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Machine Learning Approach for Predicting Wall
Shear Distribution for Abdominal Aortic

Aneurysm and Carotid Bifurcation Models
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Abstract—Computer simulations based on the finite ele-5
ment method represent powerful tools for modeling blood6
flow through arteries. However, due to its computational7
complexity, this approach may be inappropriate when re-8
sults are needed quickly. In order to reduce computa-9
tional time, in this paper, we proposed an alternative10
machine learning based approach for calculation of wall11
shear stress (WSS) distribution, which may play an im-12
portant role in mechanisms related to initiation and de-13
velopment of atherosclerosis. In order to capture relation-14
ships between geometric parameters, blood density, dy-15
namic viscosity and velocity, and WSS distribution of geo-16
metrically parameterized abdominal aortic aneurysm (AAA)17
and carotid bifurcation models, we proposed multivariate18
linear regression, multilayer perceptron neural network and19
Gaussian conditional random fields (GCRF). Results ob-20
tained in this paper show that machine learning approaches21
can successfully predict WSS distribution at different car-22
diac cycle time points. Even though all proposed methods

Q1
23

showed high potential for WSS prediction, GCRF achieved24
the highest coefficient of determination (0.930–0.948 for25
AAA model and 0.946–0.954 for carotid bifurcation model)26
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demonstrating benefits of accounting for spatial correla- 27
tion. The proposed approach can be used as an alternative 28
method for real time calculation of WSS distribution. 29

Index Terms—Abdominal aortic aneurysm (AAA), carotid 30
bifurcation, finite element (FE) modeling, machine learning, 31
wall shear stress (WSS). 32

I. INTRODUCTION 33

S TROKE is one of the most common causes of death world- 34

wide. Often it occurs as a result of carotid artery stenosis, 35

which may produce infarction by embolization or thrombosis 36

at the site of narrowing. Local hemodynamics, affecting both 37

thrombosis and embolization processes, can be investigated by 38

computer simulations. 39

There are many factors that may increase the risk of stroke, 40

such as systolic and diastolic hypertension, cigarette smoking, 41

diabetes, etc. It has been shown that stenosis may occur as a 42

consequence of geometrical vessel dimensions changes in the 43

region of the carotid bifurcation [1], [2]. In fact, these geomet- 44

rical changes affect blood flow and, thus, the entire local hemo- 45

dynamics, including wall shear stress (WSS) distribution. Large 46

changes of the WSS values may affect the embolic mechanism 47

by which carotid lesions can induce stroke [3]. 48

An aneurysm is a blood-filled balloon-like bulge in the blood 49

vessel wall usually growing at regions of low WSS [4]. Its 50

rupture can cause severe hemorrhaging and even death. It has 51

been shown that hemodynamics plays a fundamental role in the 52

mechanisms of initiation, growth, and rupture of aneurysm [5]. 53

A number of papers show that WSS has significant impact 54

on atherosclerosis emergence and development processes [6], 55

[7]. Therefore, calculation and analysis of this quantity is of 56

great importance. Simulations based on the finite element (FE) 57

method can accurately calculate WSS distribution. However, 58

this approach may be prohibitively computationally costly in 59

medical applications when results should be provided quickly. 60

For this purpose, alternative approaches based on machine learn- 61

ing algorithms may be more suitable. It has been shown that 62

several machine learning algorithms like neural networks, lin- 63

ear regression, k-nearest neighbors, random forest, and support 64

vector machine have high potential for modeling relationships 65

between WSS and parameters of geometrically parameterized 66

models of abdominal aortic aneurysm (AAA) and carotid bifur- 67

cation [8], [9]. However, these algorithms are all unstructured 68

2168-2194 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


IEE
E P

ro
of

2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 00, 2016

predictors and do not account for spatial dependencies between69

output variables (WSS). In addition, previous studies [8], [9]70

were based on steady state simulation and do not incorporate71

temporal evolution of WSS.72

Unstructured regression is designed to model input–output73

dependencies disregarding relationships among outputs. Mul-74

tivariate linear regression (MLR) and multilayer perceptron75

(MLP) neural network are two techniques commonly used for76

unstructured regression problems. Unlike MLR, which is a sim-77

ple model that uses a linear combination of predictor variables78

to model a continuous response vector, MLP is a complex model79

in which data from predictor variables flow through a network80

consisting of multiple layers of nodes called neurons providing81

the response vector at the output. On the other hand, Gaus-82

sian conditional random fields (GCRF) are a type of structured83

regression model that incorporates multiple predictors and mul-84

tiple graphs [10]. One of the main problems with structured85

regression is related to the fact that models are usually not con-86

vex and thus, they do not guarantee global optimum and efficient87

optimization. It has been shown that if the relationships among88

the outputs are represented in a specific form, then the tradi-89

tional continuous conditional random field model has the form90

of a multivariate Gaussian distribution, which facilitates learn-91

ing and inference. So far, different extensions of GCRF have92

been developed [11], [12] and GCRF has been successfully ap-93

plied for solving various challenging problems [13], [14].94

In this paper, we evaluated two unstructured prediction mod-95

els, MLP neural network and MLR, as well as a GCRF model96

to capture temporal relationships between geometric parame-97

ters, blood density, dynamic viscosity and blood velocity (input98

variables), and WSS distributions (output variable). To ana-99

lyze the influence of previously mentioned input variables on100

WSS distributions in the human carotid bifurcation and AAA,101

computer simulations were run to generate data pertaining to102

this phenomenon. In this paper, we test the following two103

hypotheses:104

1) WSS distributions at different cardiac cycle time points105

for geometrically parameterized models of AAA and106

carotid bifurcation can be modeled by using machine107

learning approaches.108

2) The use of GCRF model for capturing spatial relation-109

ships may lead to improvement in overall WSS distri-110

butions prediction accuracy when comparing to unstruc-111

tured predictors.112

II. METHODOLOGY113

A. Datasets114

In order to demonstrate the applicability of machine learning115

techniques for capturing relationships between geometric pa-116

rameters, density, viscosity and velocity, and WSS distribution,117

datasets containing 4000 samples for both AAA carotid bifurca-118

tion models were created by using in-house software packages119

[15], [16]. Input variables (predictors) were chosen based on120

their known influence on WSS calculation. In particular, shear121

stress in a general laminar flow is proportional to the gradi-122

ent of fluid velocity in the direction perpendicular to the flow123

TABLE I
AVERAGE VALUES OF INPUT PARAMETERS FOR AAA MODEL

Parameter Mean value Unit

Length 100 mm
Aneurysm length 40 mm
A 30 mm
Aorta diameter 20 mm
C 20 mm
B 20 mm
Density 0.00105 gr/mm3

Dynamic viscosity 0.003675 Pa·s
Peak systolic velocity 300 mm/s

TABLE II
AVERAGE VALUES OF INPUT PARAMETERS FOR CAROTID

BIFURCATION MODEL

Parameter Mean value Unit

Angle ICA-CCA 25 deg
Angle ECA-CCA 25 deg
Diameter of CCA 6.2 mm
Diameter of CBRE 3.658 mm
Diameter of CBRI 4.9 mm
Length of CCA 7.44 mm
Length of CBR 7.316 mm
Length of ECA 18.6 mm
Length of ICA 26.04 mm
Diameter at end of ICA 4.34 mm
Diameter of ICB 6.49 mm
Distance to ICB 5.39 mm
Density 0.00105 gr/mm3

Dynamic viscosity 0.00367 Pa·s
Peak systolic velocity 437.22 mm/s

where the dynamic viscosity is a constant of proportionality. In 124

computational fluid dynamics (CFD), governing equations for 125

the blood flow in lumen domain are three-dimensional Navier– 126

Stokes equations (which incorporate the density of the blood 127

and dynamic viscosity) together with the continuity equation 128

[16]. The solution, for a particular set of boundary conditions 129

(e.g., prescribed inlet velocity profile which simulates cardiac 130

cycle), provides the fluid velocity in a given geometry, which is 131

in our case defined by geometric parameters. 132

Sampling is performed from uniform distributions with per- 133

turbation of each parameter up to 30% of the corresponding 134

mean values [16]. Tables I and II show the mean values of in- 135

put variables used for sampling of AAA and carotid bifurcation 136

model parameters, respectively. 137

The geometric parameters shown in Figs. 1 and 2 were used 138

to generate internal blood vessel surfaces. Generated surfaces 139

represent the boundaries for blood flow domain. We assumed 140

that both AAA and carotid bifurcation have the same symmetry 141

plane. Therefore, FE models were generated for half of the 142

domain, but the results can be presented for the entire domain. 143

Unsteady simulations with parabolic inflow velocity profiles 144

were undertaken and WSS distributions for each geometry were 145

computed for 10 time steps (Nt = 10). We assumed the entering 146

flow was pulsatile, with a typical waveforms shown in Fig. 3 147

for AAA [17] and carotid bifurcation [18] models. For each 148
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Fig. 1. Geometrically parameterized model of AAA. Geometrical pa-
rameters of AAA model: ′Length′ is the parameter that defines the total
horizontal projection of the generated AAA model; ′A′ is the height of the
arc of the central line; ′Aorta diameter′ is the abdominal aorta diameter;
′B′ is the radius from the central line to the inner wall of the aneurysm;
′C′ is the radius from the central line to the outer wall of the aneurysm;
′Aneurysm length′ is the average length of the aneurysm.

Fig. 2. Geometrically parameterized model of carotid bifurca-
tion. The abbreviations here are: CCA−common carotid artery,
CBR−carotid bifurcation region, CBRE−carotid bifurcation region ex-
ternal, ECA−external carotid artery, CBRI−carotid bifurcation region in-
ternal, ICA−internal carotid artery, ICB−internal carotid bulbus.

Fig. 3. Input velocity profile for the AAA [17] and carotid bifurcation [18]
models. Inlet peak systolic velocity (PSV) corresponds to t/T = 0.305 and
t/T = 0.1 for AAA and carotid bifurcation models respectively, where t/T
is the relative time with respect to the cycle period T.

generated sample of both aneurysm and carotid bifurcation mod- 149

els, peak systolic velocity is sampled from the uniform distribu- 150

tion (bounded with 30% perturbation of the corresponding mean 151

value) while velocity values in other time steps are calculated by 152

multiplying the sampled peak systolic velocity value with the 153

corresponding function given in Fig. 3. Mean values of the peak 154

systolic velocity for aneurysm and carotid bifurcation models 155

are adopted from [17] and [18], respectively. 156

All velocity components at the fixed walls are set to be zero. 157

Similarly, the velocity components at the plane of symmetry in 158

the direction normal to the plane, are set to zero. It is assumed 159

that the end cross-sections of both AAA and carotid bifurcation 160

models are stress-free, i.e., normal and tangential stresses are 161

set to zero. The flow was assumed to be laminar, Newtonian, 162

and incompressible. Also, the walls are assumed to be rigid. All 163

calculations were performed using an open source FE program 164

for fluid flow and fluid-solid interaction - PAK [15]. The CFD 165

postprocessing results give an insight into the local hemody- 166

namics and the blood mechanical action on the vessel walls, 167

including the distribution of WSS. 168

In order to test whether the accuracy of the proposed ma- 169

chine learning based method for prediction of WSS distribution 170

depends on the mesh resolution, we generated three datasets, 171

each containing 4000 samples, with different mesh resolutions 172

for both AAA and carotid bifurcation models. In these datasets, 173

generated samples of the AAA FE model contain 375, 1125, and 174

2205 nodes, where 195, 597, and 885 lie on the wall surface, re- 175

spectively. On the other hand, samples of the carotid bifurcation 176

FE model contain 1854, 3877, and 5641 nodes, of which 642, 177

1303, and 1987 lie on the wall surface respectively. By using 178

CFD simulations, WSS values were calculated in all surface 179

nodes at the vessel wall for all datasets and for all samples for 180

10 time steps (Nt = 10; t/T = {0.1, 0.2, . . . , 1}, where t/T is 181

the relative time with respect to the cycle period T ). 182

B. Unstructured Regression 183

Let us denote by D = {xi,yi}i=1,...M the dataset con- 184

taining M observations, where xi = (xi1 , . . . , xiP ) is one 185
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observation with P features and yi = (yi1 , . . . , yiN ) is a vector186

of real-valued output variables. The aim of multivariate (or mul-187

tioutput) regression models is to learn a mapping f : RP → RN188

that predicts the vector of output variables yi given an input189

vector xi .190

1) Multivariate Linear Regression: The MLR model ex-191

presses an N -dimensional continuous response vector (yi) as a192

linear combination of predictor terms (xi) plus a vector of error193

terms (εi) with a multivariate normal distribution. In general,194

model may be written as195

Y = XW + ε (1)

where Y is a MxN matrix with a series of multivariate measure-196

ments, X is a MxP design matrix, W is a PxN matrix containing197

parameters to be estimated, and ε is a matrix containing errors198

or noise. The errors are assumed to be uncorrelated across mea-199

surements.200

2) MLP Neural Network: The MLP is a prediction model201

consisting of an input layer, one or more hidden layers and202

an output layer of simple elements called neurons. Neurons203

between different layers are connected with parameters called204

weights, which should be estimated through an optimization205

procedure (training). The objective of the training is to find a206

set of neural network parameters that minimize the error be-207

tween the neural network predictions and the desired outputs.208

The most commonly used optimization algorithm for learning209

the parameters of neural network is the back-propagation al-210

gorithm [19]. However, the basic version of this algorithm has211

problems with slow convergence and local minima. For this212

purpose, a number of variations of the standard algorithm have213

been developed. In this study, we used the backpropagation214

algorithm with momentum and adaptive learning rate since it215

has been shown to be effective for the prediction of the WSS216

distribution [8], [9]. In each iteration of the this algorithm, pa-217

rameters of the MLP are adjusted according to the following218

formula:219

ΔWnew = mcΔWprev + lrmc
dE

dW
(2)

where W is a parameter vector, ΔWnew and ΔWprev are the220

new and previous change of the parameter vector, respectively,221

mc is a momentum constant, lr is a learning rate, and E is the222

objective function which defines how much real outputs dis-223

agree with predicted ones (e.g., mean squared error). In each224

iteration (epoch) of the learning process, the learning rate is225

adjusted according to linc
r , ldec

r , and maxinc parameters. Con-226

cretely, if performance decreases toward the goal, the learning227

rate is increased based on the linc
r parameter. On the other hand,228

if performance increases by more than the value defined by the229

maxinc parameter, the learning rate is adjusted based on the ldec
r230

parameter.231

In this study, we used an MLP neural network with ten neu-232

rons in a single hidden layer and sigmoid activation functions in233

hidden and output neurons. The stopping criterion was defined234

as the maximum number of learning epochs (1000). The values235

of other parameters were: lr = 0.01, mc = 0.9, linc
r = 1.05, ldec

r236

= 0.7, and maxinc = 1.04.237

C. Structured Regression 238

A structured learning approach tries to simultaneously predict 239

all outputs given all inputs and relationships among outputs. 240

Structure learning methods can exploit correlation among output 241

variables, which often gives benefits compared to unstructured 242

learning methods. In other words, while traditional, unstructured 243

models use only input information x to predict yi , structured 244

learning models use the additional information about yj , for all 245

j related to i. This prior information about interplays between 246

the outputs y is application-specific and depends on prior beliefs 247

of a practitioner about which relationships might be useful. 248

Conditional random fields (CRF) is a type of discrimina- 249

tive probabilistic graphical model designed to predict structured 250

output. Originally, CRF were proposed for classification of se- 251

quential data [20]. 252

The conditional distribution P (y|x) for CRF can be repre- 253

sented as 254

P (y|x) =
1

Z(α, β,x)
e
∑N

i = 1 A(α,yi,x)+
∑

i∼j I (β ,yi ,yj,x) (3)

where A(α, yi,x) is an association potential with parameters α, 255

I(β, yi, yj ,x) is an interaction potential with parameters β, i ∼ 256

j denotes that yi and yj are connected by an edge in the graph 257

structure, and Z(α, β,x) represents a normalization function. In 258

general, the output yi is associated with a vector of observation 259

x by an association function, while relationships among outputs 260

can be modeled by an interaction function. Association and 261

interaction potential are usually defined as linear combinations 262

of a set of feature functions over K-dimensional parameters α 263

and L-dimensional parameters β [20]: 264

A(α, yi,x) =
K∑

k=1

αkfk (yi,x) (4)

I(β, yi, yj ,x) =
L∑

l=1

βlgl(yi, yj ,x). (5)

Feature functions are convenient since they allow one to 265

model arbitrary interplays between inputs and outputs. In this 266

way, any potentially relevant feature may be included to the 267

model since their relevance is automatically determined through 268

the parameter estimation process. 269

The learning task is to determine values of parameters α and β 270

to maximize the conditional log-likelihood of the set of training 271

examples: 272

L(α, β) = logP (y|x) (6)

(α̂, β̂) = argmaxα,β (L(α, β)). (7)

On the other hand, given estimated parameters α̂ and β̂ and 273

inputs x, the inference task is to find the point estimate ŷ 274

of outputs y such that the conditional probability P (y|x) is 275

maximized: 276

ŷ = argmaxy(P (y|x)). (8)
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Models with real valued outputs pose quite different chal-277

lenges with respect to feature function complexity compared to278

discrete-valued case. CRFs were originally designed for classi-279

fication problems where the normalizing function Z is finite and280

defined as a sum over finitely many possible values of y. On the281

contrary, for regression, Z must be an integrable function. In282

general, providing that Z is integrable can be very difficult and283

computationally expensive due to the complexity of association284

and interaction potentials. However, the association and interac-285

tion potentials could be designed in a way that allows efficient286

learning and inference.287

The selection of appropriate feature functions in CRF is a288

manual process which is usually application-specific. How-289

ever, the choice of features is often constrained to simple290

constructs to reduce the complexity of learning and inference291

from CRF. Let us assume we are given K unstructured (base-292

line) predictors, Rk (x), k = 1, ...K, that predict single out-293

put yi relying on any subset of x. To model the dependency294

between the prediction and output, we use quadratic feature295

functions:296

fk (yi,x) = −(yi − Rk (x))2 . (9)

These feature functions follow the basic principle for associ-297

ation potentials, i.e., their values are large when predictions and298

outputs are similar. To model the correlation among outputs, we299

use the quadratic feature function:300

gl(yi, yj ,x) = −el
ijS

l
ij(x)(yi − yj )2 (10)

where eij = 1 if an edge exists between output yi and yj in the301

graph Gl , and eij = 0 otherwise; Sl
ij (x) represents the similar-302

ity between outputs yi and yj and in general depends on inputs303

x. The larger the value of Sl
ij (x) is, the more similar the out-304

puts yi and yj are. It should be noted that using multiple graphs305

Gl can facilitate modeling of different aspects of correlation306

between outputs.307

In this way, the exponent of the probability distribution308

P (y|x) is a quadratic function in terms of y. Therefore P (y|x)309

can be transformed into the multivariate Gaussian distribution310

N (μ(x),Σ(x)):311

P (y|x) =
1

(2π)N/2 |Σ|1/2

× exp

(

−1
2
(y − μ)T Σ−1(y − μ)

)

(11)

where Σ and μ are covariance matrix and mean vector, re-312

spectively. Therefore, the resulting conditional distribution is313

Gaussian with mean μ and covariance Σ. We observe that Σ314

is a function of parameters α and β, and interaction potential315

graphs Gl , while μ is also a function of inputs x. The resulting316

CRF is the Gaussian CRF.317

Since the model is Gaussian, the inference is straightforward,318

i.e., the prediction is expected value, which is equal to the mean319

μ of the distribution:320

ŷ = argmaxyP (y|x) = Σb. (12)

III. RESULTS 321

A. Evaluation Procedure 322

In this paper, we employed two unstructured models, MLP 323

neural network and the MLR model, as well as GCRF, in order to 324

predict WSS distributions through time. For training the GCRF 325

model, we randomly chose 70% of total data and remaining 326

30% of data was used for testing. Since we use predictions of 327

both unstructured models MLP and MLR as inputs to GCRF, 328

we applied fivefold cross validation on the training set. First, 329

for both AAA and carotid bifurcation, we split the training set 330

into five subsets (Di, i = 1, . . . , 5) of equal sizes. Then, we 331

reserved one dataset Di for testing and merged data from the 332

remaining four datasets Dj , j �= i for training. The procedure 333

was repeated five times, for i = 1, . . . , 5. Finally, we got MLP 334

and MLR predictions for all samples in training sets. 335

For each surface node, we constructed one MLR model with 336

Nt outputs, where each of Nt outputs represent WSS value for a 337

single time step (Nt is the number of time steps). This means that 338

we created 195, 597, and 885 (642, 1303, and 1987) different 339

linear models in case of the AAA (carotid bifurcation) model. 340

The features of the MLR model were geometric parameters of 341

models, blood density, dynamic viscosity and velocities in all 342

time steps. More specifically, we used 18 features in of the AAA 343

model and 24 features in case of the carotid bifurcation model. 344

The same procedure is repeated for the MLP model where we 345

create one neural network for each node. 346

In order to employ the GCRF model to predict WSS dis- 347

tribution, we define the similarity matrix (graph) between dif- 348

ferent surface nodes. Let Si = (xi, yi , zi) and Sj = (xj , yj , zj ) 349

be coordinates of the ith and jth surface nodes, respectively. 350

The distance between two nodes is calculated as the Euclidean 351

distance: 352

d(Si, Sj ) =
√

(xi − xj )2 + (yi − yj )2 + (zi − zj )2 . (13)

In order to eliminate noise in the similarity matrix, we elim- 353

inated similarities of some nodes that are far away from each 354

other. We calculate similarity matrix between the ith and jth 355

node as 356

S(i, j) =

⎧
⎨

⎩

0, if d(Si, Sj ) > μd

1 − d(Si, Sj ) − mind

μd − mind
, otherwise

(14)

where mind , and μd are minimum and mean values of all dis- 357

tances between nodes, respectively. 358

For each training example and for each time step, we trained 359

a different GCRF model. In this way, we estimated different 360

parameters α and β for each training example. Our proposed 361

model predicts the target values for a test example in the fol- 362

lowing way. First, it finds the most similar training example 363

(the nearest neighbor) and then uses its estimated parameters 364

α and β to predict the evolution of WSS distributions through 365

time. 366

We evaluated the performances of the proposed models by 367

computing their coefficients of determination R2 . In a general 368

form, R2 can be seen as the fraction of unexplained variance. In 369

order to define the coefficient of determination at tth time step 370
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TABLE III
PERFORMANCES FOR AAA MODEL

Dataset (nodes) Model t1 t2 t3 t4 t5 t6 t7 t8 t9 t1 0 Average

AAA (375) MLR 0.964 0.963 0.957 0.936 0.857 0.765 0.850 0.745 0.827 0.837 0.870
MLP 0.948 0.982 0.982 0.971 0.934 0.898 0.931 0.883 0.887 0.806 0.922

GCRF 0.969 0.984 0.984 0.972 0.935 0.898 0.932 0.883 0.894 0.853 0.930
AAA (1125) MLR 0.957 0.960 0.957 0.939 0.939 0.774 0.868 0.734 0.849 0.855 0.883

MLP 0.988 0.987 0.990 0.985 0.985 0.862 0.953 0.766 0.917 0.865 0.930
GCRF 0.986 0.987 0.991 0.987 0.987 0.875 0.955 0.814 0.922 0.894 0.940

AAA (2205) MLR 0.955 0.956 0.953 0.933 0.851 0.774 0.861 0.739 0.842 0.839 0.870
MLP 0.961 0.982 0.986 0.976 0.940 0.929 0.965 0.883 0.944 0.858 0.942

GCRF 0.974 0.983 0.988 0.978 0.942 0.929 0.966 0.885 0.945 0.886 0.948

TABLE IV
PERFORMANCES FOR CAROTID BIFURCATION MODEL

Dataset (nodes) Model t1 t2 t3 t4 t5 t6 t7 t8 t9 t1 0 Average

Carotid (1854) MLR 0.767 0.740 0.761 0.762 0.762 0.763 0.762 0.763 0.763 0.764 0.761
MLP 0.873 0.930 0.963 0.968 0.980 0.978 0.957 0.946 0.932 0.879 0.941

GCRF 0.904 0.934 0.960 0.968 0.980 0.978 0.959 0.950 0.937 0.909 0.948
Carotid (3877) MLR 0.803 0.768 0.768 0.768 0.793 0.794 0.794 0.794 0.795 0.795 0.787

MLP 0.850 0.891 0.966 0.985 0.985 0.985 0.982 0.964 0.911 0.880 0.940
GCRF 0.908 0.914 0.966 0.985 0.985 0.985 0.979 0.964 0.933 0.917 0.954

Carotid (5641) MLR 0.791 0.762 0.781 0.782 0.782 0.782 0.782 0.782 0.783 0.783 0.781
MLP 0.845 0.910 0.960 0.980 0.983 0.974 0.974 0.959 0.945 0.831 0.936

GCRF 0.895 0.910 0.961 0.973 0.983 0.974 0.974 0.959 0.945 0.891 0.946

R2
t , let us define yt(j) as the mean value of WSS for the jth371

surface node at time step t:372

yt(j) =
1

Ntest

N t e s t∑

i=1

yt
i (j),

t = 1, . . . Nt, j = 1, . . . , Nsurf (15)

where Ntest is the number of testing examples, Nsurf is the373

number of surface nodes, and yt
i (j) is the WSS value for374

jth node at tth time step of ith example calculated by the fi-375

nite element method (FEM). The sum of squares (proportional376

to the variances) SE
t
i for the ith example at time step t is377

calculated as378

SE
t
i =

N s u r f∑

j=1

(yt
i (j) − yt(j))2 . (16)

The residuals are defined as a squared error of the ith example379

at time step t:380

SEt
i =

N s u r f∑

j=1

(yt
i (j) − ŷt

i (j))
2 (17)

where ŷt
i (j) is the predicted WSS value for jth surface node at381

tth time step of ith example. Finally, the coefficient of determi-382

nation R2
t at tth time step is calculated as383

R2
t = 1 −

∑N t e s t
i=1 SEt

i
∑N t e s t

i=1 SE
t
i

. (18)

B. Performance on AAA and Carotid Bifurcation 384

In order to make a fair comparison, we trained unstructured 385

models (MLP neural network and MLR) on the same data used 386

for GCRF training. Tables III and IV show obtained results on 387

the same test data for AAA and carotid bifurcation models, 388

respectively. Values in these tables represent coefficient of de- 389

termination R2
t , for each time step t = 1, . . . , 10, along with the 390

average R2 across all time steps. 391

Tables III and IV clearly show that the MLP model outper- 392

forms the MLR model on both AAA and carotid bifurcation 393

models. More precisely, on the AAA(375) dataset, the MLP 394

achieved higher accuracy compared to the MLR in eight out of 395

ten time steps. In addition, on the AAA(1125) and AAA(2205) 396

datasets, the MLP outperformed the MLR in all time steps. Sim- 397

ilar results are obtained on carotid bifurcation datasets where 398

the MLP achieved higher accuracy compared to the MLR in 399

all time steps for all three mesh resolutions (1854, 3877, and 400

5641 nodes). The fact that the MLP improved accuracy over the 401

MLR model is confirmed by the average R2 values across all 402

time steps (the last columns in Tables III and IV). Even though 403

the MLP outperforms the MLR on all datasets, results given in 404

Tables III and IV indicate that both the MLP (better) and the 405

MLR (worse) can be used to predict WSS distribution through 406

time. This confirms the first hypothesis of our paper that WSS 407

distributions at different cardiac cycle time points for geometri- 408

cally parameterized models of AAA and carotid bifurcation can 409

be modeled by using machine learning approaches. 410

In addition, Tables III and IV show that the GCRF model 411

achieved higher accuracy compared to unstructured predictors 412
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Fig. 4. Temporal evolution of WSS distribution for the AAA model (one randomly chosen geometry) calculated by FEM and predicted by the GCRF
(units Pa). Due to space limitation we show results for only five time steps (of total ten).

Fig. 5. Temporal evolution of WSS distribution for the carotid bifurcation model (one randomly chosen geometry) calculated by FEM and predicted
by the GCRF (units Pa). Due to space limitation we show results for only five time steps (of total ten).

(MLP and MLR) on both datasets. More precisely, on the413

AAA(375) dataset, the GCRF outperformed the MLP model414

in eight out of ten time steps, while on the remaining two steps415

they achieved the same accuracy. Furthermore, on AAA(1124)416

dataset, the GCRF achieved higher accuracy compared to the417

MLP model in eight out of ten time steps, while on one step418

they achieved the same accuracy. Similarly, on the AAA(2205)419

dataset, the GCRF achieved higher accuracy compared to the420

MLP model in nine out of ten time steps, while on the remaining421

step they achieved the same accuracy. Similar results can be ob-422

served on the carotid bifurcation dataset. More specifically, on423

Carotid(1854) dataset, the GCRF outperformed the MLP model424

in six out of ten time steps, while they achieved the same accu-425

racy in three steps. Similarly, on the Carotid(3877) dataset, the426

GCRF achieved higher accuracy compared to the MLP model427

in four out of ten time steps, while they achieved the same ac-428

curacy in five time steps. On the Carotid(5641) dataset, GCRF429

outperformed the MLP model in three out of ten time steps,430

while they achieved the same accuracy six steps. In addition, 431

GCRF outperformed MLR in all time steps for all AAA and 432

carotid bifurcation datasets. The average values of R2 calcu- 433

lated across all time steps show that the GCRF model outper- 434

formed both unstructured predictors. These results confirm the 435

second hypothesis of our paper, i.e., taking spatial correlation 436

into account improves prediction accuracy of WSS distribution 437

through time. 438

Figs. 4 and 5 show the distribution of WSS through time, 439

calculated by FEM and predicted by the GCRF model. Due 440

to lack of space, we showed results only for one randomly 441

chosen test example from AAA and carotid bifurcation datasets 442

in five time steps (t1 , t3 , t5 , t7 , and t10). These figures confirm 443

the ability of machine learning approaches to predict the WSS 444

distribution through time for both geometrically parameterized 445

models. 446

In addition, we compared running time of FEM and GCRF 447

methods for prediction of WSS distribution of AAA and carotid 448
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bifurcation models. Training of the GCRF model for prediction449

of WSS distribution is a tedious task. However, once trained450

this model can be utilized to predict WSS distribution in much451

shorter time when comparing to FEM approach. For instance,452

average FEM run time for calculation of WSS distribution of453

testing samples was 5.3, 6.8, and 8.0 s for the three datasets454

of the AAA model and 19.4, 198.4, and 604.1 for the three455

datasets of the carotid bifurcation model. On the other hand, the456

corresponding average GCRF run times were 0.032, 0.283, and457

0.604 s for the AAA model and 0.5702, 5.856, and 10.937 for458

the carotid bifurcation model. All the experiments were run on a459

Windows machine with a 3.40 GHz Intel(R) Core(TM) i7-3770460

CPU and 32GB memory.461

IV. CONCLUSION462

In this paper, an application of machine learning techniques463

to hemodynamic problems was presented. We modeled the re-464

lationships between geometric parameters, blood density, dy-465

namic viscosity and velocity of the human carotid bifurcation,466

and AAA models and the WSS distribution. The goal of this467

paper is to verify that for geometrically parameterized models,468

which are simplified comparing to real geometries, machine469

learning approaches may be used to predict WSS distribution at470

different cardiac cycle time points. We employed two unstruc-471

tured predictors, MLP neural network and the MLR model, in472

order to predict WSS distributions through time. The obtained473

results showed that on the AAA model both predictors exhib-474

ited capabilities of being used for this task, while on the carotid475

bifurcation model MLP demonstrated much better results in476

terms of R2 . In addition, we applied the GCRF model, which477

leverages the benefits of both unstructured models as well as478

the similarities between different surface nodes. The results ob-479

tained from simulations showed that GCRF was able to improve480

accuracy on both AAA and carotid bifurcation models. Further-481

more, this work shows that the achieved results can be used to482

aid the assessment of stroke risk for a given patient’s data in483

real time.484

Further research will be focused on applying other unstruc-485

tured multioutput regression models and including them into the486

GCRF model. In addition, since we used simplified geometri-487

cally parameterized models, our further research plan is to use488

real life data, where machine learning techniques will be tested489

on patient data. More specifically, we plan to represent a real490

arterial geometry with an adequate geometrically parameterized491

model and predict WSS distribution for the simplified model.492

Thereafter, WSS value of each surface node of the real arte-493

rial geometry can be estimated by interpolating WSS values of494

the nearest nodes of the simplified model. However, real arte-495

rial geometries are quite complex and describing them with a496

set of features that can be further processed by machine learn-497

ing methods to predict WSS distribution is a challenging task.498

Therefore, we plan to extend the proposed approach where, in499

addition to geometrical parameters which can be estimated from500

medical images, machine learning approaches would also use501

other node specific descriptors (e.g., coordinates, distance from502

the central line, local curvature descriptors, cross section area,503

etc.) to predict the WSS value. In this case, instead of node 504

specific predictors, we would generate a global predictor which 505

would predict WSS values for all nodes belonging to a cer- 506

tain arterial region (for instance all nodes in the internal carotid 507

bulbus region). 508
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Machine Learning Approach for Predicting Wall
Shear Distribution for Abdominal Aortic

Aneurysm and Carotid Bifurcation Models

1

2

3

Milos Jordanski, Milos Radovic, Zarko Milosevic, Nenad Filipovic, and Zoran Obradovic4

Abstract—Computer simulations based on the finite ele-5
ment method represent powerful tools for modeling blood6
flow through arteries. However, due to its computational7
complexity, this approach may be inappropriate when re-8
sults are needed quickly. In order to reduce computa-9
tional time, in this paper, we proposed an alternative10
machine learning based approach for calculation of wall11
shear stress (WSS) distribution, which may play an im-12
portant role in mechanisms related to initiation and de-13
velopment of atherosclerosis. In order to capture relation-14
ships between geometric parameters, blood density, dy-15
namic viscosity and velocity, and WSS distribution of geo-16
metrically parameterized abdominal aortic aneurysm (AAA)17
and carotid bifurcation models, we proposed multivariate18
linear regression, multilayer perceptron neural network and19
Gaussian conditional random fields (GCRF). Results ob-20
tained in this paper show that machine learning approaches21
can successfully predict WSS distribution at different car-22
diac cycle time points. Even though all proposed methods

Q1
23

showed high potential for WSS prediction, GCRF achieved24
the highest coefficient of determination (0.930–0.948 for25
AAA model and 0.946–0.954 for carotid bifurcation model)26
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demonstrating benefits of accounting for spatial correla- 27
tion. The proposed approach can be used as an alternative 28
method for real time calculation of WSS distribution. 29

Index Terms—Abdominal aortic aneurysm (AAA), carotid 30
bifurcation, finite element (FE) modeling, machine learning, 31
wall shear stress (WSS). 32

I. INTRODUCTION 33

S TROKE is one of the most common causes of death world- 34

wide. Often it occurs as a result of carotid artery stenosis, 35

which may produce infarction by embolization or thrombosis 36

at the site of narrowing. Local hemodynamics, affecting both 37

thrombosis and embolization processes, can be investigated by 38

computer simulations. 39

There are many factors that may increase the risk of stroke, 40

such as systolic and diastolic hypertension, cigarette smoking, 41

diabetes, etc. It has been shown that stenosis may occur as a 42

consequence of geometrical vessel dimensions changes in the 43

region of the carotid bifurcation [1], [2]. In fact, these geomet- 44

rical changes affect blood flow and, thus, the entire local hemo- 45

dynamics, including wall shear stress (WSS) distribution. Large 46

changes of the WSS values may affect the embolic mechanism 47

by which carotid lesions can induce stroke [3]. 48

An aneurysm is a blood-filled balloon-like bulge in the blood 49

vessel wall usually growing at regions of low WSS [4]. Its 50

rupture can cause severe hemorrhaging and even death. It has 51

been shown that hemodynamics plays a fundamental role in the 52

mechanisms of initiation, growth, and rupture of aneurysm [5]. 53

A number of papers show that WSS has significant impact 54

on atherosclerosis emergence and development processes [6], 55

[7]. Therefore, calculation and analysis of this quantity is of 56

great importance. Simulations based on the finite element (FE) 57

method can accurately calculate WSS distribution. However, 58

this approach may be prohibitively computationally costly in 59

medical applications when results should be provided quickly. 60

For this purpose, alternative approaches based on machine learn- 61

ing algorithms may be more suitable. It has been shown that 62

several machine learning algorithms like neural networks, lin- 63

ear regression, k-nearest neighbors, random forest, and support 64

vector machine have high potential for modeling relationships 65

between WSS and parameters of geometrically parameterized 66

models of abdominal aortic aneurysm (AAA) and carotid bifur- 67

cation [8], [9]. However, these algorithms are all unstructured 68

2168-2194 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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predictors and do not account for spatial dependencies between69

output variables (WSS). In addition, previous studies [8], [9]70

were based on steady state simulation and do not incorporate71

temporal evolution of WSS.72

Unstructured regression is designed to model input–output73

dependencies disregarding relationships among outputs. Mul-74

tivariate linear regression (MLR) and multilayer perceptron75

(MLP) neural network are two techniques commonly used for76

unstructured regression problems. Unlike MLR, which is a sim-77

ple model that uses a linear combination of predictor variables78

to model a continuous response vector, MLP is a complex model79

in which data from predictor variables flow through a network80

consisting of multiple layers of nodes called neurons providing81

the response vector at the output. On the other hand, Gaus-82

sian conditional random fields (GCRF) are a type of structured83

regression model that incorporates multiple predictors and mul-84

tiple graphs [10]. One of the main problems with structured85

regression is related to the fact that models are usually not con-86

vex and thus, they do not guarantee global optimum and efficient87

optimization. It has been shown that if the relationships among88

the outputs are represented in a specific form, then the tradi-89

tional continuous conditional random field model has the form90

of a multivariate Gaussian distribution, which facilitates learn-91

ing and inference. So far, different extensions of GCRF have92

been developed [11], [12] and GCRF has been successfully ap-93

plied for solving various challenging problems [13], [14].94

In this paper, we evaluated two unstructured prediction mod-95

els, MLP neural network and MLR, as well as a GCRF model96

to capture temporal relationships between geometric parame-97

ters, blood density, dynamic viscosity and blood velocity (input98

variables), and WSS distributions (output variable). To ana-99

lyze the influence of previously mentioned input variables on100

WSS distributions in the human carotid bifurcation and AAA,101

computer simulations were run to generate data pertaining to102

this phenomenon. In this paper, we test the following two103

hypotheses:104

1) WSS distributions at different cardiac cycle time points105

for geometrically parameterized models of AAA and106

carotid bifurcation can be modeled by using machine107

learning approaches.108

2) The use of GCRF model for capturing spatial relation-109

ships may lead to improvement in overall WSS distri-110

butions prediction accuracy when comparing to unstruc-111

tured predictors.112

II. METHODOLOGY113

A. Datasets114

In order to demonstrate the applicability of machine learning115

techniques for capturing relationships between geometric pa-116

rameters, density, viscosity and velocity, and WSS distribution,117

datasets containing 4000 samples for both AAA carotid bifurca-118

tion models were created by using in-house software packages119

[15], [16]. Input variables (predictors) were chosen based on120

their known influence on WSS calculation. In particular, shear121

stress in a general laminar flow is proportional to the gradi-122

ent of fluid velocity in the direction perpendicular to the flow123

TABLE I
AVERAGE VALUES OF INPUT PARAMETERS FOR AAA MODEL

Parameter Mean value Unit

Length 100 mm
Aneurysm length 40 mm
A 30 mm
Aorta diameter 20 mm
C 20 mm
B 20 mm
Density 0.00105 gr/mm3

Dynamic viscosity 0.003675 Pa·s
Peak systolic velocity 300 mm/s

TABLE II
AVERAGE VALUES OF INPUT PARAMETERS FOR CAROTID

BIFURCATION MODEL

Parameter Mean value Unit

Angle ICA-CCA 25 deg
Angle ECA-CCA 25 deg
Diameter of CCA 6.2 mm
Diameter of CBRE 3.658 mm
Diameter of CBRI 4.9 mm
Length of CCA 7.44 mm
Length of CBR 7.316 mm
Length of ECA 18.6 mm
Length of ICA 26.04 mm
Diameter at end of ICA 4.34 mm
Diameter of ICB 6.49 mm
Distance to ICB 5.39 mm
Density 0.00105 gr/mm3

Dynamic viscosity 0.00367 Pa·s
Peak systolic velocity 437.22 mm/s

where the dynamic viscosity is a constant of proportionality. In 124

computational fluid dynamics (CFD), governing equations for 125

the blood flow in lumen domain are three-dimensional Navier– 126

Stokes equations (which incorporate the density of the blood 127

and dynamic viscosity) together with the continuity equation 128

[16]. The solution, for a particular set of boundary conditions 129

(e.g., prescribed inlet velocity profile which simulates cardiac 130

cycle), provides the fluid velocity in a given geometry, which is 131

in our case defined by geometric parameters. 132

Sampling is performed from uniform distributions with per- 133

turbation of each parameter up to 30% of the corresponding 134

mean values [16]. Tables I and II show the mean values of in- 135

put variables used for sampling of AAA and carotid bifurcation 136

model parameters, respectively. 137

The geometric parameters shown in Figs. 1 and 2 were used 138

to generate internal blood vessel surfaces. Generated surfaces 139

represent the boundaries for blood flow domain. We assumed 140

that both AAA and carotid bifurcation have the same symmetry 141

plane. Therefore, FE models were generated for half of the 142

domain, but the results can be presented for the entire domain. 143

Unsteady simulations with parabolic inflow velocity profiles 144

were undertaken and WSS distributions for each geometry were 145

computed for 10 time steps (Nt = 10). We assumed the entering 146

flow was pulsatile, with a typical waveforms shown in Fig. 3 147

for AAA [17] and carotid bifurcation [18] models. For each 148
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Fig. 1. Geometrically parameterized model of AAA. Geometrical pa-
rameters of AAA model: ′Length′ is the parameter that defines the total
horizontal projection of the generated AAA model; ′A′ is the height of the
arc of the central line; ′Aorta diameter′ is the abdominal aorta diameter;
′B′ is the radius from the central line to the inner wall of the aneurysm;
′C′ is the radius from the central line to the outer wall of the aneurysm;
′Aneurysm length′ is the average length of the aneurysm.

Fig. 2. Geometrically parameterized model of carotid bifurca-
tion. The abbreviations here are: CCA−common carotid artery,
CBR−carotid bifurcation region, CBRE−carotid bifurcation region ex-
ternal, ECA−external carotid artery, CBRI−carotid bifurcation region in-
ternal, ICA−internal carotid artery, ICB−internal carotid bulbus.

Fig. 3. Input velocity profile for the AAA [17] and carotid bifurcation [18]
models. Inlet peak systolic velocity (PSV) corresponds to t/T = 0.305 and
t/T = 0.1 for AAA and carotid bifurcation models respectively, where t/T
is the relative time with respect to the cycle period T.

generated sample of both aneurysm and carotid bifurcation mod- 149

els, peak systolic velocity is sampled from the uniform distribu- 150

tion (bounded with 30% perturbation of the corresponding mean 151

value) while velocity values in other time steps are calculated by 152

multiplying the sampled peak systolic velocity value with the 153

corresponding function given in Fig. 3. Mean values of the peak 154

systolic velocity for aneurysm and carotid bifurcation models 155

are adopted from [17] and [18], respectively. 156

All velocity components at the fixed walls are set to be zero. 157

Similarly, the velocity components at the plane of symmetry in 158

the direction normal to the plane, are set to zero. It is assumed 159

that the end cross-sections of both AAA and carotid bifurcation 160

models are stress-free, i.e., normal and tangential stresses are 161

set to zero. The flow was assumed to be laminar, Newtonian, 162

and incompressible. Also, the walls are assumed to be rigid. All 163

calculations were performed using an open source FE program 164

for fluid flow and fluid-solid interaction - PAK [15]. The CFD 165

postprocessing results give an insight into the local hemody- 166

namics and the blood mechanical action on the vessel walls, 167

including the distribution of WSS. 168

In order to test whether the accuracy of the proposed ma- 169

chine learning based method for prediction of WSS distribution 170

depends on the mesh resolution, we generated three datasets, 171

each containing 4000 samples, with different mesh resolutions 172

for both AAA and carotid bifurcation models. In these datasets, 173

generated samples of the AAA FE model contain 375, 1125, and 174

2205 nodes, where 195, 597, and 885 lie on the wall surface, re- 175

spectively. On the other hand, samples of the carotid bifurcation 176

FE model contain 1854, 3877, and 5641 nodes, of which 642, 177

1303, and 1987 lie on the wall surface respectively. By using 178

CFD simulations, WSS values were calculated in all surface 179

nodes at the vessel wall for all datasets and for all samples for 180

10 time steps (Nt = 10; t/T = {0.1, 0.2, . . . , 1}, where t/T is 181

the relative time with respect to the cycle period T ). 182

B. Unstructured Regression 183

Let us denote by D = {xi,yi}i=1,...M the dataset con- 184

taining M observations, where xi = (xi1 , . . . , xiP ) is one 185
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observation with P features and yi = (yi1 , . . . , yiN ) is a vector186

of real-valued output variables. The aim of multivariate (or mul-187

tioutput) regression models is to learn a mapping f : RP → RN188

that predicts the vector of output variables yi given an input189

vector xi .190

1) Multivariate Linear Regression: The MLR model ex-191

presses an N -dimensional continuous response vector (yi) as a192

linear combination of predictor terms (xi) plus a vector of error193

terms (εi) with a multivariate normal distribution. In general,194

model may be written as195

Y = XW + ε (1)

where Y is a MxN matrix with a series of multivariate measure-196

ments, X is a MxP design matrix, W is a PxN matrix containing197

parameters to be estimated, and ε is a matrix containing errors198

or noise. The errors are assumed to be uncorrelated across mea-199

surements.200

2) MLP Neural Network: The MLP is a prediction model201

consisting of an input layer, one or more hidden layers and202

an output layer of simple elements called neurons. Neurons203

between different layers are connected with parameters called204

weights, which should be estimated through an optimization205

procedure (training). The objective of the training is to find a206

set of neural network parameters that minimize the error be-207

tween the neural network predictions and the desired outputs.208

The most commonly used optimization algorithm for learning209

the parameters of neural network is the back-propagation al-210

gorithm [19]. However, the basic version of this algorithm has211

problems with slow convergence and local minima. For this212

purpose, a number of variations of the standard algorithm have213

been developed. In this study, we used the backpropagation214

algorithm with momentum and adaptive learning rate since it215

has been shown to be effective for the prediction of the WSS216

distribution [8], [9]. In each iteration of the this algorithm, pa-217

rameters of the MLP are adjusted according to the following218

formula:219

ΔWnew = mcΔWprev + lrmc
dE

dW
(2)

where W is a parameter vector, ΔWnew and ΔWprev are the220

new and previous change of the parameter vector, respectively,221

mc is a momentum constant, lr is a learning rate, and E is the222

objective function which defines how much real outputs dis-223

agree with predicted ones (e.g., mean squared error). In each224

iteration (epoch) of the learning process, the learning rate is225

adjusted according to linc
r , ldec

r , and maxinc parameters. Con-226

cretely, if performance decreases toward the goal, the learning227

rate is increased based on the linc
r parameter. On the other hand,228

if performance increases by more than the value defined by the229

maxinc parameter, the learning rate is adjusted based on the ldec
r230

parameter.231

In this study, we used an MLP neural network with ten neu-232

rons in a single hidden layer and sigmoid activation functions in233

hidden and output neurons. The stopping criterion was defined234

as the maximum number of learning epochs (1000). The values235

of other parameters were: lr = 0.01, mc = 0.9, linc
r = 1.05, ldec

r236

= 0.7, and maxinc = 1.04.237

C. Structured Regression 238

A structured learning approach tries to simultaneously predict 239

all outputs given all inputs and relationships among outputs. 240

Structure learning methods can exploit correlation among output 241

variables, which often gives benefits compared to unstructured 242

learning methods. In other words, while traditional, unstructured 243

models use only input information x to predict yi , structured 244

learning models use the additional information about yj , for all 245

j related to i. This prior information about interplays between 246

the outputs y is application-specific and depends on prior beliefs 247

of a practitioner about which relationships might be useful. 248

Conditional random fields (CRF) is a type of discrimina- 249

tive probabilistic graphical model designed to predict structured 250

output. Originally, CRF were proposed for classification of se- 251

quential data [20]. 252

The conditional distribution P (y|x) for CRF can be repre- 253

sented as 254

P (y|x) =
1

Z(α, β,x)
e
∑N

i = 1 A(α,yi,x)+
∑

i∼j I (β ,yi ,yj,x) (3)

where A(α, yi,x) is an association potential with parameters α, 255

I(β, yi, yj ,x) is an interaction potential with parameters β, i ∼ 256

j denotes that yi and yj are connected by an edge in the graph 257

structure, and Z(α, β,x) represents a normalization function. In 258

general, the output yi is associated with a vector of observation 259

x by an association function, while relationships among outputs 260

can be modeled by an interaction function. Association and 261

interaction potential are usually defined as linear combinations 262

of a set of feature functions over K-dimensional parameters α 263

and L-dimensional parameters β [20]: 264

A(α, yi,x) =
K∑

k=1

αkfk (yi,x) (4)

I(β, yi, yj ,x) =
L∑

l=1

βlgl(yi, yj ,x). (5)

Feature functions are convenient since they allow one to 265

model arbitrary interplays between inputs and outputs. In this 266

way, any potentially relevant feature may be included to the 267

model since their relevance is automatically determined through 268

the parameter estimation process. 269

The learning task is to determine values of parameters α and β 270

to maximize the conditional log-likelihood of the set of training 271

examples: 272

L(α, β) = logP (y|x) (6)

(α̂, β̂) = argmaxα,β (L(α, β)). (7)

On the other hand, given estimated parameters α̂ and β̂ and 273

inputs x, the inference task is to find the point estimate ŷ 274

of outputs y such that the conditional probability P (y|x) is 275

maximized: 276

ŷ = argmaxy(P (y|x)). (8)
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Models with real valued outputs pose quite different chal-277

lenges with respect to feature function complexity compared to278

discrete-valued case. CRFs were originally designed for classi-279

fication problems where the normalizing function Z is finite and280

defined as a sum over finitely many possible values of y. On the281

contrary, for regression, Z must be an integrable function. In282

general, providing that Z is integrable can be very difficult and283

computationally expensive due to the complexity of association284

and interaction potentials. However, the association and interac-285

tion potentials could be designed in a way that allows efficient286

learning and inference.287

The selection of appropriate feature functions in CRF is a288

manual process which is usually application-specific. How-289

ever, the choice of features is often constrained to simple290

constructs to reduce the complexity of learning and inference291

from CRF. Let us assume we are given K unstructured (base-292

line) predictors, Rk (x), k = 1, ...K, that predict single out-293

put yi relying on any subset of x. To model the dependency294

between the prediction and output, we use quadratic feature295

functions:296

fk (yi,x) = −(yi − Rk (x))2 . (9)

These feature functions follow the basic principle for associ-297

ation potentials, i.e., their values are large when predictions and298

outputs are similar. To model the correlation among outputs, we299

use the quadratic feature function:300

gl(yi, yj ,x) = −el
ijS

l
ij(x)(yi − yj )2 (10)

where eij = 1 if an edge exists between output yi and yj in the301

graph Gl , and eij = 0 otherwise; Sl
ij (x) represents the similar-302

ity between outputs yi and yj and in general depends on inputs303

x. The larger the value of Sl
ij (x) is, the more similar the out-304

puts yi and yj are. It should be noted that using multiple graphs305

Gl can facilitate modeling of different aspects of correlation306

between outputs.307

In this way, the exponent of the probability distribution308

P (y|x) is a quadratic function in terms of y. Therefore P (y|x)309

can be transformed into the multivariate Gaussian distribution310

N (μ(x),Σ(x)):311

P (y|x) =
1

(2π)N/2 |Σ|1/2

× exp

(

−1
2
(y − μ)T Σ−1(y − μ)

)

(11)

where Σ and μ are covariance matrix and mean vector, re-312

spectively. Therefore, the resulting conditional distribution is313

Gaussian with mean μ and covariance Σ. We observe that Σ314

is a function of parameters α and β, and interaction potential315

graphs Gl , while μ is also a function of inputs x. The resulting316

CRF is the Gaussian CRF.317

Since the model is Gaussian, the inference is straightforward,318

i.e., the prediction is expected value, which is equal to the mean319

μ of the distribution:320

ŷ = argmaxyP (y|x) = Σb. (12)

III. RESULTS 321

A. Evaluation Procedure 322

In this paper, we employed two unstructured models, MLP 323

neural network and the MLR model, as well as GCRF, in order to 324

predict WSS distributions through time. For training the GCRF 325

model, we randomly chose 70% of total data and remaining 326

30% of data was used for testing. Since we use predictions of 327

both unstructured models MLP and MLR as inputs to GCRF, 328

we applied fivefold cross validation on the training set. First, 329

for both AAA and carotid bifurcation, we split the training set 330

into five subsets (Di, i = 1, . . . , 5) of equal sizes. Then, we 331

reserved one dataset Di for testing and merged data from the 332

remaining four datasets Dj , j �= i for training. The procedure 333

was repeated five times, for i = 1, . . . , 5. Finally, we got MLP 334

and MLR predictions for all samples in training sets. 335

For each surface node, we constructed one MLR model with 336

Nt outputs, where each of Nt outputs represent WSS value for a 337

single time step (Nt is the number of time steps). This means that 338

we created 195, 597, and 885 (642, 1303, and 1987) different 339

linear models in case of the AAA (carotid bifurcation) model. 340

The features of the MLR model were geometric parameters of 341

models, blood density, dynamic viscosity and velocities in all 342

time steps. More specifically, we used 18 features in of the AAA 343

model and 24 features in case of the carotid bifurcation model. 344

The same procedure is repeated for the MLP model where we 345

create one neural network for each node. 346

In order to employ the GCRF model to predict WSS dis- 347

tribution, we define the similarity matrix (graph) between dif- 348

ferent surface nodes. Let Si = (xi, yi , zi) and Sj = (xj , yj , zj ) 349

be coordinates of the ith and jth surface nodes, respectively. 350

The distance between two nodes is calculated as the Euclidean 351

distance: 352

d(Si, Sj ) =
√

(xi − xj )2 + (yi − yj )2 + (zi − zj )2 . (13)

In order to eliminate noise in the similarity matrix, we elim- 353

inated similarities of some nodes that are far away from each 354

other. We calculate similarity matrix between the ith and jth 355

node as 356

S(i, j) =

⎧
⎨

⎩

0, if d(Si, Sj ) > μd

1 − d(Si, Sj ) − mind

μd − mind
, otherwise

(14)

where mind , and μd are minimum and mean values of all dis- 357

tances between nodes, respectively. 358

For each training example and for each time step, we trained 359

a different GCRF model. In this way, we estimated different 360

parameters α and β for each training example. Our proposed 361

model predicts the target values for a test example in the fol- 362

lowing way. First, it finds the most similar training example 363

(the nearest neighbor) and then uses its estimated parameters 364

α and β to predict the evolution of WSS distributions through 365

time. 366

We evaluated the performances of the proposed models by 367

computing their coefficients of determination R2 . In a general 368

form, R2 can be seen as the fraction of unexplained variance. In 369

order to define the coefficient of determination at tth time step 370
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TABLE III
PERFORMANCES FOR AAA MODEL

Dataset (nodes) Model t1 t2 t3 t4 t5 t6 t7 t8 t9 t1 0 Average

AAA (375) MLR 0.964 0.963 0.957 0.936 0.857 0.765 0.850 0.745 0.827 0.837 0.870
MLP 0.948 0.982 0.982 0.971 0.934 0.898 0.931 0.883 0.887 0.806 0.922

GCRF 0.969 0.984 0.984 0.972 0.935 0.898 0.932 0.883 0.894 0.853 0.930
AAA (1125) MLR 0.957 0.960 0.957 0.939 0.939 0.774 0.868 0.734 0.849 0.855 0.883

MLP 0.988 0.987 0.990 0.985 0.985 0.862 0.953 0.766 0.917 0.865 0.930
GCRF 0.986 0.987 0.991 0.987 0.987 0.875 0.955 0.814 0.922 0.894 0.940

AAA (2205) MLR 0.955 0.956 0.953 0.933 0.851 0.774 0.861 0.739 0.842 0.839 0.870
MLP 0.961 0.982 0.986 0.976 0.940 0.929 0.965 0.883 0.944 0.858 0.942

GCRF 0.974 0.983 0.988 0.978 0.942 0.929 0.966 0.885 0.945 0.886 0.948

TABLE IV
PERFORMANCES FOR CAROTID BIFURCATION MODEL

Dataset (nodes) Model t1 t2 t3 t4 t5 t6 t7 t8 t9 t1 0 Average

Carotid (1854) MLR 0.767 0.740 0.761 0.762 0.762 0.763 0.762 0.763 0.763 0.764 0.761
MLP 0.873 0.930 0.963 0.968 0.980 0.978 0.957 0.946 0.932 0.879 0.941

GCRF 0.904 0.934 0.960 0.968 0.980 0.978 0.959 0.950 0.937 0.909 0.948
Carotid (3877) MLR 0.803 0.768 0.768 0.768 0.793 0.794 0.794 0.794 0.795 0.795 0.787

MLP 0.850 0.891 0.966 0.985 0.985 0.985 0.982 0.964 0.911 0.880 0.940
GCRF 0.908 0.914 0.966 0.985 0.985 0.985 0.979 0.964 0.933 0.917 0.954

Carotid (5641) MLR 0.791 0.762 0.781 0.782 0.782 0.782 0.782 0.782 0.783 0.783 0.781
MLP 0.845 0.910 0.960 0.980 0.983 0.974 0.974 0.959 0.945 0.831 0.936

GCRF 0.895 0.910 0.961 0.973 0.983 0.974 0.974 0.959 0.945 0.891 0.946

R2
t , let us define yt(j) as the mean value of WSS for the jth371

surface node at time step t:372

yt(j) =
1

Ntest

N t e s t∑

i=1

yt
i (j),

t = 1, . . . Nt, j = 1, . . . , Nsurf (15)

where Ntest is the number of testing examples, Nsurf is the373

number of surface nodes, and yt
i (j) is the WSS value for374

jth node at tth time step of ith example calculated by the fi-375

nite element method (FEM). The sum of squares (proportional376

to the variances) SE
t
i for the ith example at time step t is377

calculated as378

SE
t
i =

N s u r f∑

j=1

(yt
i (j) − yt(j))2 . (16)

The residuals are defined as a squared error of the ith example379

at time step t:380

SEt
i =

N s u r f∑

j=1

(yt
i (j) − ŷt

i (j))
2 (17)

where ŷt
i (j) is the predicted WSS value for jth surface node at381

tth time step of ith example. Finally, the coefficient of determi-382

nation R2
t at tth time step is calculated as383

R2
t = 1 −

∑N t e s t
i=1 SEt

i
∑N t e s t

i=1 SE
t
i

. (18)

B. Performance on AAA and Carotid Bifurcation 384

In order to make a fair comparison, we trained unstructured 385

models (MLP neural network and MLR) on the same data used 386

for GCRF training. Tables III and IV show obtained results on 387

the same test data for AAA and carotid bifurcation models, 388

respectively. Values in these tables represent coefficient of de- 389

termination R2
t , for each time step t = 1, . . . , 10, along with the 390

average R2 across all time steps. 391

Tables III and IV clearly show that the MLP model outper- 392

forms the MLR model on both AAA and carotid bifurcation 393

models. More precisely, on the AAA(375) dataset, the MLP 394

achieved higher accuracy compared to the MLR in eight out of 395

ten time steps. In addition, on the AAA(1125) and AAA(2205) 396

datasets, the MLP outperformed the MLR in all time steps. Sim- 397

ilar results are obtained on carotid bifurcation datasets where 398

the MLP achieved higher accuracy compared to the MLR in 399

all time steps for all three mesh resolutions (1854, 3877, and 400

5641 nodes). The fact that the MLP improved accuracy over the 401

MLR model is confirmed by the average R2 values across all 402

time steps (the last columns in Tables III and IV). Even though 403

the MLP outperforms the MLR on all datasets, results given in 404

Tables III and IV indicate that both the MLP (better) and the 405

MLR (worse) can be used to predict WSS distribution through 406

time. This confirms the first hypothesis of our paper that WSS 407

distributions at different cardiac cycle time points for geometri- 408

cally parameterized models of AAA and carotid bifurcation can 409

be modeled by using machine learning approaches. 410

In addition, Tables III and IV show that the GCRF model 411

achieved higher accuracy compared to unstructured predictors 412
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Fig. 4. Temporal evolution of WSS distribution for the AAA model (one randomly chosen geometry) calculated by FEM and predicted by the GCRF
(units Pa). Due to space limitation we show results for only five time steps (of total ten).

Fig. 5. Temporal evolution of WSS distribution for the carotid bifurcation model (one randomly chosen geometry) calculated by FEM and predicted
by the GCRF (units Pa). Due to space limitation we show results for only five time steps (of total ten).

(MLP and MLR) on both datasets. More precisely, on the413

AAA(375) dataset, the GCRF outperformed the MLP model414

in eight out of ten time steps, while on the remaining two steps415

they achieved the same accuracy. Furthermore, on AAA(1124)416

dataset, the GCRF achieved higher accuracy compared to the417

MLP model in eight out of ten time steps, while on one step418

they achieved the same accuracy. Similarly, on the AAA(2205)419

dataset, the GCRF achieved higher accuracy compared to the420

MLP model in nine out of ten time steps, while on the remaining421

step they achieved the same accuracy. Similar results can be ob-422

served on the carotid bifurcation dataset. More specifically, on423

Carotid(1854) dataset, the GCRF outperformed the MLP model424

in six out of ten time steps, while they achieved the same accu-425

racy in three steps. Similarly, on the Carotid(3877) dataset, the426

GCRF achieved higher accuracy compared to the MLP model427

in four out of ten time steps, while they achieved the same ac-428

curacy in five time steps. On the Carotid(5641) dataset, GCRF429

outperformed the MLP model in three out of ten time steps,430

while they achieved the same accuracy six steps. In addition, 431

GCRF outperformed MLR in all time steps for all AAA and 432

carotid bifurcation datasets. The average values of R2 calcu- 433

lated across all time steps show that the GCRF model outper- 434

formed both unstructured predictors. These results confirm the 435

second hypothesis of our paper, i.e., taking spatial correlation 436

into account improves prediction accuracy of WSS distribution 437

through time. 438

Figs. 4 and 5 show the distribution of WSS through time, 439

calculated by FEM and predicted by the GCRF model. Due 440

to lack of space, we showed results only for one randomly 441

chosen test example from AAA and carotid bifurcation datasets 442

in five time steps (t1 , t3 , t5 , t7 , and t10). These figures confirm 443

the ability of machine learning approaches to predict the WSS 444

distribution through time for both geometrically parameterized 445

models. 446

In addition, we compared running time of FEM and GCRF 447

methods for prediction of WSS distribution of AAA and carotid 448
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bifurcation models. Training of the GCRF model for prediction449

of WSS distribution is a tedious task. However, once trained450

this model can be utilized to predict WSS distribution in much451

shorter time when comparing to FEM approach. For instance,452

average FEM run time for calculation of WSS distribution of453

testing samples was 5.3, 6.8, and 8.0 s for the three datasets454

of the AAA model and 19.4, 198.4, and 604.1 for the three455

datasets of the carotid bifurcation model. On the other hand, the456

corresponding average GCRF run times were 0.032, 0.283, and457

0.604 s for the AAA model and 0.5702, 5.856, and 10.937 for458

the carotid bifurcation model. All the experiments were run on a459

Windows machine with a 3.40 GHz Intel(R) Core(TM) i7-3770460

CPU and 32GB memory.461

IV. CONCLUSION462

In this paper, an application of machine learning techniques463

to hemodynamic problems was presented. We modeled the re-464

lationships between geometric parameters, blood density, dy-465

namic viscosity and velocity of the human carotid bifurcation,466

and AAA models and the WSS distribution. The goal of this467

paper is to verify that for geometrically parameterized models,468

which are simplified comparing to real geometries, machine469

learning approaches may be used to predict WSS distribution at470

different cardiac cycle time points. We employed two unstruc-471

tured predictors, MLP neural network and the MLR model, in472

order to predict WSS distributions through time. The obtained473

results showed that on the AAA model both predictors exhib-474

ited capabilities of being used for this task, while on the carotid475

bifurcation model MLP demonstrated much better results in476

terms of R2 . In addition, we applied the GCRF model, which477

leverages the benefits of both unstructured models as well as478

the similarities between different surface nodes. The results ob-479

tained from simulations showed that GCRF was able to improve480

accuracy on both AAA and carotid bifurcation models. Further-481

more, this work shows that the achieved results can be used to482

aid the assessment of stroke risk for a given patient’s data in483

real time.484

Further research will be focused on applying other unstruc-485

tured multioutput regression models and including them into the486

GCRF model. In addition, since we used simplified geometri-487

cally parameterized models, our further research plan is to use488

real life data, where machine learning techniques will be tested489

on patient data. More specifically, we plan to represent a real490

arterial geometry with an adequate geometrically parameterized491

model and predict WSS distribution for the simplified model.492

Thereafter, WSS value of each surface node of the real arte-493

rial geometry can be estimated by interpolating WSS values of494

the nearest nodes of the simplified model. However, real arte-495

rial geometries are quite complex and describing them with a496

set of features that can be further processed by machine learn-497

ing methods to predict WSS distribution is a challenging task.498

Therefore, we plan to extend the proposed approach where, in499

addition to geometrical parameters which can be estimated from500

medical images, machine learning approaches would also use501

other node specific descriptors (e.g., coordinates, distance from502

the central line, local curvature descriptors, cross section area,503

etc.) to predict the WSS value. In this case, instead of node 504

specific predictors, we would generate a global predictor which 505

would predict WSS values for all nodes belonging to a cer- 506

tain arterial region (for instance all nodes in the internal carotid 507

bulbus region). 508
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