algorithm for learning
the parameters of neural network is the back-propagation al-
gorithm [19]. However, the basic version of this algorithm has
problems with slow convergence and local minima. For this
purpose, a number of variations of the standard algorithm have
been developed. In this study, we used the backpropagation
algorithm with momentum and adaptive learning rate since it
has been shown to be effective for the prediction of the WSS
distribution [8], [9]. In each iteration of the this algorithm, pa-
rameters of the MLP are adjusted according to the following
formula:

AI/Vnew = chWprev + lrmc%
where W is a parameter vector, AW, and AW, are the
new and previous change of the parameter vector, respectively,
m, 1S a momentum constant, /. is a learning rate, and E is the
objective function which defines how much real outputs dis-
agree with predicted ones (e.g., mean squared error). In each
iteration (epoch) of the learning process, the learning rate is
adjusted according to lirnc, lfec, and max;,. parameters. Con-
cretely, if performance decreases toward the goal, the learning
rate is increased based on the [I"° parameter. On the other hand,
if performance increases by more than the value defined by the
maxi,. parameter, the learning rate is adjusted based on the ZSCC
parameter.

In this study, we used an MLP neural network with ten neu-
rons in a single hidden layer and sigmoid activation functions in
hidden and output neurons. The stopping criterion was defined
as the maximum number of learning epochs (1000). The values
of other parameters were: [, = 0.01, m, = 0.9, li.“c = 1.05, lfec
= 0.7, and max;,. = 1.04.

2

C. Structured Regression

A structured learning approach tries to simultaneously predict
all outputs given all inputs and relationships among outputs.
Structure learning methods can exploit correlation among output
variables, which often gives benefits compared to unstructured
learning methods. In other words, while traditional, unstructured
models use only input information x to predict y;, structured
learning models use the additional information about y;, for all
7 related to 7. This prior information about interplays between
the outputs y is application-specific and depends on prior beliefs
of a practitioner about which relationships might be useful.

Conditional random fields (CRF) is a type of discrimina-
tive probabilistic graphical model designed to predict structured
output. Originally, CRF were proposed for classification of se-
quential data [20].

The conditional distribution P(y|x) for CRF can be repre-
sented as
eZ,\:l A(a,y,,,x)JrZ_j I(B,yi,y),x)

PYR) £ 7o ®

a, 3,%)
where A(a, y;, %) is an association potential with parameters c,
I(8,yi,y;,x) is an interaction potential with parameters (3, i ~
J denotes that y; and y; are connected by an edge in the graph
structure, and Z(«v, 3, x) represents a normalization function. In
general, the output y; is associated with a vector of observation
x by an association function, while relationships among outputs
can be modeled by an interaction function. Association and
interaction potential are usually defined as linear combinations
of a set of feature functions over K-dimensional parameters «
and L-dimensional parameters [ [20]:

K

A(aayi7x) = Zakfk:(yi7x) (4)
k=1
L

I(B,yi,95,%) = > Bigi(yi, yj,%)- Q)
=1

Feature functions are convenient since they allow one to
model arbitrary interplays between inputs and outputs. In this
way, any potentially relevant feature may be included to the
model since their relevance is automatically determined through
the parameter estimation process.

The learning task is to determine values of parameters « and (3
to maximize the conditional log-likelihood of the set of training
examples:

L(e, §) = logP(y[x)
(&, 0) = argmax, 4(L(a, ).

(6)
(N

On the other hand, given estimated parameters & and B and
inputs x, the inference task is to find the point estimate ¥y
of outputs y such that the conditional probability P(y|x) is
maximized:

y = argmax (P(y|x)). (8)
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Models with real valued outputs pose quite different chal-
lenges with respect to feature function complexity compared to
discrete-valued case. CRFs were originally designed for classi-
fication problems where the normalizing function Z is finite and
defined as a sum over finitely many possible values of y. On the
contrary, for regression, Z must be an integrable function. In
general, providing that 7 is integrable can be very difficult and
computationally expensive due to the complexity of association
and interaction potentials. However, the association and interac-
tion potentials could be designed in a way that allows efficient
learning and inference.

The selection of appropriate feature functions in CRF is a
manual process which is usually application-specific. How-
ever, the choice of features is often constrained to simple
constructs to reduce the complexity of learning and inference
from CRF. Let us assume we are given K unstructured (base-
line) predictors, Ry (x), k = 1, ..K, that predict single out-
put y; relying on any subset of x. To model the dependency
between the prediction and output, we use quadratic feature
functions:

£r (i, x) = —(y; — Ri(x))%. 9)

These feature functions follow the basic principle for associ-
ation potentials, i.e., their values are large when predictions and
outputs are similar. To model the correlation among outputs, we
use the quadratic feature function:

91(Yi,yj, %) = —6%512 (x) (i —y;)° (10)
where e;; = 1 if an edge exists between output y; and y; in the
graph Gy, and ¢;; = 0 otherwise; S! ;(x) represents the similar-
ity between outputs y; and y; and in general depends on inputs
x. The larger the value of S}, (x) is, the more similar the out-
puts ¥; and y; are. It should be noted that using multiple graphs
G can facilitate modeling of different aspects of correlation
between outputs.

In this way, the exponent of the probability distribution
P(y|x) is a quadratic function in terms of y. Therefore P(y|x)
can be transformed into the multivariate Gaussian distribution

N(p(x), B(x)):
1

T T

X exp (—é(y —p)'E (y - u)) (11)

where X and g are covariance matrix and mean vector, re-
spectively. Therefore, the resulting conditional distribution is
Gaussian with mean g and covariance 3. We observe that 3
is a function of parameters « and 3, and interaction potential
graphs G, while p is also a function of inputs x. The resulting
CRF is the Gaussian CRF.

Since the model is Gaussian, the inference is straightforward,
i.e., the prediction is expected value, which is equal to the mean
1 of the distribution:

y = argmax, P(y|x) = Xb. (12)

IIl. RESULTS
A. Evaluation Procedure

In this paper, we employed two unstructured models, MLP
neural network and the MLR model, as well as GCREF, in order to
predict WSS distributions through time. For training the GCRF
model, we randomly chose 70% of total data and remaining
30% of data was used for testing. Since we use predictions of
both unstructured models MLP and MLR as inputs to GCREF,
we applied fivefold cross validation on the training set. First,
for both AAA and carotid bifurcation, we split the training set
into five subsets (D;,i = 1,...,5) of equal sizes. Then, we
reserved one dataset D; for testing and merged data from the
remaining four datasets D, j # 4 for training. The procedure
was repeated five times, for ¢ = 1, ..., 5. Finally, we got MLP
and MLR predictions for all samples in training sets.

For each surface node, we constructed one MLR model with
N, outputs, where each of NV, outputs represent WSS value for a
single time step (V; is the number of time steps). This means that
we created 195, 597, and 885 (642, 1303, and 1987) different
linear models in case of the AAA (carotid bifurcation) model.
The features of the MLR model were geometric parameters of
models, blood density, dynamic viscosity and velocities in all
time steps. More specifically, we used 18 features in of the AAA
model and 24 features in case of the carotid bifurcation model.
The same procedure is repeated for the MLP model where we
create one neural network for each node.

In order to employ the GCRF model to predict WSS dis-
tribution, we define the similarity matrix (graph) between dif-
ferent surface nodes. Let S; = (z;, y;, 2;) and S; = (x;,v;, 2;)
be coordinates of the ¢th and jth surface nodes, respectively.
The distance between two nodes is calculated as the Euclidean
distance:

d(S;, S;) = \/(xz' —z)? + (yi —y;)? + (2 — 7). (13)

In order to eliminate noise in the similarity matrix, we elim-
inated similarities of some nodes that are far away from each
other. We calculate similarity matrix between the ¢th and jth
node as

0, if d(Si,S;) > pua
d(Sj, Sj) — mind
Hd — ming

S,7) = 1- , otherwise (14)
where ming, and p4 are minimum and mean values of all dis-
tances between nodes, respectively.

For each training example and for each time step, we trained
a different GCRF model. In this way, we estimated different
parameters « and § for each training example. Our proposed
model predicts the target values for a test example in the fol-
lowing way. First, it finds the most similar training example
(the nearest neighbor) and then uses its estimated parameters
« and [ to predict the evolution of WSS distributions through
time.

We evaluated the performances of the proposed models by
computing their coefficients of determination R?. In a general
form, R? can be seen as the fraction of unexplained variance. In
order to define the coefficient of determination at ¢th time step
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TABLE Il
PERFORMANCES FOR AAA MODEL

Dataset (nodes) Model tq to t3 ty ts tg tr ts tg t1o Average
AAA (375) MLR 0964 0963 0957 0936 0857 0.765 0.850 0.745 0.827  0.837 0.870
MLP 0948 0982 0982 0971 0934 0.898 0931 0.883 0.887 0.806 0.922
GCRF 0969 0984 0984 0972 0935 0.898 0932 0.883 0.894 0.853 0.930
AAA (1125) MLR 0957 0960 0957 0939 0939 0.774 0.868 0.734 0.849  0.855 0.883
MLP 0988 0987 0990 0985 0985 0862 0953 0766 0917 0.865 0.930
GCRF 0986 0987 0991 0.987 0987 0875 0.955 0.814 0.922 0.894 0.940
AAA (2205) MLR 0955 0956 0953 0933 0851 0774 0861 0.739 0.842 0.839 0.870
MLP 0961 0982 098 0976 0940 0929 0965 0883 0944 0.858 0.942
GCRF 0974 0.983 0.988 0978 0942 0929 0966 0.885 0945 0.886 0.948
TABLE IV
PERFORMANCES FOR CAROTID BIFURCATION MODEL
Dataset (nodes) Model tq to t3 ty ts tg tr ts tg t1o Average
Carotid (1854) MLR 0767 0740 0.761  0.762 0762  0.763 0.762  0.763  0.763  0.764 0.761
MLP  0.873 0930 0963 0968 0980 0978 0957 0946 0932 0.879 0.941
GCRF 0904 0934 0960 0.968 0980 0978 0.959 0.950 0.937  0.909 0.948
Carotid (3877) MLR 0803 0768 0.768 0.768 0.793  0.794  0.794  0.794  0.795  0.795 0.787
MLP 0850 0.891 0966 0985 0.985 0985 0982 0964 0911 0.880 0.940
GCRF 0908 0914 0.966  0.985 0.985 0.985 0979 0964 0.933 0.917 0.954
Carotid (5641) MLR 0791 0762 0781 0.782 0.782 0.782 0.782 0.782  0.783  0.783 0.781
MLP  0.845 0910 0960 0980 0983 0974 0974 0959 0945 0.831 0.936
GCRF  0.895 0.910 0.961 0.973 0.983 0974 0974 0959  0.945 0.891 0.946

R?, let us define 7' (j) as the mean value of WSS for the jth
surface node at time step ¢:

1 NLCSL
—t( t
y )= Yi\J)s
0= o L)
t=1,...Ny,j=1,..., Nout 15)

where N is the number of testing examples, Ngyy,¢ iS the
number of surface nodes, and y!(j) is the WSS value for
jth node at tth time step of ¢th example calculated by the fi-
nite element method (FEM). The sum of squares (proportional
to the variances) 57E2 for the ¢th example at time step ¢ is
calculated as

Noure
SE. = > WG) -7 0)

Jj=1

(16)

The residuals are defined as a squared error of the ith example
at time step t:

Nsurt

SE!f =" (0l () — 9(5))°

Jj=1

a7

where ¢! (7) is the predicted WSS value for jth surface node at
tth time step of ¢th example. Finally, the coefficient of determi-
nation R? at tth time step is calculated as

Nies
Neest SEt
R? -1 Zz:l i

T — (18)
SV SE;

B. Performance on AAA and Carotid Bifurcation

In order to make a fair comparison, we trained unstructured
models (MLP neural network and MLR) on the same data used
for GCREF training. Tables III and IV show obtained results on
the same test data for AAA and carotid bifurcation models,
respectively. Values in these tables represent coefficient of de-
termination R?, for each time step ¢ = 1, ..., 10, along with the
average R? across all time steps.

Tables III and IV clearly show that the MLP model outper-
forms the MLR model on both AAA and carotid bifurcation
models. More precisely, on the AAA(375) dataset, the MLP
achieved higher accuracy compared to the MLR in eight out of
ten time steps. In addition, on the AAA(1125) and AAA(2205)
datasets, the MLP outperformed the MLR in all time steps. Sim-
ilar results are obtained on carotid bifurcation datasets where
the MLP achieved higher accuracy compared to the MLR in
all time steps for all three mesh resolutions (1854, 3877, and
5641 nodes). The fact that the MLP improved accuracy over the
MLR model is confirmed by the average R* values across all
time steps (the last columns in Tables III and IV). Even though
the MLP outperforms the MLR on all datasets, results given in
Tables III and IV indicate that both the MLP (better) and the
MLR (worse) can be used to predict WSS distribution through
time. This confirms the first hypothesis of our paper that WSS
distributions at different cardiac cycle time points for geometri-
cally parameterized models of AAA and carotid bifurcation can
be modeled by using machine learning approaches.

In addition, Tables III and IV show that the GCRF model
achieved higher accuracy compared to unstructured predictors
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Fig. 4. Temporal evolution of WSS distribution for the AAA model (one randomly chosen geometry) calculated by FEM and predicted by the GCRF
(units Pa). Due to space limitation we show results for only five time steps (of total ten).
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Fig. 5.

Temporal evolution of WSS distribution for the carotid bifurcation model (one randomly chosen geometry) calculated by FEM and predicted

by the GCRF (units Pa). Due to space limitation we show results for only five time steps (of total ten).

(MLP and MLR) on both datasets. More precisely, on the
AAA(375) dataset, the GCRF outperformed the MLP model
in eight out of ten time steps, while on the remaining two steps
they achieved the same accuracy. Furthermore, on AAA(1124)
dataset, the GCRF achieved higher accuracy compared to the
MLP model in eight out of ten time steps, while on one step
they achieved the same accuracy. Similarly, on the AAA(2205)
dataset, the GCRF achieved higher accuracy compared to the
MLP model in nine out of ten time steps, while on the remaining
step they achieved the same accuracy. Similar results can be ob-
served on the carotid bifurcation dataset. More specifically, on
Carotid(1854) dataset, the GCRF outperformed the MLP model
in six out of ten time steps, while they achieved the same accu-
racy in three steps. Similarly, on the Carotid(3877) dataset, the
GCREF achieved higher accuracy compared to the MLP model
in four out of ten time steps, while they achieved the same ac-
curacy in five time steps. On the Carotid(5641) dataset, GCRF
outperformed the MLP model in three out of ten time steps,

while they achieved the same accuracy six steps. In addition,
GCRF outperformed MLR in all time steps for all AAA and
carotid bifurcation datasets. The average values of R? calcu-
lated across all time steps show that the GCRF model outper-
formed both unstructured predictors. These results confirm the
second hypothesis of our paper, i.e., taking spatial correlation
into account improves prediction accuracy of WSS distribution
through time.

Figs. 4 and 5 show the distribution of WSS through time,
calculated by FEM and predicted by the GCRF model. Due
to lack of space, we showed results only for one randomly
chosen test example from AAA and carotid bifurcation datasets
in five time steps (¢1,t3, 5, t7, and t1(). These figures confirm
the ability of machine learning approaches to predict the WSS
distribution through time for both geometrically parameterized
models.

In addition, we compared running time of FEM and GCRF
methods for prediction of WSS distribution of AAA and carotid
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bifurcation models. Training of the GCRF model for prediction
of WSS distribution is a tedious task. However, once trained
this model can be utilized to predict WSS distribution in much
shorter time when comparing to FEM approach. For instance,
average FEM run time for calculation of WSS distribution of
testing samples was 5.3, 6.8, and 8.0 s for the three datasets
of the AAA model and 19.4, 198.4, and 604.1 for the three
datasets of the carotid bifurcation model. On the other hand, the
corresponding average GCRF run times were 0.032, 0.283, and
0.604 s for the AAA model and 0.5702, 5.856, and 10.937 for
the carotid bifurcation model. All the experiments were run on a
Windows machine with a 3.40 GHz Intel(R) Core(TM) i7-3770
CPU and 32GB memory.

IV. CONCLUSION

In this paper, an application of machine learning techniques
to hemodynamic problems was presented. We modeled the re-
lationships between geometric parameters, blood density, dy-
namic viscosity and velocity of the human carotid bifurcation,
and AAA models and the WSS distribution. The goal of this
paper is to verify that for geometrically parameterized models,
which are simplified comparing to real geometries, machine
learning approaches may be used to predict WSS distribution at
different cardiac cycle time points. We employed two unstruc-
tured predictors, MLP neural network and the MLR model, in
order to predict WSS distributions through time. The obtained
results showed that on the AAA model both predictors exhib-
ited capabilities of being used for this task, while on the carotid
bifurcation model MLP demonstrated much better results in
terms of R2. In addition, we applied the GCRF model, which
leverages the benefits of both unstructured models as well as
the similarities between different surface nodes. The results ob-
tained from simulations showed that GCRF was able to improve
accuracy on both AAA and carotid bifurcation models. Further-
more, this work shows that the achieved results can be used to
aid the assessment of stroke risk for a given patient’s data in
real time.

Further research will be focused on applying other unstruc-
tured multioutput regression models and including them into the
GCRF model. In addition, since we used simplified geometri-
cally parameterized models, our further research plan is to use
real life data, where machine learning techniques will be tested
on patient data. More specifically, we plan to represent a real
arterial geometry with an adequate geometrically parameterized
model and predict WSS distribution for the simplified model.
Thereafter, WSS value of each surface node of the real arte-
rial geometry can be estimated by interpolating WSS values of
the nearest nodes of the simplified model. However, real arte-
rial geometries are quite complex and describing them with a
set of features that can be further processed by machine learn-
ing methods to predict WSS distribution is a challenging task.
Therefore, we plan to extend the proposed approach where, in
addition to geometrical parameters which can be estimated from
medical images, machine learning approaches would also use
other node specific descriptors (e.g., coordinates, distance from
the central line, local curvature descriptors, cross section area,

etc.) to predict the WSS value. In this case, instead of node
specific predictors, we would generate a global predictor which
would predict WSS values for all nodes belonging to a cer-
tain arterial region (for instance all nodes in the internal carotid
bulbus region).
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Machine Learning Approach for Predicting Wall
Shear Distribution for Abdominal Aortic
Aneurysm and Carotid Bifurcation Models

Milos Jordanski, Milos Radovic, Zarko Milosevic, Nenad Filipovic, and Zoran Obradovic

Abstract—Computer simulations based on the finite ele-
ment method represent powerful tools for modeling blood
flow through arteries. However, due to its computational
complexity, this approach may be inappropriate when re-
sults are needed quickly. In order to reduce computa-
tional time, in this paper, we proposed an alternative
machine learning based approach for calculation of wall
shear stress (WSS) distribution, which may play an im-
portant role in mechanisms related to initiation and de-
velopment of atherosclerosis. In order to capture relation-
ships between geometric parameters, blood density, dy-
namic viscosity and velocity, and WSS distribution of geo-
metrically parameterized abdominal aortic aneurysm (AAA)
and carotid bifurcation models, we proposed multivariate
linear regression, multilayer perceptron neural network and
Gaussian conditional random fields (GCRF). Results ob-
tained in this paper show that machine learning approaches
can successfully predict WSS distribution at different car-
diac cycle time points. Even though all proposed methods
showed high potential for WSS prediction, GCRF achieved
the highest coefficient of determination (0.930-0.948 for
AAA model and 0.946-0.954 for carotid bifurcation model)
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demonstrating benefits of accounting for spatial correla-
tion. The proposed approach can be used as an alternative
method for real time calculation of WSS distribution.

Index Terms—Abdominal aortic aneurysm (AAA), carotid
bifurcation, finite element (FE) modeling, machine learning,
wall shear stress (WSS).

|. INTRODUCTION

TROKE is one of the most common causes of death world-
S wide. Often it occurs as a result of carotid artery stenosis,
which may produce infarction by embolization or thrombosis
at the site of narrowing. Local hemodynamics, affecting both
thrombosis and embolization processes, can be investigated by
computer simulations.

There are many factors that may increase the risk of stroke,
such as systolic and diastolic hypertension, cigarette smoking,
diabetes, etc. It has been shown that stenosis may occur as a
consequence of geometrical vessel dimensions changes in the
region of the carotid bifurcation [1], [2]. In fact, these geomet-
rical changes affect blood flow and, thus, the entire local hemo-
dynamics, including wall shear stress (WSS) distribution. Large
changes of the WSS values may affect the embolic mechanism
by which carotid lesions can induce stroke [3].

An aneurysm is a blood-filled balloon-like bulge in the blood
vessel wall usually growing at regions of low WSS [4]. Its
rupture can cause severe hemorrhaging and even death. It has
been shown that hemodynamics plays a fundamental role in the
mechanisms of initiation, growth, and rupture of aneurysm [5].

A number of papers show that WSS has significant impact
on atherosclerosis emergence and development processes [6],
[7]. Therefore, calculation and analysis of this quantity is of
great importance. Simulations based on the finite element (FE)
method can accurately calculate WSS distribution. However,
this approach may be prohibitively computationally costly in
medical applications when results should be provided quickly.
For this purpose, alternative approaches based on machine learn-
ing algorithms may be more suitable. It has been shown that
several machine learning algorithms like neural networks, lin-
ear regression, k-nearest neighbors, random forest, and support
vector machine have high potential for modeling relationships
between WSS and parameters of geometrically parameterized
models of abdominal aortic aneurysm (AAA) and carotid bifur-
cation [8], [9]. However, these algorithms are all unstructured

2168-2194 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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predictors and do not account for spatial dependencies between
output variables (WSS). In addition, previous studies [8], [9]
were based on steady state simulation and do not incorporate
temporal evolution of WSS.

Unstructured regression is designed to model input—output
dependencies disregarding relationships among outputs. Mul-
tivariate linear regression (MLR) and multilayer perceptron
(MLP) neural network are two techniques commonly used for
unstructured regression problems. Unlike MLR, which is a sim-
ple model that uses a linear combination of predictor variables
to model a continuous response vector, MLP is a complex model
in which data from predictor variables flow through a network
consisting of multiple layers of nodes called neurons providing
the response vector at the output. On the other hand, Gaus-
sian conditional random fields (GCRF) are a type of structured
regression model that incorporates multiple predictors and mul-
tiple graphs [10]. One of the main problems with structured
regression is related to the fact that models are usually not con-
vex and thus, they do not guarantee global optimum and efficient
optimization. It has been shown that if the relationships among
the outputs are represented in a specific form, then the tradi-
tional continuous conditional random field model has the form
of a multivariate Gaussian distribution, which facilitates learn-
ing and inference. So far, different extensions of GCRF have
been developed [11], [12] and GCRF has been successfully ap-
plied for solving various challenging problems [13], [14].

In this paper, we evaluated two unstructured prediction mod-
els, MLP neural network and MLR, as well as a GCRF model
to capture temporal relationships between geometric parame-
ters, blood density, dynamic viscosity and blood velocity (input
variables), and WSS distributions (output variable). To ana-
lyze the influence of previously mentioned input variables on
WSS distributions in the human carotid bifurcation and AAA,
computer simulations were run to generate data pertaining to
this phenomenon. In this paper, we test the following two
hypotheses:

1) WSS distributions at different cardiac cycle time points
for geometrically parameterized models of AAA and
carotid bifurcation can be modeled by using machine
learning approaches.

2) The use of GCRF model for capturing spatial relation-
ships may lead to improvement in overall WSS distri-
butions prediction accuracy when comparing to unstruc-
tured predictors.

Il. METHODOLOGY
A. Datasets

In order to demonstrate the applicability of machine learning
techniques for capturing relationships between geometric pa-
rameters, density, viscosity and velocity, and WSS distribution,
datasets containing 4000 samples for both AAA carotid bifurca-
tion models were created by using in-house software packages
[15], [16]. Input variables (predictors) were chosen based on
their known influence on WSS calculation. In particular, shear
stress in a general laminar flow is proportional to the gradi-
ent of fluid velocity in the direction perpendicular to the flow

TABLE |
AVERAGE VALUES OF INPUT PARAMETERS FOR AAA MODEL

Parameter Mean value Unit
Length 100 mm
Aneurysm length 40 mm
A 30 mm
Aorta diameter 20 mm
C 20 mm
B 20 mm
Density 0.00105 er/mm?
Dynamic viscosity 0.003675 Pa-s
Peak systolic velocity 300 mm/s
TABLE II

AVERAGE VALUES OF INPUT PARAMETERS FOR CAROTID
BIFURCATION MODEL

Parameter Mean value Unit
Angle ICA-CCA 25 deg
Angle ECA-CCA 25 deg
Diameter of CCA 6.2 mm
Diameter of CBRE 3.658 mm
Diameter of CBRI 49 mm
Length of CCA 7.44 mm
Length of CBR 7.316 mm
Length of ECA 18.6 mm
Length of ICA 26.04 mm
Diameter at end of ICA 4.34 mm
Diameter of ICB 6.49 mm
Distance to ICB 5.39 mm
Density 0.00105 er/mm?
Dynamic viscosity 0.00367 Pa-s
Peak systolic velocity 437.22 mm/s

where the dynamic viscosity is a constant of proportionality. In
computational fluid dynamics (CFD), governing equations for
the blood flow in lumen domain are three-dimensional Navier—
Stokes equations (which incorporate the density of the blood
and dynamic viscosity) together with the continuity equation
[16]. The solution, for a particular set of boundary conditions
(e.g., prescribed inlet velocity profile which simulates cardiac
cycle), provides the fluid velocity in a given geometry, which is
in our case defined by geometric parameters.

Sampling is performed from uniform distributions with per-
turbation of each parameter up to 30% of the corresponding
mean values [16]. Tables I and II show the mean values of in-
put variables used for sampling of AAA and carotid bifurcation
model parameters, respectively.

The geometric parameters shown in Figs. 1 and 2 were used
to generate internal blood vessel surfaces. Generated surfaces
represent the boundaries for blood flow domain. We assumed
that both AAA and carotid bifurcation have the same symmetry
plane. Therefore, FE models were generated for half of the
domain, but the results can be presented for the entire domain.

Unsteady simulations with parabolic inflow velocity profiles
were undertaken and WSS distributions for each geometry were
computed for 10 time steps (/N; = 10). We assumed the entering
flow was pulsatile, with a typical waveforms shown in Fig. 3
for AAA [17] and carotid bifurcation [18] models. For each
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| Aneurysm length

Fig. 1. Geometrically parameterized model of AAA. Geometrical pa-
rameters of AAA model: ‘Length’ is the parameter that defines the total
horizontal projection of the generated AAA model; A’ is the height of the
arc of the central line; 'Aorta diameter’ is the abdominal aorta diameter;
'B’ is the radius from the central line to the inner wall of the aneurysm;
'C’ is the radius from the central line to the outer wall of the aneurysm;
'Aneurysm length’ is the average length of the aneurysm.

Diameter at
end of ICA

Diameter of CBRI
Length of CCA

Angle
ICA-CCA
Flow
Diameter
of CCA

Fig. 2. of carotid bifurca-

Geometrically parameterized model
tion. The abbreviations here are: CCA—common carotid artery,
CBR-—carotid bifurcation region, CBRE—carotid bifurcation region ex-
ternal, ECA—external carotid artery, CBRI—carotid bifurcation region in-
ternal, ICA—internal carotid artery, ICB—internal carotid bulbus.
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= = = Carotide bifurcation| |
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Fig. 3. Input velocity profile for the AAA [17] and carotid bifurcation [18]
models. Inlet peak systolic velocity (PSV) corresponds to t/T = 0.305 and
t/T = 0.1 for AAA and carotid bifurcation models respectively, where t/T
is the relative time with respect to the cycle period T.

generated sample of both aneurysm and carotid bifurcation mod-
els, peak systolic velocity is sampled from the uniform distribu-
tion (bounded with 30% perturbation of the corresponding mean
value) while velocity values in other time steps are calculated by
multiplying the sampled peak systolic velocity value with the
corresponding function given in Fig. 3. Mean values of the peak
systolic velocity for aneurysm and carotid bifurcation models
are adopted from [17] and [18], respectively.

All velocity components at the fixed walls are set to be zero.
Similarly, the velocity components at the plane of symmetry in
the direction normal to the plane, are set to zero. It is assumed
that the end cross-sections of both AAA and carotid bifurcation
models are stress-free, i.e., normal and tangential stresses are
set to zero. The flow was assumed to be laminar, Newtonian,
and incompressible. Also, the walls are assumed to be rigid. All
calculations were performed using an open source FE program
for fluid flow and fluid-solid interaction - PAK [15]. The CFD
postprocessing results give an insight into the local hemody-
namics and the blood mechanical action on the vessel walls,
including the distribution of WSS.

In order to test whether the accuracy of the proposed ma-
chine learning based method for prediction of WSS distribution
depends on the mesh resolution, we generated three datasets,
each containing 4000 samples, with different mesh resolutions
for both AAA and carotid bifurcation models. In these datasets,
generated samples of the AAA FE model contain 375, 1125, and
2205 nodes, where 195, 597, and 885 lie on the wall surface, re-
spectively. On the other hand, samples of the carotid bifurcation
FE model contain 1854, 3877, and 5641 nodes, of which 642,
1303, and 1987 lie on the wall surface respectively. By using
CFD simulations, WSS values were calculated in all surface
nodes at the vessel wall for all datasets and for all samples for
10 time steps (V; = 10; t/T = {0.1,0.2,...,1}, where t /T is
the relative time with respect to the cycle period T).

B. Unstructured Regression

Let us denote by D = {x;,yi}i—1,. .m the dataset con-
taining M observations, where x; = (x;1,...,x;p) is one
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observation with P features and y; = (y;1,...,y;n ) is a vector
of real-valued output variables. The aim of multivariate (or mul-
tioutput) regression models is to learn amapping f : R” — RY
that predicts the vector of output variables y; given an input
vector xj.

1) Multivariate Linear Regression: The MLR model ex-
presses an N -dimensional continuous response vector (y;) as a
linear combination of predictor terms (x;) plus a vector of error
terms (e;) with a multivariate normal distribution. In general,
model may be written as

Y =XW +e 0

where Y is a MxN matrix with a series of multivariate measure-
ments, X is a MxP design matrix, W is a PxN matrix containing
parameters to be estimated, and € is a matrix containing errors
or noise. The errors are assumed to be uncorrelated across mea-
surements.

2) MLP Neural Network: The MLP is a prediction model
consisting of an input layer, one or more hidden layers and
an output layer of simple elements called neurons. Neurons
between different layers are connected with parameters called
weights, which should be estimated through an optimization
procedure (training). The objective of the training is to find a
set of neural network parameters that minimize the error be-
tween the neural network predictions and the desired outputs.
The most commonly used optimization algorithm for learning
the parameters of neural network is the back-propagation al-
gorithm [19]. However, the basic version of this algorithm has
problems with slow convergence and local minima. For this
purpose, a number of variations of the standard algorithm have
been developed. In this study, we used the backpropagation
algorithm with momentum and adaptive learning rate since it
has been shown to be effective for the prediction of the WSS
distribution [8], [9]. In each iteration of the this algorithm, pa-
rameters of the MLP are adjusted according to the following
formula:

AI/Vnew = chWprev + lrmc%
where W is a parameter vector, AW, and AW, are the
new and previous change of the parameter vector, respectively,
m,. 1S a momentum constant, /. is a learning rate, and E is the
objective function which defines how much real outputs dis-
agree with predicted ones (e.g., mean squared error). In each
iteration (epoch) of the learning process, the learning rate is
adjusted according to [I"¢, 19¢¢, and max;,. parameters. Con-
cretely, if performance decreases toward the goal, the learning
rate is increased based on the /! parameter. On the other hand,
if performance increases by more than the value defined by the
max;, . parameter, the learning rate is adjusted based on the lfec
parameter.

In this study, we used an MLP neural network with ten neu-
rons in a single hidden layer and sigmoid activation functions in
hidden and output neurons. The stopping criterion was defined
as the maximum number of learning epochs (1000). The values
of other parameters were: [, = 0.01, m, = 0.9, lirnc =1.05, lfec
= 0.7, and max;,. = 1.04.

2

C. Structured Regression

A structured learning approach tries to simultaneously predict
all outputs given all inputs and relationships among outputs.
Structure learning methods can exploit correlation among output
variables, which often gives benefits compared to unstructured
learning methods. In other words, while traditional, unstructured
models use only input information x to predict y;, structured
learning models use the additional information about y;, for all
7 related to ¢. This prior information about interplays between
the outputs y is application-specific and depends on prior beliefs
of a practitioner about which relationships might be useful.

Conditional random fields (CRF) is a type of discrimina-
tive probabilistic graphical model designed to predict structured
output. Originally, CRF were proposed for classification of se-
quential data [20].

The conditional distribution P(y|x) for CRF can be repre-
sented as

1 , 3.
P(ylx) = 7 eX it Alwix)+ X0 IBiyix) (3)

a?/@7x)

where A(a, y;, %) is an association potential with parameters c,
I(f3,vi,y;,x) is an interaction potential with parameters (3, i ~
J denotes that y; and y; are connected by an edge in the graph
structure, and Z («v, 3, x) represents a normalization function. In
general, the output y; is associated with a vector of observation
x by an association function, while relationships among outputs
can be modeled by an interaction function. Association and
interaction potential are usually defined as linear combinations
of a set of feature functions over K-dimensional parameters «
and L-dimensional parameters [ [20]:

K

A,y x) = Y g fi(yi %) “)
k=1
L

[(ﬂvyﬁijx) = Zﬂlgl(y7ayj7x) (5)
=1

Feature functions are convenient since they allow one to
model arbitrary interplays between inputs and outputs. In this
way, any potentially relevant feature may be included to the
model since their relevance is automatically determined through
the parameter estimation process.

The learning task is to determine values of parameters « and (3
to maximize the conditional log-likelihood of the set of training
examples:

L(e, ) = logP(y[x)
(dvﬁ) = argmaxa.ﬂ(L(aa/@))'

(6)
(N

On the other hand, given estimated parameters & and B and
inputs x, the inference task is to find the point estimate y
of outputs y such that the conditional probability P(y|x) is
maximized:

y = argmax, (P(y|x)). (8)
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Models with real valued outputs pose quite different chal-
lenges with respect to feature function complexity compared to
discrete-valued case. CRFs were originally designed for classi-
fication problems where the normalizing function Z is finite and
defined as a sum over finitely many possible values of y. On the
contrary, for regression, Z must be an integrable function. In
general, providing that 7 is integrable can be very difficult and
computationally expensive due to the complexity of association
and interaction potentials. However, the association and interac-
tion potentials could be designed in a way that allows efficient
learning and inference.

The selection of appropriate feature functions in CRF is a
manual process which is usually application-specific. How-
ever, the choice of features is often constrained to simple
constructs to reduce the complexity of learning and inference
from CRF. Let us assume we are given K unstructured (base-
line) predictors, Ry (x), k = 1, ..K, that predict single out-
put y; relying on any subset of x. To model the dependency
between the prediction and output, we use quadratic feature
functions:

fulyi, x) = —(yi — Ri(x))*. )

These feature functions follow the basic principle for associ-
ation potentials, i.e., their values are large when predictions and
outputs are similar. To model the correlation among outputs, we
use the quadratic feature function:

(10)

91(Yi, yj,%x) = —efj Silj (x)(yi — ZUJ)Q

where ¢;; = 1 if an edge exists between output y; and y; in the
graph G, and e;; = 0 otherwise; S’,fj (x) represents the similar-
ity between outputs y; and y; and in general depends on inputs
x. The larger the value of S! ;(x) is, the more similar the out-
puts ¥; and y; are. It should be noted that using multiple graphs
G| can facilitate modeling of different aspects of correlation
between outputs.

In this way, the exponent of the probability distribution
P(y|x) is a quadratic function in terms of y. Therefore P(y|x)
can be transformed into the multivariate Gaussian distribution

N(p(x), B(x)):
1

P(y|X) = (27-‘-)N/2 |2|1/2

1
X exp (—2(y —u)'Z (y - u)) (11)

where ¥ and g are covariance matrix and mean vector, re-
spectively. Therefore, the resulting conditional distribution is
Gaussian with mean g and covariance 3. We observe that 3
is a function of parameters « and 3, and interaction potential
graphs (7, while p is also a function of inputs x. The resulting
CRF is the Gaussian CRF.

Since the model is Gaussian, the inference is straightforward,
i.e., the prediction is expected value, which is equal to the mean
1 of the distribution:

y = argmax, P(y[x) = Xb. (12)

I1l. RESULTS
A. Evaluation Procedure

In this paper, we employed two unstructured models, MLP
neural network and the MLLR model, as well as GCREF, in order to
predict WSS distributions through time. For training the GCRF
model, we randomly chose 70% of total data and remaining
30% of data was used for testing. Since we use predictions of
both unstructured models MLP and MLR as inputs to GCREF,
we applied fivefold cross validation on the training set. First,
for both AAA and carotid bifurcation, we split the training set
into five subsets (D;,i =1,...,5) of equal sizes. Then, we
reserved one dataset D; for testing and merged data from the
remaining four datasets D, j # i for training. The procedure
was repeated five times, for 7 = 1, ..., 5. Finally, we got MLP
and MLR predictions for all samples in training sets.

For each surface node, we constructed one MLR model with
N, outputs, where each of NV, outputs represent WSS value for a
single time step (/V; is the number of time steps). This means that
we created 195, 597, and 885 (642, 1303, and 1987) different
linear models in case of the AAA (carotid bifurcation) model.
The features of the MLR model were geometric parameters of
models, blood density, dynamic viscosity and velocities in all
time steps. More specifically, we used 18 features in of the AAA
model and 24 features in case of the carotid bifurcation model.
The same procedure is repeated for the MLP model where we
create one neural network for each node.

In order to employ the GCRF model to predict WSS dis-
tribution, we define the similarity matrix (graph) between dif-
ferent surface nodes. Let S; = (z;,v;, z;) and S; = (x;,y;, ;)
be coordinates of the ¢th and jth surface nodes, respectively.
The distance between two nodes is calculated as the Euclidean
distance:

d(S;, 5;) = \/(xi =)+ (i —y)* + (2 - 2)% (13)

In order to eliminate noise in the similarity matrix, we elim-
inated similarities of some nodes that are far away from each
other. We calculate similarity matrix between the ¢th and jth
node as

0, if d(Sz',Sj) > g
1— d(S7, Sj) 7 mind

fta — ming
where ming, and p4y are minimum and mean values of all dis-
tances between nodes, respectively.

For each training example and for each time step, we trained
a different GCRF model. In this way, we estimated different
parameters « and § for each training example. Our proposed
model predicts the target values for a test example in the fol-
lowing way. First, it finds the most similar training example
(the nearest neighbor) and then uses its estimated parameters
« and [ to predict the evolution of WSS distributions through
time.

We evaluated the performances of the proposed models by
computing their coefficients of determination R?. In a general
form, R? can be seen as the fraction of unexplained variance. In
order to define the coefficient of determination at ¢th time step

S(i,j) = (14)

otherwise
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TABLE Il
PERFORMANCES FOR AAA MODEL

Dataset (nodes) Model tq to t3 ty ts tg tr ts to t1o Average
AAA (375) MLR 0964 0963 0957 0936 0857 0.765 0.850 0.745 0.827  0.837 0.870
MLP 0948 0982 0982 0971 0.934  0.898 0931 0.883  0.887  0.806 0.922
GCRF 0969 0984 0984 0972 0935 0.898 0932 0.883 0.894 0.853 0.930
AAA (1125) MLR 0957 0960 0957 0939 0939 0.774 0.868 0.734  0.849  0.855 0.883
MLP 0988 0987 0990 0985 0985 0.862 0953 0.766 0917  0.865 0.930
GCRF 098 0987 0991 0987 0987 0.875 0955 0.814 0.922 0.894 0.940
AAA (2205) MLR 0955 0956 0953 0933  0.851 0.774  0.861 0.739 0.842 0.839 0.870
MLP 0.961 0982 098 0976 0940 0929 0965 0883 0.944 0.858 0.942
GCRF 0974 0983 0988 0978 0.942 0.929 0966 0.885 0.945 0.886 0.948
TABLE IV
PERFORMANCES FOR CAROTID BIFURCATION MODEL
Dataset (nodes) Model tq to t3 ty ts tg tr ts tg t10 Average
Carotid (1854) MLR 0.767  0.740  0.761 0.762  0.762  0.763 0.762 0.763  0.763  0.764 0.761
MLP 0.873 0930 0963 0.968 0980 0.978 0957 0946 0932 0.879 0.941
GCRF 0904 0934 0960 0968 0980 0.978 0959 0950 0.937 0.909 0.948
Carotid (3877) MLR 0.803 0.768 0.768 0.768  0.793  0.794  0.794 0.794  0.795  0.795 0.787
MLP 0.850  0.891 0966 0985 0985 0985 0.982 0964 00911 0.880 0.940
GCRF 0908 0914 0966 0985 0985 0985 0979 0.964 0933 0917 0.954
Carotid (5641) MLR 0.791 0.762  0.781 0.782 0.782 0.782 0.782  0.782  0.783  0.783 0.781
MLP 0.845 0910 0960 0980 0983 0974 0974 0959 0945 0.831 0.936
GCRF  0.895 0910 0961 0973 0983 0974 0974 0959 0945 0.891 0.946

R?, let us define 7 (j) as the mean value of WSS for the jth
surface node at time step ¢:

Nies
1 test
—t [ t
y Q)= Yi\J)
= w St
t= 17 Ntaj_la "aNsurf (15)

where Ni.s: is the number of testing examples, Ng,.¢ is the
number of surface nodes, and y!(j) is the WSS value for
jth node at tth time step of ¢th example calculated by the fi-
nite element method (FEM). The sum of squares (proportional
to the variances) SiEf for the ith example at time step ¢ is
calculated as

Nsurt
SE; = > (W) -70)*

Jj=1

(16)

The residuals are defined as a squared error of the sth example
at time step t:

Nsurt
> WG —6())?

j=1

SE! = 17)

where ¢! (j) is the predicted WSS value for jth surface node at
tth time step of ¢th example. Finally, the coefficient of determi-
nation R? at tth time step is calculated as

Nies
Neest SEf
Rt2 -1 Zz:l i

—- (18)
Sy SE

B. Performance on AAA and Carotid Bifurcation

In order to make a fair comparison, we trained unstructured
models (MLP neural network and MLR) on the same data used
for GCREF training. Tables III and IV show obtained results on
the same test data for AAA and carotid bifurcation models,
respectively. Values in these tables represent coefficient of de-
termination R?, for each time stept = 1, ..., 10, along with the
average R? across all time steps.

Tables III and IV clearly show that the MLP model outper-
forms the MLR model on both AAA and carotid bifurcation
models. More precisely, on the AAA(375) dataset, the MLP
achieved higher accuracy compared to the MLR in eight out of
ten time steps. In addition, on the AAA(1125) and AAA(2205)
datasets, the MLP outperformed the MLR in all time steps. Sim-
ilar results are obtained on carotid bifurcation datasets where
the MLP achieved higher accuracy compared to the MLR in
all time steps for all three mesh resolutions (1854, 3877, and
5641 nodes). The fact that the MLP improved accuracy over the
MLR model is confirmed by the average R* values across all
time steps (the last columns in Tables III and IV). Even though
the MLP outperforms the MLR on all datasets, results given in
Tables III and IV indicate that both the MLP (better) and the
MLR (worse) can be used to predict WSS distribution through
time. This confirms the first hypothesis of our paper that WSS
distributions at different cardiac cycle time points for geometri-
cally parameterized models of AAA and carotid bifurcation can
be modeled by using machine learning approaches.

In addition, Tables III and IV show that the GCRF model
achieved higher accuracy compared to unstructured predictors
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Fig. 4. Temporal evolution of WSS distribution for the AAA model (one randomly chosen geometry) calculated by FEM and predicted by the GCRF
(units Pa). Due to space limitation we show results for only five time steps (of total ten).

t, t,
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Fig. 5.

Temporal evolution of WSS distribution for the carotid bifurcation model (one randomly chosen geometry) calculated by FEM and predicted

by the GCRF (units Pa). Due to space limitation we show results for only five time steps (of total ten).

(MLP and MLR) on both datasets. More precisely, on the
AAA(375) dataset, the GCRF outperformed the MLP model
in eight out of ten time steps, while on the remaining two steps
they achieved the same accuracy. Furthermore, on AAA(1124)
dataset, the GCRF achieved higher accuracy compared to the
MLP model in eight out of ten time steps, while on one step
they achieved the same accuracy. Similarly, on the AAA(2205)
dataset, the GCRF achieved higher accuracy compared to the
MLP model in nine out of ten time steps, while on the remaining
step they achieved the same accuracy. Similar results can be ob-
served on the carotid bifurcation dataset. More specifically, on
Carotid(1854) dataset, the GCRF outperformed the MLP model
in six out of ten time steps, while they achieved the same accu-
racy in three steps. Similarly, on the Carotid(3877) dataset, the
GCREF achieved higher accuracy compared to the MLP model
in four out of ten time steps, while they achieved the same ac-
curacy in five time steps. On the Carotid(5641) dataset, GCRF
outperformed the MLP model in three out of ten time steps,

while they achieved the same accuracy six steps. In addition,
GCRF outperformed MLR in all time steps for all AAA and
carotid bifurcation datasets. The average values of R? calcu-
lated across all time steps show that the GCRF model outper-
formed both unstructured predictors. These results confirm the
second hypothesis of our paper, i.e., taking spatial correlation
into account improves prediction accuracy of WSS distribution
through time.

Figs. 4 and 5 show the distribution of WSS through time,
calculated by FEM and predicted by the GCRF model. Due
to lack of space, we showed results only for one randomly
chosen test example from AAA and carotid bifurcation datasets
in five time steps (t1, t3, t5, t7, and t1¢). These figures confirm
the ability of machine learning approaches to predict the WSS
distribution through time for both geometrically parameterized
models.

In addition, we compared running time of FEM and GCRF
methods for prediction of WSS distribution of AAA and carotid
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bifurcation models. Training of the GCRF model for prediction
of WSS distribution is a tedious task. However, once trained
this model can be utilized to predict WSS distribution in much
shorter time when comparing to FEM approach. For instance,
average FEM run time for calculation of WSS distribution of
testing samples was 5.3, 6.8, and 8.0 s for the three datasets
of the AAA model and 19.4, 198.4, and 604.1 for the three
datasets of the carotid bifurcation model. On the other hand, the
corresponding average GCRF run times were 0.032, 0.283, and
0.604 s for the AAA model and 0.5702, 5.856, and 10.937 for
the carotid bifurcation model. All the experiments were run on a
Windows machine with a 3.40 GHz Intel(R) Core(TM) i7-3770
CPU and 32GB memory.

IV. CONCLUSION

In this paper, an application of machine learning techniques
to hemodynamic problems was presented. We modeled the re-
lationships between geometric parameters, blood density, dy-
namic viscosity and velocity of the human carotid bifurcation,
and AAA models and the WSS distribution. The goal of this
paper is to verify that for geometrically parameterized models,
which are simplified comparing to real geometries, machine
learning approaches may be used to predict WSS distribution at
different cardiac cycle time points. We employed two unstruc-
tured predictors, MLP neural network and the MLR model, in
order to predict WSS distributions through time. The obtained
results showed that on the AAA model both predictors exhib-
ited capabilities of being used for this task, while on the carotid
bifurcation model MLP demonstrated much better results in
terms of R2. In addition, we applied the GCRF model, which
leverages the benefits of both unstructured models as well as
the similarities between different surface nodes. The results ob-
tained from simulations showed that GCRF was able to improve
accuracy on both AAA and carotid bifurcation models. Further-
more, this work shows that the achieved results can be used to
aid the assessment of stroke risk for a given patient’s data in
real time.

Further research will be focused on applying other unstruc-
tured multioutput regression models and including them into the
GCRF model. In addition, since we used simplified geometri-
cally parameterized models, our further research plan is to use
real life data, where machine learning techniques will be tested
on patient data. More specifically, we plan to represent a real
arterial geometry with an adequate geometrically parameterized
model and predict WSS distribution for the simplified model.
Thereafter, WSS value of each surface node of the real arte-
rial geometry can be estimated by interpolating WSS values of
the nearest nodes of the simplified model. However, real arte-
rial geometries are quite complex and describing them with a
set of features that can be further processed by machine learn-
ing methods to predict WSS distribution is a challenging task.
Therefore, we plan to extend the proposed approach where, in
addition to geometrical parameters which can be estimated from
medical images, machine learning approaches would also use
other node specific descriptors (e.g., coordinates, distance from
the central line, local curvature descriptors, cross section area,

etc.) to predict the WSS value. In this case, instead of node
specific predictors, we would generate a global predictor which
would predict WSS values for all nodes belonging to a cer-
tain arterial region (for instance all nodes in the internal carotid
bulbus region).
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