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Abstract—Sepsis is a progressive medical condition charac-
terized as an uncontrolled inflammatory response, which is the
leading cause of death in non-coronary intensive care units
in the United States. In sepsis treatment, accurate and timely
diagnosis is essential for allowing physicians to design appropriate
therapeutic strategies at early stages, when therapies are usually
the most effective and the least costly. To make an adequate
diagnosis, physicians usually rely on manual inspection of a
large amount of complex, high-dimensional longitudinal data.
We use our recently published data mining method for extracting
patterns from such data and show that these patterns can be used
to assist physicians in providing early diagnosis. In conducted
experiments, we showed that combination of early diagnosis and
blood purification therapy can rescue more patients (52%) than
standard approach for blood purification therapy (32%). We also
propose a hybrid therapy model that combines strengths of early
and standard approaches and further improves the percentage of
rescued patients. Finally, by correctly classifying 98% of patients
who didn’t need treatment, MSD method provides opportunity
to reduce the total cost of treatments.

I. INTRODUCTION

Sepsis, a medical condition characterized by uncontrolled
inflammatory response due to infection, is one of the main
causes of deaths in the intensive care units, with over 750,000
cases annually in the United States alone [12]. One of the
main reasons for such a high number of death cases lies
in limited understanding and knowledge about the complex
inflammatory response mechanism, which has led to only a
few effective sepsis therapies. The single approved anti-sepsis
drug therapy was withdrawn from global markets in fall 2011
following the failure of its worldwide trial to demonstrate
improved patient outcome [1]. In the absence of adequate
therapy, the patient is treated with standard broad-spectrum
antibiotics and/or intravenous fluids with dosages adjusted
manually. Inadequate treatment and the fact that sepsis is often
diagnosed too late result in a mortality rate of 30-35%, and
for every hour that the administration of appropriate treatment
is delayed, the mortality rate increases by about 7% [10].

Blood purification has recently been proposed as a poten-
tially beneficial therapy for septic patients [7]. This therapy
is based on the dialysis-like principle, where the blood is
purified by a device attached to patient (Figure 1). The goal
of purification is to remove harmful particles from patient
blood, leading the patient to a healthy state. Preliminary studies
on animal models indicate the success of blood purification
techniques in sepsis treatment [9]. In conducted animal studies
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clinicians had full control of the exact time of sepsis induction.
Based on that information and theoretical assumptions about
sepsis progress, clinicians determined start and duration of
therapy. For example, in [9] the duration of therapy was fixed
to 4 hours while the onset of therapy was set at 18 hours
after sepsis induction (the clinicians’ assumption was that
after the 18" hour sepsis would be fully manifested). The
onset of therapy was the same for all animal models involved
in the experiment, although more personalized approach to
sepsis diagnosis would be far more effective. Also, fixed onset
of therapy with respect to sepsis induction does not reflect
real clinical practice where clinicians have limited knowledge
of sepsis stage at the moment when a patient shows up in
an emergency room. Despite its importance, no work has
been done to provide correct and timely sepsis diagnosis in
conjunction with optimal blood purification therapy.

The time needed for sepsis detection can be significantly re-
duced by using the information from multivariate longitudinal
data collected from the patient over time. However, utilization
of those complex high-dimensional longitudinal data to support
clinical decisions is still not fully implemented in practice since
physicians lack the tools to extract relevant clinical information
in a timely manner. Extracting useful temporal patterns early
and building accurate predictive models on such data provides
a great challenge for the data mining community.

A recent work is proposed to accurately predicting both
sepsis risk and septic shock from noisy, intermittently gathered
clinical data using clinical and historical variables [6]. The
authors have chosen a small set of features such that to
minimize the use of laboratory tests and invasive procedures
while maintaining comparable performance to other models.
Another recent work has proposed a modified version of
the binary particle swarm optimization (MBPSO) method for
feature selection with the simultaneous optimization of Support
Vector Machine (SVM) kernel parameter setting [11]. The
MBPSO method is applied to mortality prediction in septic
patients. Although the method has been shown to outperform
the original particle swarm optimization method, it has some
limitations if there is a poor adjustment in the parameters. In
addition, both models [6, 11] do not leverage the temporal
information.

Recently, a method that utilizes the temporal information
for early classification of multivariate time series is proposed
[4, 5]. The model is comprised of an integration of Hidden
Markov Models (HMM) and SVM that allows for early,
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accurate, and patient-specific classification of multivariate time
series. Although the method has attained very promising results
on several datasets, the method is not interpretable which
limits the application of the method on clinical datasets where
physicians tend to use interpretable methods rather than black-
box methods.

In this work we use our previously published method [3] to
make early diagnosis for septic patients. All work is performed
on virtual patients generated by a mathematical model that
emulates inflammatory response, which is common practice in
biomedical research. In conducted experiments we showed that
combination of early diagnosis and blood purification therapy
can rescue more patients than standard approach for blood
purification therapy. We also propose a hybrid therapy model
that combines strengths of early and standard approaches and
further improves the percentage of rescued patients.
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Fig. 1. Schematic diagram of dialysis-like blood purification device accom-
panied with early detection module.

II. METHODOLOGY

We used a machine learning method, called multivariate
shapelet detection (MSD), proposed recently to extract inter-
pretable shapelets for early classification of multivariate time
series [3]. We used the MSD method for two folds. First, it
extracts time series segments from the original time series
for early classification. Therefore, the method provides an
evidence about the classification of the temporal observation
of the patients. Second, the MSD method is proposed for mul-
tivariate time series, and it has been shown that it outperforms
the state-of-the-art method for univariate time series.

The MSD method has four steps to perform the task of
early classification of multivariate time series:

1)  Extraction of all multivariate shapelets

2)  Ranking the multivariate shapelets

3)  Pruning the list of multivariate shapelets
4)  Classification using multivariate shapelets
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a) Step 1: Extraction all Multivariate Shapelets: Sim-
ply, the multivariate shapelet is a time series segment extracted
from the original time series. Figure 2 shows an example of a
3-dimensional time series of length 15. It shows an example of
an extracted 3-dimensional shapelet of length 4. The shapelet
is extracted from the time series from position 6 to position 9.
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Fig. 2. Illustration of a 3-dimensional shapelet. It shows an example of a
3-dimensional time series (red, green and blue lines) of length 15. An example
of an extracted 3-dimensional shapelet of length 4 is illustrated in the right
part of the figure. The shapelet is extracted from the time series from position
6 to position 9.

The MSD method iterates over all time series and extracts
all possible segments (shapelets) S of all possible lengths I.
Figure 2 shows an example of multivariate shapelet of length
4.

Each shapelet is used to discriminate between the classes
of the time series. For that purpose, each shapelet has its
own distance threshold such that if the distance between the
shapelet and the time series is less than or equal to the
threshold, the time series is considered to be of the same class
as the shapelet.

Details of computing the distance threshold for each
shapelet are given in [3] because it exceeds the scope of this

paper.

b) Step 2: Ranking the multivariate shapelets: The set
of multivariate shapelets extracted from the time series dataset
might be exceedingly large. Therefore, it is important to rank
the shapelets in order to select a small subset of the shapelets
for classification. For this reason, each shapelet has to be
assigned a utility score that takes into consideration earliness
as well as discrimination among classes.

c) Step 3: Pruning the list of multivariate shapelets: To
select a subset of the multivariate shapelets for classification,
the shapelets are sorted in descending order using their utility
scores. The pruning procedure iterates over the shapelets
starting from the highest ranked shapelet. We consider that
shapelet and remove all training time series that are covered
by that shapelet (the distance between the shapelet and time
series is less than or equal to the shapelet’s distance threshold).
Then, the next highest ranked shapelet is considered. We check



if it covers any of the remaining training time series. If it covers
some of them, then we select the shapelet and remove all time
series that are covered. Otherwise, we discard it and proceed
to the next one. This process of selecting shapelets continues
until all training time series are covered.

d) Step 4: Classification using multivariate shapelets:

The classification process initially reads ! time stamps from
the test time series. The highest-ranked shapelet is considered.
If the shapelet covers the current stream of the test time series
then the time series is classified as the class of the shapelet
and the prediction is done. Otherwise, the next shapelet from
the ranked list is considered and the process is repeated. If
none of the shapelets cover the current stream of the test time
series the method reads one more time stamp and continues
classifying the time series (Figure 3).

Read T'(1...14)

Find first
matched shapelet,

No shapelet matches

Yes ¢

Time series of same class
as the matched shapelet

Fig. 3.  MSD Classification Process. The MSD method looks at a portion
T(1...7) of length ¢ of the unknown time series 7. If there is a shapelet
matches the current portion of the time series, then the class of the time
series is predicted as the class of the matched shapelet. Otherwise, the current
portion is extended and the same process applied.

Unable to classify

III. VIRTUAL PATIENTS

To significantly reduce the chance of a clinical failure and
to save on the costs of clinical trials, biomedical researchers
use computer simulations of body processes (often called
virtual patients) to perform preliminary tests of hypotheses
before they prove them in real patient studies. Virtual patients
are generated using a carefully determined mathematical model
to simulate the process of interest. A significant advantage of
having a virtual patient model for experiments is the possibility
of testing different approaches for finding adequate therapies
on the same virtual patient and comparing the outcomes. In
order to follow a real-life scenario, virtual patient models are
accompanied with well-defined constraints in therapy that are
in accordance with clinical practice [2, 8, 9].

A. Patient model

The mathematical model for inflammatory response to an
infection is derived in [9]. A mathematical model defines
the dynamics of concentration of 19 variables (states) among
which 8 are observable (Lsel - Lselectin, HMGBI1 - high-
mobility group protein B-1; CRT - creatinine; ALT - alanine

525

aminotransferase; TNF« - tumor necrosis factor-o; IL-1 -
interleukin-1/; IL-6 - interleukin-6; IL-10 - interleukin-10) and
11 are hidden (CLP - cecal ligation and puncture; B - bacteria;
Nt - peritoneal neutrophil; Nr - resting blood neutrophil; Np
- primed blood neutrophil; Na - activated blood neutrophil;
PI - systemic proinflammatory response; Al - systemic anti-
inflammatory response; Ns - neutrophil sequestered in lung
capillaries; NI - lung neutrophil).

The model is also capable of modeling interactions between
organs. This mathematical model is based on the system
of ordinary differential equations (ODE) whose details are
presented in [9]. Since it models measurable concentrations
of cytokines, the 19-states mathematical model are capable
of simulating blood purification system by hemoadsoprtion
device (a column packed with beads that adsorb cytokines).
It is assumed that a patient’s blood is redirected through
the hemoadsorption device where pro- and anti-inflammatory
particles are removed.

Mathematical model simulates hemoadsorption as a first-
order elimination of activated neutrophils (Na) as well as pro-
and anti-inflammatory mediators (PI and AI) from the circulat-
ing blood. The parameters of the dynamics of adsorption were
determined in [9]. We assume that the device has two states -
ON and OFF. ON state means that the device is attached to the
patient and that it cleans blood with the rate specified in [9].
OFF state means that device is detached from the patient. The
ON/OFF states of blood purification device are controllable by
clinicians.

Variability in the population of virtual patients is obtained
by random initialization of three parameters in ODE and by
random initialization of the states’ initial conditions. In all of
the simulations, ¢ is an hourly step that starts from ¢ = 0 when
patient state and parameters are initialized. Then, patient state
evolves according to ODE through the simulation time of 200
hours. According to [9] there are two possible outcomes at the
end of simulation time. A patient is in survival group if (1)
the number of bacteria (B) is less than Bmin which was set
to 1.0e5, and (2) the value of systemic inflammation (PI) is
less than 0.5. Otherwise, a patient is in non-survival group.
Evolution of the patient to the final state can be modulated by
applying blood purification device.

B. Real Data

We obtained real data from [9]. Real data contain mea-
surements over time of 8 observable states from mathematical
model. As such, real data can be used for calibrating/testing
the mathematical model. Experiments to obtain real data were
designed to evaluate long-term (one week) survival rate in
a model of sepsis that resulted in a mortality rate similar
to that observed clinically. The modified cecal ligation and
puncture (CLP) protocol, 25% ligated length of cecum and
20-gauge needle, two-puncture, was used by [9] to induce
sepsis in 23 rats. Plasma cytokines (tumor necrosis factor
(TNF), interleukin(IL)-1b, IL-6 and IL-10), Lselectin (Lsel),
high mobility group boxl (HMGBI), creatinine (CRT) and
alanine aminotransferase (ALT) were measured from 0.8 ml
blood samples at 18, 22, 48, 72, 120, 144, and 168h after
CLP. No treatment was applied to any of 23 rats. Seven rats
out of these 23 survived up to 7 days, being considered as the
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Fig. 4. An agreement between simulated and real data. a) TNFa, b) IL-1, ¢) IL-6, d) IL-10, e) Lsel, f) HMGBI1, g) CRT, h) ALT. Solid lines - mean values of
simulation outputs of 5000 virtual patients in survival (blue) and non-survival (red) groups. Dotted lines - region of 95% simulation uncertainty (95% of virtual
patients are within the region). Error bars - real observations from animal study experiments.

survivor population; the remaining 16 animals died and were
considered as the non-survivor population.

C. Generation of Virtual Patient Population in Agreement with
Real Data

We use real data to generate virtual patients that are in
accordance with real data as in [9]. We generated each virtual
patient according to the following 3-step protocol:

1)  We randomly sample parameters of a mathematical
model in consistence with valid ranges described in

[9].

2) For chosen parameters we simulate the evolution
of 19-states over time and determine the outcome
(survival or non-survival).

3)  We calculated the likelihood [9] that evolution of 8

observable states follows evolution of real data. If the
likelihood is high then the virtual patient has been
“accepted” as valid. Otherwise, a generated patient
has been rejected.

Following this protocol we generated 10000 sham (no treat-
ment) virtual patients. A group of 5000 virtual patients be-
longed to the survival population, while another group of
5000 virtual patients belonged to the non-survival population.
Statistics of simulated data for eight measurable states together
with observations from real data are presented in Figure 4.

IV. MSD TRAINING

We sampled randomly 30 patients from the 10000 patients
for training the MSD method and used the remaining 9970
patients for testing. We chosen 30 patients to simulate the real-
life where small number of patients is provided for training.
Then, the MSD method is applied to the 9970 patients. All
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Fig. 5. Blood purification therapy efficacy (percentage of rescued patients)
with respect to therapy starting time and the duration of treatment.

parameters of the MSD method were optimized using internal
3 cross validation based on the training data.

We repeated that process, sampling 30 patients for training
and applying the trained MSD method on the 9970 patients,
three times having three values for each reported statistic. The
average and standard deviation of the statistics are reported.

V. STRATEGIES FOR BLOOD PURIFICATION

A. Analysis of Onset and Duration of Blood Purification
Therapy

We would like to analyze the effect of varying onset and
duration of application of blood purification device. In [9] was
suggested that optimal treatment should start at 18 hours after



sepsis induction (roughly the time point in Figure 4 where non-
survival group becomes distinguishable from survival group).
It was also suggested that optimal treatment should last for 4
hours. We used a group of 5000 virtual patients that would be
in the non-survival population if no treatment was applied.

1) Therapy Onset: We tested how treatment efficacy de-
pends on the starting time of the therapy. We applied the blood
purification device continuously for 4 hours, as suggested in
[9], with starting time varying from 2 to 30 hours after sepsis
induction. We report percentage of rescued patients (patients
for whom outcome after treatment was healthy, the higher
percentage of rescued the better). The result is presented in
Figure 5, blue line. We see that if treatment had been initiated
later than 12 hours after sepsis induction, the percentage
of rescued patients decreases with every hour. By applying
therapy earlier (before 12 hours after sepsis induction), the
percentage of rescued patients also decreases with every hour
of early therapy. The graph shows that there is a critical time
point around 10 hour at which the therapy is the most efficient.

This finding is in strong agreement with theoretical con-
siderations of the sepsis stages and treatment effects. Sepsis
treatment requires both a strong pro-inflammatory phase for
the clearance of pathogen (Figure 6, area A) and an anti-
inflammatory phase for recovery (Figure 6, area C). A stage
of an adversary influence of the pro-inflammatory response,
which is disproportionate and counterproductive, is presented
in Figure 6, area B. An inadequate treatment in either the
pro-inflammatory (area A) or the immune-recovering anti-
inflammatory phase (area C) might do more harm than good,
while delayed treatment when immune response is counter-
productive (area B) may significantly reduce the chance of
survival.
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Fig. 6. Theoretical considerations of the sepsis stages and treatment effects.
Time = 0 - occurrence of an infection; red dotted line - pro-inflammatory
response; blue solid line - anti-inflammatory response; black dashed horizontal
line - response beyond which the process becomes adversary; black dashed
vertical line - a tip-over point beyond which any therapy might be coun-
terproductive; horizontal pattern (area A) - anti-inflammatory therapy likely
harmful, pro-inflammatory therapy beneficial; diagonal pattern (area B) - likely
maximal benefit from anti-inflammatory therapy; vertical pattern (area C) -
anti-inflammatory response restoring patient state, any therapy likely harmful.

2) Therapy Duration: We tested how treatment efficacy
depends on the duration of continuous application of blood
purification device. In addition to previous experiment, we
applied the blood purification device continuously for 8 and 12
hours with varying therapy starting times. The plot in Figure
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5 shows that with increased duration of HA application the
percentage of rescued patients increases.

B. Treatment with MSD Therapy Onset

We applied our early classification method MSD to the
virtual patients generated by the 19-states sepsis model. We
used 30 patients (20 survival patients and 10 non-survival
patients) for training and patients to test the model. The true
positive rate of our method was 100%, meaning that all non-
survival patients were predicted correctly and early. We then
tested standard 18" hour blood purification therapy versus
therapy initiated at MSD suggested time.

1) Known Sepsis Induction Time: This experiment assumes
that sepsis induction time is known (common in laboratory
conditions but uncommon in clinical practice). We applied 12
hour blood purification therapy on 5000 non-survival patients
and successfully rescued 32% of patients that would otherwise
die (Figure 7). When 12 hour blood purification therapy was
started at MSD suggested time the percentage of rescued
patients increased to 52%. This result shows that in laboratory
conditions when sepsis induction time is known there is a huge
benefit of using MSD to suggest start time of therapy.
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Fig. 7.  Percentage of rescued patients. Known sepsis induction time -
patients are admitted at the time of the CLP-induced sepsis. Unknown sepsis
induction time - patients are admitted with some delay after CLP-induced
sepsis (uniformly sampled from 5-12 hours after the induction).

2) Unknown Sepsis Induction Time: In clinical practice the
sepsis induction time is unknown. To simulate this the time
when the patient visits the ICU was sampled uniformly from
5-12 hours after the sepsis induction.

We applied 12 hour blood purification therapy at 18" hour
from time when patient showed up. With this procedure the
number of rescued patients is around 14% (Figure 7). When
we applied 12 hour therapy starting from MSD suggested
time with respect to time when patient showed up we get
an improvement to around 19% of rescued patients which
again shows the benefit of using MSD to suggest start time
of therapy.

3) Cost Reduction by MSD: The application of the standard
therapy requires the continuous application of the blood purifi-
cation device to every patient. Such application of the device
is costly. It would be less costly to identify patients who would
survive without using that device. Our MSD method was able
to classify correctly 98% of the survived patients early before
the 18" hour after the sepsis induction (Figure 8). When the



sepsis induction was unknown, the MSD method was able to
identify 10% of the survived patient (Figure 8).
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Fig. 8. The percentage of patients who are predicted not to receive treatment
when the sepsis induction is known and unknown.

C. Hybrid Treatment Strategy

We realized that patient who were suggested by MSD to
receive therapy after 18" hour of sepsis induction (as many
as one fourth of total population) may benefit if standard
and MSD strategies were combined. Here we propose hybrid
treatment strategy:

1) If a patient is recommended for treatment by MSD
before the 18" hour, then the treatment is provided
at recommended time before the 18" hour.

2) If a patient is recommended for treatment by MSD

after the 18" hour, then the treatment is provided at
the 18" hour.

In Figure 9, we represent the percentage of MSD-rescued
patients with late treatment recommendation when the 12-hour
therapy was provided at the recommended time (at 19th hour
or after as recommended by our MSD method). Percentage of
rescued patients is around 9%. On the other hand, in the same
figure we show the percentage of 18th-rescued patients with
late treatment recommendation when the 12-hour therapy was
provided at the 18" hour. The percentage of 18th-rescued pa-
tients is around 27%. Therefore, the hybrid treatment strategy
saves more lives when compared to treatment solely based on
MSD.

VI. CONCLUSION

We applied our method MSD [3] to make early diagnosis
for septic patients. We showed that combination of early
diagnosis and blood purification therapy can rescue more
patients than standard approach for blood purification therapy.
We also showed that a hybrid therapy that combines strengths
of early and standard approaches and further improves the
percentage of rescued patients.
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