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Abstract

Until recently, research in social network analysis was fo-

cused on single layer networks, where only one type of links

among nodes is considered. This approach does not consider

the variety of interactions that exist among nodes, resulting

in the loss of a large amount of information. In the last few

years there is an advanced interest in multilayer networks

analysis, where multiple types of nodal connections are con-

sidered jointly. In most approaches however the contribu-

tions of the various interactions are averaged, resulting again

in the loss of information. In this work we present a struc-

tured regression model for node attribute prediction in mul-

tilayer networks. Our Gaussian Conditional Random Fields

model is designed to maximize the information gained from

the use of data with multiple layers of graphical structure.

Our model accommodates graphs with layers that share the

same set of nodes allowing for missing nodes and unobserved

connections. At the same time it models the evolution of

such networks over time without requiring the addition of a

new layer. We present evidence that this model outperforms

the traditionally used one and that it offers predictive accu-

racy that increases as the number of layers used grows, on

both synthetic data and challenging real world applications

such as predicting citation count and sepsis hospitalization

admission rate at all hospitals in California.

1 Intoduction

Social network analysis, as emerged from modern so-
ciology, uses graph theory to characterize social struc-
tures. This idea of traditional sociograms, has inspired
the use of graphs for the representation of different kinds
of structures in different disciplines. Graphs are broadly
used for the representation of biological networks [1],
scientific collaboration networks [2] or even disease net-
works [3]. As a result, networks with a variety of prop-
erties for nodes and links have been created, from net-
works with multiple kinds of nodes [4], to networks with
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time dependent existence of links [5].
Up until recently, research in social network analysis

was focused on single layer networks, where only one
kind of node interactions is considered. However, in
natural systems the entities interact in multiple ways.
These systems can be represented by a set of graphs
over the same vertices, with the edges of each graph
capturing a different type of interaction. The common
practice for analyzing such systems is their reduction
to a network where the vertices are connected by only a
single set of links, resulting in the loss of the information
carried by the heterogeneity of their interactions.

In the last few years a variety of studies have been
published using terminologies such as “multirelational”
[6] or “multiplex” networks [7]. Researchers have
tried to develop a framework to study and describe
these kinds of systems in a comprehensive fashion
[8]. Alongside these efforts, the problem of clustering
vertices based on multiple graphs is studied, in both
unsupervised and semi-supervised settings [9]. Other
areas that have also been investigated, are graph layer
reduction [10] and link prediction [6].

In this paper we propose a Gaussian Conditional
Random Fields model (GCRF) that is specifically de-
signed for use with multilayer systems. Thereby, we
present a regression method for structured prediction of
node attribute values. Several GCRF models have so
far been successfully applied for regression problems in
different domains [11,12]. However in most cases either
graphs of only one layer were used or the integration of
information from several layers was computed by aver-
aging. The GCRF model proposed in this work aims to
maximize the information gained from data with mul-
tiple layers of graphical structure. Our model considers
the possible correlations among layers and integrates
the information in a more educated way. This way in-
stead of averaging the information from the heteroge-
neous connections, our model aggregates it, offering a
more precise prediction of the node attributes.

In this study we will use the more general term
“multilayer network” as introduced in [8] to describe
systems where the nodes are connected via multiple
types of links. An example of such a network is shown
in Figure 1, where three types of links are considered
simultaneously among a constant set of nodes and over
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Figure 1: A multilayer network with three layers, each
represented by a different color of links

multiple time steps. The objective of the structured
regression task would be the prediction of the response
variable y for all nodes at the future time step. In
our approach we assume that different layers share
the same set of nodes. Nevertheless, the absence of
nodes from any layer does not affect the accuracy or
methodology of our approach. Furthermore notice that,
as in [13], our model also allows us to include the
evolution of such networks over time. In the GCRF
framework we are able to include several timesteps
in our analysis and the correlations of nodes among
those timesteps without having to include an additional
layer, as the evolution over time can be included by a
simple join of the matrices that describe the different
connections among nodes in different timesteps. In
the experimental sections we will present evidence that
this model outperforms the traditionally used model on
both synthetic and real world data. Furthermore we
use synthetic data to gain a detailed perspective of the
various properties of the model, and we show that this
model offers predictive accuracy that increases as the
number of layers used grows.

2 Structured Regression on Networks by
Conditional Random Fields

Problem Definition: The objective would be the
prediction of a real valued N-dimensional vector of
possible output y = (y1, ..., yN ), describing a nodal
attribute. For this regression task we follow a structured
learning approach, where we are given all the input
nodal attributes x = (x1, ..., xN ) and the dependencies
between the outputs y, represented by a set of graphs,
each describing one of the multiple types of connections
among the nodes.

In the continuous case, Conditional Random Fields
(CRF) compute the probability P (y|x) of the real-
valued possible output y = (y1, ..., yN ) given the input
x = (x1, ..., xN ) by an equation of the form [14,15]:

(2.1) P (y|x) =
1

Z
exp(−

N∑
i=1

K∑
k=1

αk(yi −Rk(x))2

−
∑
j∼i

β(ψ,x)(yi − yj)2)

where α and ψ are parameters and j ∼ i denotes that

the two nodes i and j are neighboring nodes. Z is a
normalization constant, which is an integral over y of
the term in the exponent. In the first term, Rk(x) is
the kth baseline predictor and αk is the corresponding
weight. In general the baseline predictor can use the
entire input x to predict the value of yi but does not
use the correlations among the outputs, so that we
will be referring to Rk(x) as unstructured predictor.
We can introduce an arbitrary number of unstructured
predictors and their relevance will be learned from data,
as more relevant predictors will be given greater weights.
Also, the quadratic function is easy to interpret as it
dictates a value of yi close to Rk(x). In the second
term, the function β(ψ,x) describes the way that the
outputs yi and yj are correlated. The quadratic form of
the potential forces the values of yi and yj to be more
similar as the value of function β(ψ,x) increases. The
β(ψ,x) function that is commonly used is:

(2.2) β(ψ,x)(i,j) =

L∑
l=1

ψlS
(l)
ij (x)

where S
(l)
ij (x) represents the similarity between nodes

i and j, as is defined for the graph layer G(l). The

value of S
(l)
ij (x) is zero if the nodes i and j are not

connected in this specific graph layer. Similar to the
case of the association potential, ψl is the corresponding
weight that during training determines the relevance of
the similarity matrix.

In general regression problems, both learning and
inference can be difficult, due to the integration over y in
the normalizing constant Z. However, our approach has
been shown to allow efficient learning and inference [11]
as it corresponds to a multivariate Gaussian distribu-
tion. It is easy to notice in (2.1) that the exponent of
the probability distribution P (y|x) is a quadratic func-
tion in terms of y, and that it can be written as:
(2.3)

P (y|x) =
1

(2π)N/2|Σ|1/2
exp(−1

2
(y − µ)TΣ−1(y − µ))

We will therefore refer to the model of (2.1) as Gaussian
Conditional Random Fields (GCRF). The learning task
is to choose the parameters α and ψ to maximize the
conditional log-likelihood of the training data. Follow-
ing the technique used in [12] that applies exponential
transformation on α and ψ parameters to guarantee that
they are positive, we can ensure the feasibility of the
learning task [11, 16] and at the same time convert the
learning task to an unconstrained optimization problem
and use standard gradient descent to solve it.

The inference task is to find the outputs y for a
given set of observations x and estimated parameters
α and ψ such that the conditional probability P (y|x)
is maximized. In the case of GCRF, since the model

Copyright © by SIAM 
Unauthorized reproduction of this article is prohibited.

613



is Gaussian, the prediction for y will simply be the
expected value of the distribution, which is equal to
the mean µ(x). To obtain explicit expressions for µ(x)
and Σ(x), we match equations (2.1) and (2.3) under the
assumption that the matrix β(i,j)(ψ,x) is symmetric.
In order to analytically write the equations, let us first
define the N ×N matrix Q with elements:

(2.4) Qij =

{∑K
k=1 αk +

∑
k 6=j β

(i,k)(ψ,x), i = j

−β(i,j)(ψ,x) i 6= j

Then, the mean and the inverse of the covariance matrix
of P (y|x) can be calculated as µ = Σb and Σ−1 = 2Q,

where bi = 2
∑K
k=1 αkRk(x)

3 GCRF for Regression on Multilayer
Networks

The GCRF framework described above can be used to
model applications of multilayer networks, as it allows
for the integration of knowledge from multiple layers of
connections among nodes, represented by the similarity
matrices. However the integration of all this information
is so far being done in a direct and simplistic manner
using the function given by (2.2). This function is
averaging the contributions of various layers and does
not take into account any possible correlations among
them. In order to create a model that incorporates all
the information from the multilayer network so that the
information gain and the accuracy are maximized, we
propose the following function:

(3.5) β(ψ,x)(i,j) =
L∑
λ=1

ψλ(
∑
l

ψlS
l
ij(x))λ

where λ is a variable that takes all the integer values
between one and L, the number of layers of the graph.
In this function, notice that the first term (for λ = 1)
corresponds to the summation that is currently applied
in the GCRF framework. For higher values of λ more
complicated, nonlinear terms are created. Thereby
this function is composed of terms that contain all
the possible products of the similarity matrices of the
graph’s various layers. More specifically we can see
that for λ = 2 we get terms that contain all the
possible combinations of two matrices, or the second
order correlations of layers. Similarly, for λ = 3 we get
terms that contain all the possible combinations of three
matrices, or the third order correlations of layers. This
way we take into account all possible correlations among
the layers of the graph, allowing the parameters ψλ,
learned during training, to determine the importance
of the correlations of order λ. We will refer to the
GCRF model that utilizes this β(ψ,x) function as
Power Function GCRF (PF-GCRF).

In general GCRF models have been shown to be

a very powerful tool in structured regression [11, 12],
which led many researchers to focus recently on opti-
mizing the running time of GCRF in order to enable its
applications on large graphs [20]. AS PF-GCRF con-
siders all possible correlations among the layers of the
multilayer network, a time complexity issue is automat-
ically introduced. However, the main focus of this paper
is not to provide a fast model for structured regression
but to improve the accuracy performance of GCRF and
to introduce evidence supporting the significance of the
various layers information aggregation.

4 Baseline Regression Models

In the following experimental sections, we compare the
performance of PF-GCRF with a variety of baseline pre-
dictors. First, we use the unstructured predictor, used
as a standalone predictor to get a lower baseline. Then
we also compare to the original GCRF, as proposed
by [11], that utilizes the β(ψ,x) function in (2.2).

None of the above baseline predictors however, take
into account correlations among the layers of the graph
and therefore we introduce one more predictor to act as
a baseline, inspired by the work of [17]. The original
model of the β(ψ,x) function in (2.2), models the data
under the assumption that two nodes are expected to
have similar values of y if the similarities state on
average that they are similar. However, this assumption
is not always ideal as it is significantly affected by links
that may be unobserved in a specific layer, or layers that
are less accurate. Therefore this new baseline predictor
is designed in such a way that allows us to directly build
propositions such that two nodes should have similar
values of y if at least one of the similarities states that
they are similar, or that two nodes have similar values of
y only if all the similarities state that they are similar.
More specifically, these propositions can be generated
by a function β(ψ,x) that resembles a probabilistic
“logical gate”. Inspired by the use of logical gates,
the Noisy-OR function, represents a non-deterministic
disjunctive relation between an effect and its possible
causes and has been used in artificial intelligence [17,18].
In a similar spirit we can also use a Noisy-AND function
to finally create a prior that picks up for the strongest
(OR) or the universal (AND) support among the various
information sources. The following equation represents
the simplest form of combining the probabilistic OR and
AND gates:

(4.6) β(ψ,x)(i,j) =
L∑
l=1

ψlS
(l)
ij (x) + ψL+1(

∏
Slij(x))+

ψL+2(1− [
∏

(1− Slij(x)])

In this approach the first term of the β(ψ,x) function
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corresponds to the summation that is currently applied
in the GCRF framework. The other two terms aim to
add some flexibility to the model so that the proposi-
tions mentioned above can be taken into account. Again
the parameters ψ are learned from training data so that
the importance of the various layers and also the two
probabilistic propositions are adjusted to the given ap-
plication. We expect that the importance of each of the
propositions may be application specific. For example in
multilayer networks where the nodes are Internet users,
their friendship in facebook is usually enough for them
to be assumed as interacting users, and the absence of
a strong link between them in the youtube layer does
not demote their connection. In this case the use of
OR gate is expected to benefit GCRF. The combina-
tion of those terms is expected to guarantee application
independence and at the same time add an additional
degree of freedom to the model. We will refer to the
GCRF model that utilizes this β(ψ,x) function as Log-
ical Gates GCRF (LG-GCRF).

5 Experiments on Synthetic Networks

As a first step, we perform experiments on synthetic
data as they enable us to avoid the various peculiarities
of real-world data and focus on analyzing the properties
and performance of our proposed model. We report our
findings on two major experiments. The first is applied
on data generated using Erdős - Rényi graphs [19] and
node attributes generated from a normal distribution.
The second is applied on data sampled from the GCRF
model, treated as a generative model. In the following
sections we present the detailed data generation process
followed by our results.

5.1 Experiments on Multilayer Random
Graphs

5.1.1 Exploring the information gain from mul-
tilayer graphs The goal of this set of experiments is
to investigate the way that PF-GCRF incorporates the
information carried by the layers of the graph and com-
pare the information gain of this model with the base-
lines. Therefore we design a set of experiments, where
we study the change in the prediction accuracy as we
utilize more and more layers of the graph. Then we can
show that PF-GCRF combines the information of the
layers in an accumulative and not averaging way.
Generation of y and Rk(x) values: The first step of
our data generation process is the creation of an Erdős
- Rényi graph with 300 nodes. We then assign each
node with an output value y chosen randomly from a
standard normal distribution. For the creation of the
unstructured predictor Rk(x) we use the values of y

and we add noise, sampled from a normal distribution
(N(0, 2/3)).
Generation of 8 layers: In order to create a mul-
tilayer graph structure we assume that the links in-
cluded in the various layers of data, all originate from
a true and unobserved network ( [17] has used a similar
assumption). In this context all the similarity matri-
ces of our data are instantiations of the true and un-
observed similarity matrix. To this end, we first cre-
ate the weights of the edges of our true network, as
wij = e(−(yi−yj)). Then we create the layers by sam-
pling a percentage of the edges of the true network and
adding noise to their weights.

More specifically, we create the values of y and
Rk(x) along with five different layers using the method-
ology described above. In those first five layers we add
random noise to the true edges that is sampled from
N(0, 0.1), N(0, 0.2), N(0, 0.5), N(0, 1), N(0, 1) corre-
spondingly and randomly remove a percentage of links
(20% in the first layer and 40% in the rest). Then we
create layer 6 with random values sampled from uni-
form distribution, layer 7 with random values sampled
from standard normal distribution and layer 8 with a
completely uninformative similarity measure where all
the nonzero links are equal to one.

Evaluation of layers: The eight similarity ma-
trices have significantly different informative strengths.
Considering the noise that has been added during the
formation of the layers, it is clear that the first layer,
is the more informative one. The similarity matrices of
layers four and five offer the least amount of informa-
tion, while layers six and seven are completely random.
Finally, the eighth layer is completely uninformative.
GCRF train and test data: We use the previously
described synthetic graph as the training data set for
all the models. The evaluation is done by repeating
the process to create a new completely independent test
data set.
Experimental Setup: In order to investigate the abil-
ity of the GCRF models to incorporate information from
various data sources, we design an experiment where we
start from using only one layer of the graph and then
we repeat the process adding one layer of information
at a time. Given that we have created eight layers, both
training and testing of the models is done eight times,
so that every time we use one more similarity matrix.
As the first of the layers has the more informative simi-
larity matrix, we start by including this layer and then
we add one by one the less informative layers. This
way we can investigate not only the way that the mod-
els incorporate the information offered but also their
robustness when uninformative similarity matrices are
included. We report the resulting accuracy, at the top
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Figure 2: Top: R2 of the three models as the number
of layers used changes. At first only layer 1 is included
(1-1) and then all layers between layer 1 and ` (1-`) are
included for `=2,.., 8. Middle: R2 of the three models:
At first only layer 8 is included (8-8) and then all layers
between layer ` and 8 (`-8) are included for `=7,.., 1.
Bottom: Parameters ψl learned by the three models
when all eight layers are included

part of Figure 2.
Next, we investigate the behavior of the models

when there is not such an overpowering layer, as the first
one, included from the beginning. Therefore we run the
same experiment but this time start by including only
the last layer, which is the least informative, and then
we add one layer at a time, this time in decreasing order.
The results are reported in the middle part of Figure 2.

Notice that we repeat these experiments ten times,
so that the reported R2 values are average values over
the 10 repetitions. The variance of the R2 values in
those ten repetitions has a maximum value of 0.0004
and although it is not distinguishable it also included in
Figure 2.

Results: The value of our results can be seen in
Figure 2, where the change in the accuracy of the models
by the inclusion of more layers is plotted. In the top part
of the Figure we can see that, while the accuracy of the
original GCRF model remains practically constant, as a
result of the averaging properties of the corresponding
β(ψ,x) function, the accuracy of the other two models
changes. TheR2 of LG-GCRF originally increases, how-
ever as less informative similarity matrices are added the
accuracy drops. On the other hand, the accuracy of PF-
GCRF continues to increase. The intuition behind that
is that although the newly added similarities are not as
informative, their addition allows one more term to the
corresponding β(ψ,x) function, which gives the model
one more degree of freedom, and it therefore captures
more correlations and performs better.

In the middle part of Figure 2 we can see that for the
first three setups, where only the uninformative layers
eight, seven and six are included, all three models have a

constant accuracy. However, starting from the inclusion
of layer five the accuracy starts increasing with the PF-
GCRF outperforming the other two models. Notice
that, in this middle part of Figure 2, the lines for GCRF
and LG-GCRF overlap.

Finally, one way to look further into the reasons why
PF-GCRF performs best is by looking at the learned
parameters. In the bottom part of Figure 2 we can see
the parameters ψl learned by the three models and for
each of the layers l, in the case where all eight layers
of the graph are included. We notice that GCRF and
LG-GCRF learn a parameter for the first layer that is
significantly higher than all the other ones. This way
the models determine that the first layer is the only
informative one, as the rest of the parameters have
values that are significantly lower. On the contrary,
PF-GCRF assigns higher values to the parameters, and
through that, higher importance to layers two and
three. As the contribution of the second and third
layers cannot be comparable to the contributions of
the rest, we can state that the parameters learned
from PF-GCRF for the first three layers represent more
realistically the informative power of the corresponding
similarity matrices.

5.1.2 Additional Experiments on Random
Graphs The previously described set of experiments
utilized an Erdős - Rényi graph. To further character-
ize the generalization of our results, we conducted a set
of experiments using synthetic graphs, obtained by dif-
ferent graph generation method [22–26]. Although the
detailed results are omitted we have confirmed that the
improvement of PF-GCRF noticed in the previous sec-
tion is evident regardless of the graph generation process
used during synthetic data creation.

We have also verified that the PF-GCRF model pro-
posed here, performs best regardless of the accuracy
and value of the unstructured predictor that is utilized.
However, the results also indicate that, as the quality
of the unstructured predictor drops and the room for
improvement in the prediction grows, so does the ben-
efit from using PF-GCRF. The reason is that, when
the accuracy of the unstructured predictor drops, the
importance of the information carried by the graphical
layers grows, so that the way that this information is
combined becomes more important.

5.2 Experiments on Multilayer Networks Gen-
erated by GCRF In the previous set of experiments
the values of y were generated from a Gaussian dis-
tribution, favoring the application of Gaussian models.
In this set of experiments we evaluate the accuracy of
PF-GCRF when data that hold different intrinsic struc-
tures are used. To this end we use the GCRF model as
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a generative model to create synthetic data that hold a
specific structure defined by the β(ψ,x) function.
Generation of values for R(x) and layers: We
first create an Erdős - Rényi graph with 300 nodes, and
then similarly to previous sections we assign to each
node a value sampled from a standard normal distri-
bution. This value now corresponds to the unstruc-
tured predictor Rk(x). We use this value and equation:
wij = e(−(Ri−Rj)) to create the edges of the true and
unobserved network and then we construct the various
layers by adding noise to this value sampled from N(0,
0.2) and randomly removing a percentage of links (40%).
We remove the high correlation between the values of
R(x) and the similarity matrices by adding extra noise
to R(x), sampled from N(0, 0.5).
Generation of y: To create data with various internal
structures we modify the β(ψ,x) function used. As seen
in Table 1 we chose a variety of functions β(ψ,x) that
produced data with different properties. More specifi-
cally βAND and βOR create data with enhanced prob-
abilistic AND and OR functionality correspondingly.
Function βAV produces data for which the contribu-
tion of the various layers is averaged, while βAVAND and
βAVOR create data that average the contributions taking
into account the probabilistic AND and OR function-
ality. More complex data are creates by the last three
β(ψ,x) functions, βQS , βTH and βQ, that construct
data with enhanced correlations among the various lay-
ers. Finally in order to create the data we choose a set
of parameters α and ψ, such that the graph structure
is significantly more important than the unstructured
predictor (ψ >> α) and we run the GCRF model that
utilizes those β(ψ,x) functions to produce the output
y. As in previous section we run the experiment ten
times and we report mean accuracy on Table 1 for all
the models and all the synthetic data.
Results: From the results of Table 1, we can see
that PF-GCRF model, outperforms the original GCRF
model in most of the cases. The benefit in the accu-
racy depends, as expected, on the details of the data
structure. For example in the case of βAND it is clear
that LG-GCRF outperforms the other two models. For
βOR LG-GCRF outperforms the original GCRF, as ex-
pected, while PF-GCRF is also able to capture the data
structure and significantly increase the accuracy. The
function βAV is actually producing data that match ex-
actly the function of the original GCRF and therefore
this model is expected to outperform the rest. Further-
more, βAVAND and βAVOR functions are again designed to
create data whose structure benefits the LG-GCRF and
this result is reflected on Table 1. In the last three cases,
where the data hold higher order correlation, only PF-
GCRF is able to capture them and the difference in the

Table 1: Accuracy, in terms of R2 for experiments with
synthetic networks that were generated using GCRF as
a generative model with data of 4 layers and the β(ψ,x)
function shown here

R square (E-2)

β(ψ,x)(i,j) GCRF LG
GCRF

PF
GCRF

βAND=
∏
l ψlS

l
ij(x)) 72.22 99.13 77.29

βOR = e(1−
∏

l
ψl(1−Sl

ij(x))) 85.61 86.60 93.50

βAV = 1
L

∑L
l=1 ψlS

(l)
ij (x) 98.47 98.35 98.31

βAVAND = βAV
∏
l S

l
ij(x) 85.12 99.65 89.54

βAVOR =βAV (1−[
∏

(1−Slij(x))] 98.58 98.24 98.15

βSQ = (
∑L
l=1 ψlS

(l)
ij (x))2 77.04 76.92 78.53

βTH = (
∑L
l=1 ψlS

(l)
ij (x))3 47.71 44.54 51.68

βQ = (
∑L
l=1 ψlS

(l)
ij (x))4 74.71 73.39 76.14

model’s accuracy is more significant.

6 Experiments on Real Applications

In this section we study the performance of the GCRF
models on two real world applications. We present two
sets of experiments, using data from different domains.
The first experiment uses data of a citation network
while the second one utilizes a graph inspired from
health analytics, where the nodes represent hospitals.

6.1 Citation Count Prediction We use PF-
GCRF to predict the citation count of research papers
for high energy physics. We utilize a citation network,
constructed from the data of 2003 KDD Cup competi-
tion [27], using the publications of high energy physics,
theory track. Thus we create a bibliographic network
that consists of 29,955 papers and 352,807 citations
among them, spanning over 11 years. We build a net-
work that is well established and is not very sparse, by
focusing on the 800 most-cited papers, written before
year 2000. We will track their citation counts starting
at year 2000, having this way a 43 month period of ob-
servations [21].

For the creation of the multilayer graph, we use
those 800 most-cited papers as nodes and we construct
the layers of the networks based on the paper’s citation
history. The first layer corresponds to the historical
similarity of the two papers and is based on the Eu-
clidean distance between the two paper’s citation counts
over a lag of 3 timesteps. More specifically for two
papers i and j the historical similarity is written as

Shistij = exp(−d
2
ij

Zh
) where dij is the Euclidean Distance

Copyright © by SIAM 
Unauthorized reproduction of this article is prohibited.

617



Table 2: Accuracy of citation count prediction in terms
of R2

Group 1 Group 2

Unstructured 0.608± 0.004 0.348± 0.016

GCRF 0.665± 0.005 0.506± 0.019

LG GCRF 0.676± 0.005 0.510± 0.019

PF GCRF 0.684± 0.003 0.504± 0.020

of the two paper’s citation counts and Zh a normal-
ization constant that represents the average Euclidean
Distance between two papers in the dataset.

The second layer corresponds to the Co-Citer simi-
larity, which is based on the count of papers that cited
both papers divided by each paper’s individual citation
count at a particular timestep, so that:

Scsij =
2× CoCitations(i,j)

Citations(i) × Citations(j)
Using this multilayer graph, our regression problem

is the prediction of the citation count, yt, of each of
the papers and for each of the available timesteps, t.
We train the GCRF models using the citation count
yt−1 as output variable, the unstructured predictor for
yt−1, which actually corresponds to the citation count
yt−2 and the similarity matrices built from the previous
timestep t − 2. Then we use the trained model to
predict the citation count yt from the previous timestep
citation count yt−1 and the similarity matrices built
from data of t−1. The use of the previous timesteps for
training reduces the timesteps of data that are available
for predicting y to 41. The average accuracy of the
three GCRF models and the unstructured predictor,
over those 41 timesteps is shown in Table 2.

The results of Table 2 are separated in two groups.
The first group (Group 1) corresponds to timesteps
where the prediction of citation count by the unstruc-
tured predictor gave an R2 higher than or equal to
0.5 and the second group (Group 2) corresponds to
timesteps with R2 of the unstructured predictor lower
than 0.5. The reason for this very high variance of R2 is
that some months of the data are inherently more dif-
ficult to predict than others. We split the results into
those two groups to study the performance of our mod-
els in both cases. We can see from the results of Table 2
that for Group 1, both LG-GCRF and PF-GCRF per-
form better than the original GCRF model. For group
2, the mean accuracy of the PF-GCRF is slightly lower
than that of the other two models. However, if we take
into account the values for the variance of R2, that are
also reported on Table 2 we can see that there is no true
difference between the final values of R2 for GCRF and
PF-GCRF. A more detailed view of the results is offered
on Figure 3 where we can see that in Group 1 PF-GCRF
constantly outperforms GCRF with an improvement of

Figure 3: Improvement in accuracy of citation count
prediction, in terms of R2, offered by PF-GCRF over
GCRF for the two groups of papers

4% or even 8%. In Group 2 PF-GCRF and GCRF show
a comparable performance with a difference in accuracy
being within the variance of the model’s prediction ac-
curacy. Concluding we can see that PF-GCRF in most
cases offers an improvement in the prediction accuracy
while in the rest of the cases the accuracy remains the
same, within the margin of error, as the accuracy of
the original GCRF. The same statement is also true for
LG-GCRF, although the improvement is lower.

6.2 Predicting Number of Sepsis Hospitaliza-
tions In the second real world application we utilize
the multilayer nature of PF-GCRF to predict the next
month’s number of sepsis patients per hospital. The
data source is the California, State Inpatient Database
(SID) [28]. SID is an archive that stores US hospital in-
patient stays, is provided by the Agency for Healthcare
Research and Quality and is included in the Healthcare
Cost and Utilization Project (HCUP). The SID includes
inpatient discharge records from community hospitals in
the state (California), tracking all hospital admissions
at the individual level. We used all data between 2007
and 2011, and all the hospitalizations that are related to
sepsis, which is one of the leading causes of in-hospital
mortality.

Using SID data we build a set of multilayer graphs
of 231 nodes representing California hospitals, con-
nected with various link types, one for each month of
data. The output y of the prediction task is the nor-
malized number of patients diagnosed with sepsis per
month and hospital. The unstructured predictor will
again be the value of y at the previous month.

We create the layers taking into account that there
are many ways in which two hospitals can be con-
nected. For example, two hospitals can be regarded
similar if they treat patients with similar characteris-
tics, such as age or ethnicity. Furthermore two hospi-
tals are similar based on their specialization on treat-
ing specific diagnosis or applying specific procedures.
Such hospital attributes can be typically seen as dis-
tributions, as the distribution of patients age for each
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hospital, and hence we use the Jensen-Shannon diver-
gence to calculate the similarity between specific at-
tribute distributions for each pair of hospitals. Jensen-
Shannon divergence is a symmetrized and smoothed
version of the KullbackLeibler divergence D(P ‖ Q)
and for a pair of distributions P and Q is defined as
JSD(P ‖ Q) = 1

2D(P ‖ M) + 1
2D(Q ‖ M), where

M = 1
2 (P + Q). As P and Q distributions we use

the distributions of a variety of attributes provided by
the SID, such as the distributions of patient’s age and
race, distribution of admission source, length of stay,
number of patient’s chronic diagnosis, numerical codes
describing the primary payers and also distribution of
percentages of females and patients who died. We also
used the distribution of patient’s location based on a six-
category urban-rural classification and patient’s county
of residence based on a four category urban-rural des-
ignation. Finally we included the specialization simi-
larity of two hospitals, as this is calculated by the fre-
quency distributions of diagnoses treated in each hospi-
tal. More precisely we used the Clinical Classifications
Software (CCS) codes, provided by SID for each diag-
nosis, and we calculated the Jensen-Shannon similarity
of their distribution for each pair of hospitals. All the
similarity matrices are constructed for each month of
available data as their values change over time.

For each of the 60 available months of data, we pre-
dict the normalized number of patients diagnosed with
sepsis at each hospital, yt, using yt−1 as unstructured
predictor and the similarity matrices constructed from
the data of t − 1. The training of the GCRF models
is done using the value of yt−1 as target variable, the
value of yt−2 for unstructured predictor and the similar-
ity matrices at t− 2. The use of values for t− 2 reduces
the timesteps available for prediction to 58.
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Figure 4: Gain in accuracy over the unstructured
predictor, for all three GCRF models, when layers 1
until ` are utilized for ` = 2, ...,12. The insert shows
distribution of the value of R2

PF−GCRF − R2
GCRF for

each experiment.

For each timestep, we start our experiment includ-
ing only one of the layers of the graph. Then we re-
peat the experiment including more layers adding them
one by one. This way we actually create 696 differ-
ent experiments (58 timesteps × 12 total layers). We
report our results on Figure 4, by plotting the improve-
ment of prediction offered by each of the models over
the unstructured predictor. Notice that these results
are averaged over the available timesteps of prediction.
We can see that PF-GCRF outperforms the rest of the
models, while at the same time it offers increasing ac-
curacy as the number of layers included in the model
increases. The first two data points of the plot, indicate
that GCRF and LG-GCRF both outperform PF-GCRF
when less than three layers are included and the reason
behind this is the increased complexity of the model.
The figure in the insert represents the distribution of
the value of R2

PF−GCRF −R2
GCRF for each experiment.

We can see that, although in many cases the improve-
ment in accuracy that PF-GCRF offers is small, there
is also a large number of cases where the improvement
is close or even larger than 10%.

7 Conclusion

In this paper we propose PF-GCRF, a Gaussian Condi-
tional Random Fields model that is specifically designed
for use with multilayer networks. This model takes into
account the correlations among the layers of such net-
works, and it therefore accumulates the information re-
ceived from each of the layers, instead of averaging.

We have shown that our model outperforms the tra-
ditionally used method using two different real world
datasets, a citation and a hospital network. Using the
hospital network we showed that PF-GCRF accumu-
lates the information from the graph’s layers by showing
an increase in the prediction accuracy as the number of
layers used increases. We have additionally used arti-
ficial data with multiple types of internal structures to
further investigate the properties of our model.

We have shown that PF-GCRF provides an accu-
racy improvement over GCRF that can even be larger
than 10%, on real-world high impact datasets, where
even a small improvement is highly appreciated. How-
ever, including multiple layers into the model intuitively
introduces a time complexity issue, leading the user to
a trade off between accuracy performance and running
time. PF-GCRF can be enhanced by the development
of a fast PF-GCRF approach, following the currently
active research in the scalability of CRF approaches. In
any case PF-GCRF is to the best of our knowledge the
only regression model that has been shown to aggre-
gate information from multiple layers of graphs and as
such can also be utilized for the evaluation of a layer’s
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informative power.
Using PF-GCRF we have confirmed the significance

of the structural properties of the data and the effect
that their incorporation in a predictive model can have
on the final accuracy. Thereby we have shown that
the educated use of multilayer networks in predictive
problems can significantly improve performance.
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[19] P. Erdős and A. Rényi, “On the evolution of random
graphs,” Publ. Math. Inst. Hungar. Acad. Sci, vol. 5,
pp. 17–61, 1960.

[20] K. Ristovski, V. Radosavljevic, S. Vucetic and
Z. Obradovic “Continuous Conditional Random Fields
for Efficient Regression in Large Fully Connected
Graphs.” AAAI, 2013

[21] A. Uversky, D. Ramljak, V. Radosavljević, K. Ris-
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