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Abstract

Sepsis is a potentially fatal whole-body inflammation caused
by severe infection. Blood purification therapy, known as
hemoadsorption (HA), was found to be beneficial in animal
models of sepsis. However, HA administration is a chal-
lenging problem since late and inadequate therapy results in
high mortality rate. In this study we propose a data-driven
model predictive control to find a suitable duration of the
HA therapy application. In our experiments of 5000 virtual
patients, for about 41% of the cured patients the proposed
data-driven model predictive control was likely to cure us-
ing shorter therapy and for some patients it only required
2 hour therapy instead of 12 hours, previously shown to be
the optimal continuous HA application. Moreover, the pro-
posed method applies the therapy in non-continuous fashion,
which results in saving 14% more patients than the standard
continuous therapy, as evident by our experiments in a pop-
ulation of 5000 virtual patients.

1 Introduction

Sepsis is a potentially fatal whole-body inflammation
caused by severe infection. It is considered as one of the
main death causes in US [1]. Prompt diagnosis is crucial
to the management of sepsis, as initiation of early-goal-
directed therapy is key to reducing mortality [2]. Late
and inadequate therapy results in a mortality rate of
30-35%, and for every hour that the administration of
appropriate therapy is delayed, the mortality rate in-
creases by about 7% [3]. Therefore, developing models
for providing early and adequate therapy for inflamma-
tion treatments is crucial for practicians.

It has been shown that one form of extracorporeal
blood purification, known as hemoadsorption (HA), is
beneficial in animal models of sepsis, including endo-
toxic shock [4] and cecal ligation and puncture (CLP)
[5]. Published results provide evidence that HA ther-
apy helps cure septic patients by eliminating: activated
neutrophils (Na), pro-inflammatory mediators (PI), and
anti-inflammatory mediators (AI) during the treatment
period (from 18 hours to 22 hours after CLP) [6].

Recently, it has been shown that application of HA
therapy for 12 continuous hours at the 18th hour af-
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ter CLP results in saving more patients’ lives than the
application of 4 continuous hours therapy [7]. We hy-
pothesize that although the application of 12 continuous
hours is effective, the application of the therapy in non-
continuous fashion might be even more effective than
the application of continuous therapy.

One of the methods that could be used to find
the optimal therapy is model predictive control (MPC).
MPC uses an explicit process model (based on domain
knowledge) to predict the future patient’s response
during chosen period, known as prediction horizon. The
MPC algorithm optimizes a function in the prediction
horizon to obtain an optimal sequence of future control
(treatment).

As noted at [9], “The quality of MPC directly de-
pends on the ability of the predictive model to accurately
predict the future states.”. Using domain knowledge-
based model (like ordinary differential equations) to
predict patient’s response often fails when dealing with
complex biological systems like sepsis. Contrarily, data-
driven MPC (DDMPC) utilizes data driven predictive
methods to predict the future patient’s response. Data
driven predictive methods are used to learn the patients’
response from the historical data without any knowledge
about the underlying dynamical system. DDMPC has
been successfully applied in several studies, including an
exploration of optimal dosing of anticancer agents [10],
and defining an optimal anesthesia [11].

In this paper, we propose DDMPC to provide
non-continuous application of HA therapy for septic
patients. In a set of 5000 virtual non-survivor septic
patients, we show the advantages of using our proposed
DDMPC. Application of up to 12 non-continuous hours
therapy provided by DDMPC cures 14% more patients
than the application of the standard 12 continuous
hours therapy, which supports our hypothesis. In
addition, in our application DDMPC cures some of the
patients using even less than 12 hours of non-continuous
therapy.

The structure of the paper is organized as follows:
Section 2 describes the data used in our study. Standard
therapy (HA) is described in Section 3. MPC and
DDMPC are explained in Section 4 while the evaluation
and discussion of the results are provided in Section 5.
Finally, the conclusion is given in Section 6.



2 Virtual Patients

The mathematical model for inflammatory response
to an infection is derived in [6]. This model defines
the dynamics of concentration of 19 variables (states)
among which 8 are observable (Lsel - Lselectin; HMGB1
- high-mobility group protein B-1; CRT - creatinine;
ALT - alanine aminotransferase; TNF« - tumor necrosis
factor-a; IL-1 - interleukin-13; IL-6 - interleukin-6; IL-
10 - interleukin-10) and 11 are hidden (CLP - cecal
ligation and puncture; B - bacteria; Nt - peritoneal
neutrophil; Nr - resting blood neutrophil; Np - primed
blood neutrophil; Na - activated blood neutrophil; PT -
systemic proinflammatory response; Al - systemic anti-
inflammatory response; Ns - neutrophil sequestered in
lung capillaries; N1 - lung neutrophil).

In this model, the patient is connected to the device
such that the blood flows in the device. The device
simulates blood purification by removing the pro- and
anti-inflammatory particles from the blood as shown in
Figure 1. We assume that the device has two states
- ON and OFF. ON state means that the device is
attached to the patient and that it cleans blood with
the rate specified in [6]. OFF state means that device is
detached from the patient. The ON/OFF states of the
blood purification device are controllable by clinicians.
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Figure 1: Schematic diagram of dialysis-like blood purifica-
tion device accompanied with early detection module.

The ordinary differential equations (ODE) model
is used to generate a population of virtual patients by
random initialization of some parameters in ODE and
by random initialization of the states’ initial conditions
[6]. In all of the simulations, ¢ is an hourly step that
starts from ¢ = 0 when patient state and parameters
are initialized. Then, patient state evolves according
to ODE through the simulation time of 200 hours.
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According to [6], there are two possible outcomes at
the end of simulation time. A patient is in the survival
group if (1) the number of bacteria (B) is less than
Bmin, which was set to 1.0e5, and (2) the value of
systemic inflammation (PI) is less than 0.5. Otherwise,
a patient is in the non-survival group. Evolution of the
patient to the final state can be modulated by applying
the blood purification device.

2.1 Real Data To calibrate the model, real data is
obtained in [6]. A set of 23 rats was used to evaluate
long term (one week) survival rate. The rats were
induced by sepsis using the modified cecal ligation and
puncture (CLP) protocol, 25% ligated length of cecum
and 20-gauge needle. Eight observable states were
measured: Plasma cytokines (tumor necrosis factor
(TNF), interleukin(IL)-1b, IL-6 and IL-10), Lselectin
(Lsel), high mobility group boxl (HMGB1), creatinine
(CRT) and alanine aminotransferase (ALT). The states
are measured at 18, 22, 48, 72, 120, 144, and 168 hours
after CLP. No treatment was applied to any of 23 rats.
Seven rats out of these 23 survived up to 7 days, being
considered as the survivor population; the remaining 16
animals died and were considered as the non-survivor
population.

2.2 Generation of Virtual Patients in Accor-
dance with Real Data We use the real data to gen-
erate virtual patients in accordance with real data [6].
The virtual patients are generated according to the fol-
lowing 3-step protocol:

1. The parameters of a mathematical model are ran-
domly sampled in consistence with valid ranges de-
scribed in [6].

. For the chosen parameters, the evolution of 19-
states over time is simulated and the outcome
(survival or non-survival) is determined.

The likelihood that evolution of 8 observable states
follows evolution of real data is calculated [6]. If
the likelihood is high then the virtual patient has
been ”accepted” as valid. Otherwise, a generated
patient has been rejected.

Following this protocol, we have generated a popula-
tion of sham (no treatment) virtual patients. A group
of 5000 virtual patients belonged to the survival pop-
ulation, while another group of 5000 virtual patients
belonged to the non-survival population. Statistics of
simulated data for eight states together with observa-
tions from real data are presented in Figure 2.
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Figure 2: An agreement between simulated and real data.

a) TNFq, b) IL-1, c¢) IL-6, d) IL-10, e) Lsel, f) HMGBI, g)

CRT, h) ALT. Solid lines - mean values of simulation outputs of 5000 virtual patients in survival (blue) and non-survival
(red) groups. Dotted lines - region of 95% simulation uncertainty (95% of virtual patients are within the region). Error

bars - real observations from animal study experiments.

3 Realistic Standard Therapy

According to [6], the device is turned ON from 18
hours to 22 hours after CLP. Following our previous
work [7, 9], we found that applying the therapy for 12
continuous hours cures more patients than applying the
therapy for 4 continuous hours as shown in Figure 3.
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Figure 3: Efficacy of continuous blood purification therapy
(percentage of rescued patients) with respect to starting time
of therapy and the duration of treatment.

However, these procedures assume that the CLP-
sepsis induction time is known, common in laboratory
conditions but is uncommon in clinical practice. In
other words, the device is turned ON at a known
hour after inducing CLP-sepsis to the patients. In
clinical practice the sepsis induction time is unknown.

To simulate this the time when the patient visits the
intensive care unit (ICU) was sampled uniformly from
5-12 hours after the sepsis induction. Then, the therapy
is applied for 12 continuous hours at the 18th hour
after the patient shows up in the ICU. Using the
realistic scenario, the standard therapy was able to cure
approximately 15% of the non-survivor patients in our
experiments (Section 5).

The time when the therapy is applied is critical for
the success of the therapy. In previous work [7], we
have shown that using an early classification method,
called Multivariate Shapelet Detection (MSD) [12], to
predict the start time of the 12-hour therapy cures more
patients (21%) than applying the therapy at the 18th
hour from ICU admission.

Very recently, a method called Interpretable Pat-
terns for Early Diagnosis (IPED) is proposed for early
classification of multivariate time series [13]. It has been
shown that the IPED method is more accurate than
the MSD method. In our experiments, we have applied
the IPED method on the non-survivor patients group to
predict the start time to apply the 12 hour continuous
therapy. Indeed, IPED cured more patients (28%) than
MSD did, as shown in Table 1.

Described methods (standard therapy, MSD- |
IPED-initiation based therapy) are aimed to optimize
the initiation time of application of the 12 continuous
hours therapy to the patients. In the current study we
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Standard ~ MSD IPED
Cured Patients[%)] 14.8(0.16) 21.0(12.8) 28.2(4.5)

Table 1: The mean and standard deviation (between paran-
thesis) of the percentage of cured patients by applying the
continuous 12-hour therapy either at the 18th hour (Stan-
dard), or based on prediction of MSD or IPED, respectively.
The performance is computed over 3 runs by sasmpling 30
patients for training and evaluatinng the model on the re-
maining 4970 patients.

hypothesize that the continuous therapy is not optimal.
In other words, we allow non-continuous application
of the HA therapy. To administer non-continuous HA
therapy we need to build a data driven model that auto-
matically learns when and how long the therapy should
be applied to cure the patient. In the next section, we
describe the proposed model that allows non-continuous
therapy application.

4 Model Predictive Control (MPC)

The objective of MPC is to optimize the duration of HA
sepsis therapy application aimed to cure the patient.
In order to do that, we need to define a reference
trajectory such that minimizing the difference between
the estimated future patient state (output of predictive
model) and reference trajectory increases likelihood of
therapy success [9].

Since PI and B are used to quantify the state
of the patient (survival versus no survival) (Section
2), they render themselves as good candidates for the
optimization as reference states. However, PI and B are
non-observable variables which render the whole model
as useless in reality and limit its application in the
clinical domain. Therefore, we inspected the training
data and found that the high-mobility group protein B-
1 (HMGB1) could be used as an early indicator for the
therapy efficiency when it is smaller than 0.2 or it is
decreasing, which is our optimization objective.

In order to generate training data for the data-
driven MPC model, we have randomly sampled 30 pa-
tients for training. Then, at each time point the ordi-
nary differential equation was used to predict the pa-
tient’s response for 10 time points ahead (prediction
horizon). A set of different therapy duration is opti-
mized to find the optimal therapy that minimizes our
optimization objective at the end of the prediction hori-
zon.

Following the principles of MPC [8], we apply to
the patient just the first hour of the therapy from the
optimal therapy obtained by the optimization function.
Then, we observe the new state and repeat the optimiza-
tion procedure to obtain new more optimal therapy.
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4.1 Data Driven MPC To build a data driven
MPC, we do not assume any knowledge about the math-
ematical models used to generate the data. A model
aimed to predict the future states of the patient is
learned. Non-linear models need more training samples
to prevent overfitting. In early-stage medical studies, of-
ten a small number of patients are involved (in our case
30 patients were used for training). Due to data limi-
tation, we have therefore used linear regression models
to predict the future states of the patients based on the
current observation and the previous two observations.
In particular, we have used an independent regression
model for each observable variable to predict 10 time
points ahead (iteratively one-step-ahead prediction).
4.1.1 Predictive Model Assume that Y; =
[y, v2,...,y8] is a vector of the 8 observable states
at time t, and wu; is the control (therapy is ON or
OFF) applied at time t. Then, we learn 8 independent
regression models R7;j = {1,2,...,8}. Each model
R7 predicts the j'* state at the next time point
using the current and the previous two observations:
Gl = RI(Y:,Yio1,Yio, Gy, ui1,ui—2) where g/
is the predicted value of the state j at time t+1
and 4 is the control suggested at time t (see next
paragraph). _The state at time ¢ + 2 is predicted as:
?Qt.,_z = Rj(Y;‘,+17Yt,thl,atJrl,auutfl) where ;41 is
the optimized control (the control that has been chosen
using the optimization function) at time t+1. So, we
use the model R’ to predict 10 time points ahead in
iterative mode.

At each time point t, we applied our learned data
driven MPC model to find the optimal HA therapy that
should be applied at time t. Then, if the therapy is
recommended (@) by the model, we apply only one hour
of therapy and then observe the patient at the next time
point. We repeat that process at each time point, and
no therapy is applied after the 100" hour.

4.1.2 Constraints To get a fair comparison with
the standard 12-hour continuous therapy, we added
constraints requiring that the therapy is not applied
for more than 4 continuous hours and no more than 12
hours in total during the first 100 hours. We note that
the total duration of the resulted therapy application
induced by our DDMPC could be less 12 hours but not
more than 12 hours. Therefore, some patients might
be cured using less than 12 hours of non-continuous
therapy application.

5 Evaluation

We generated a population of 5000 non-survivor pa-
tients as described in Section 2. We sampled 30 pa-



tient for training DDMPC. In particular, at each time
point we find the optimal therapy using the differential
equations as explained in Section 4. Then, we apply
only one hour therapy if the therapy is recommended.
Therefore, we obtain a population of patients along with
the temporal therapy provided to the patients. Finally,
we trained linear regression models (one for each vari-
able) on the data obtained by the MPC. We evaluated
the DDMPC on the remaining 4970 patients. At each
time point, the optimal therapy is recommended using
the linear regression model (instead of differential equa-
tions) used to predict the future states of the patient.
Then, we proceed by applying one hour of therapy and
then observing the next state of the patient and repeat-
ing the process.

We repeated the entire process (sampling 30 pa-
tients for training data driven MPC and evaluating the
model on the remaining 4970 patients) three times and
reported the mean and the standard deviation of each
statistic.

It has been shown in Table 1 that IPED is more
accurate than three continuous methods to predict the
appropriate start time of the 12-hour HA sepsis therapy
application. To compare the optimal therapy provided
by DDMPC with the IPED 12-hour therapy, we apply
the DDMPC therapy starting from the time when the
patient visits the ICU (assuming the induction time
is unknown). The patient’s visit time is uniformally
sampled from 5-12 hours from sepsis induction (we
use the same patients’ visit time as the one used in
evaluating the early classification methods to get fair
comparisons). The results are shown in Figure 4.

Percentage of Cured Pateints

| Il Standard [l MSD [ PED M DDMPC ||

Continuous Non-continuous

Figure 4: Percentage of cured patients when the induction
time is unknwon. The 12 hours non-continuous therapy
obtained by DDMPC model has cured more patients than
any other 12 hours continuous therapy-based method.

DDMPC-based therapy has cured significantly

more patients (42%) than any other method (stan-
dard 12-hour, MSD-inititation, IPED-initiation based
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12-hour therapy). This result provides evidence that
the application of non-continuous therapy (obtained by
data driven MPC) is more effective than the continuous
therapy.

Figure 5 shows the cumulative distribution of
patients who have been cured using different therapy
duration intake. It is clear from the figure that the
majority of the patients were cured using 12 hour
therapy and approximately half of the patients cured
using less than 12 hours therapy. These results are
consistent with the results shown at Figure 3.
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Figure 5: The cumulative distribution of therapy intake. X-
axis represnts the total duration of the therapy that have
been applied to the patients. Y-axis is the cumulative
distribution of patients who have been cured by the therapy.

The application of non-continuous HA therapy on
sepsis patients is shown at Figure 6. The figure shows
the therapy application for all cured patients (~2,100
of 5,000 patients). The majority of the therapies were
applied at early stages, around hour 15-25 and in few
cases additional therapy is applied later if needed (the
figure is based on CLP induction time for representation
simplicity). We also could see that the therapy is
applied in non-continuous fashion, which resulted in
more cured patients.

6 Conclusion

We proposed a data-driven model predictive control for
optimizing the duration of the HA therapy provided
to non-survivor virtual patients. Two benefits of using
DDMPC are shown by our experiments in a population
of 5,000 virtual patients. The proposed non-continuous
therapy cured about 41% of the cured patients with
less than 12 hours of HA administrations, and for some
patients only two hours of non-continuous HA therapy
were sufficient vs. alternative 12 hours of continuous
application. The learned DDMPC non-continuous HA
administration cured 14% (or more) more patients than
any alternative continuous therapy application-based
methods.
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Figure 6: The continuous black horizontal line segment
represents time and duration of application of continuous
therapy. The majority of the therapies were applied at early
stages, around hour 20 (relative to the induction time) and
in few cases therapy is applied later if needed.
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