Minimization of Multivalued Multithreshold Perceptrons Using
Genetic Algorithms

Alioune Ngom, Ivan Stojmenovi¢ *

Abstract

We address the problem of computing and learn-
g multivalued multithreshold perceptrons. Fvery n-
mput k-valued logic function can be implemented using
a (k,s)-perceptron, for some number of thresholds s.
We propose a genetic algorithm to search for an op-
timal (k,s)-perceptron that efficiently realizes a given
multiple-valued logic function, that is to minimize the
number of thresholds. Experimental results show that
the genetic algorithm find optimal solutions in most
cases.

1. Introduction

Let £ be a fixed positive integer and let K =
{0,...,k —1}. A k-valued logic function f maps the
Cartesian power K” into K. Denote by P}’ the set of
all such functions f : K™ +— K. The set P = J,~, P}
is the set of all k-valued logic functions.

A discrete neuron is a processing unit whose transfer
function outputs a discrete value. An example of such
transfer function is the linear threshold function. A
discrete n-input multiple-valued neuron has a discrete
transfer function and realizes a function of n variables
ranging in the set S C R with values in K, that is
computes a function f:S™ — K (where S C R). For
S = K we refer to the processing unit as a multiple-
valued logic neuron since 1t simulates a multiple-valued
logic function f : K" — K. Multiple-valued logic
neural networks are thus neural networks composed
of multiple-valued logic neurons as processing units.
The first model of multiple-valued logic neural net-
works were introduced in [2] and since then various
other models have been described [9, 13, 14].

*Department of Computer Science, School of Information
Technology and Engineering, University of Ottawa, Ottawa,
Ontario K1N 9B4, Canada, {angom,ivan}@csi.uottawa.ca. Re-
search is partially supported by NSERC and OGS grants

tSchool of Electrical Engineering and Computer Science,
Washington State University, Pullman, Washington 99164-2752

Zoran Obradovi¢ 1

The problem we address in this research paper 1s
that of learning multiple-valued logic functions by ge-
netic algorithms. Our model of multiple-valued logic
neuron is a multiple-valued multiple-threshold element.
Special cases of our neuron model, where the number
of thresholds is fixed to k& — 1, were introduced in lit-
erature [9, 11] and their learning power have also been
investigated in [10].

Multiple-threshold devices have drawn less enthu-
siasm. Among there qualities, though, is that given
enough thresholds, a single multiple-threshold element
can realize any given function operating on a finite do-
main. The ability of multiple-threshold devices to sim-
ulate a larger number of functions compared to single-
threshold devices is vital for the capacity and capabil-
ities of neural networks based on threshold logic. It is
therefore of practical as well as theoretical interest to
develop and study learning algorithms for such neural
networks.

A problem still left open in the domain of multiple-
valued multiple-threshold functions is how to minimize
the number of thresholds in order to construct the most
efficient multiple-valued multiple-threshold networks
or units. To minimize the number of thresholds, tradi-
tional techniques of multiple-valued multiple-threshold
circuit synthesis use either trial-and-errors, or allow
to synthesize only classes of functions for which an
optimal number of thresholds can be obtained (syn-
thesis of k-valued symmetric functions, for instance).
The multiple-valued multiple-threshold networks con-
sidered in literature have no learning capabilities, that
is, their parameters are set by the designers once
and for all using some traditional techniques of net-
works synthesis. Also, only some small classes of
k-valued logic functions are considered for multiple-
valued multiple-threshold synthesis techniques. We
propose genetic algorithms as minimization techniques.

2. Multiple-valued multiple-threshold
perceptrons

In the theory of multiple-valued logic functions
there exists a very important class of functions
called multiple-valued multiple-threshold functions [,
5]. Such functions are used in the design of classes of
multiple-valued logic circuits called programmable logic
arrays [12].

A k-valued s-threshold function of one variable [5] is
defined as

R 0o ify<t1
gz’ (y)y=4¢ oo iy <y<tppforl<i<s—1
os ift; <y

(1)

where 0 = (og,...,05) € K*T! is an output vector,
i= (t1,...,ts) € R® is a threshold vector where ¢; <
iy (1 <i<s—1),and s (1 < s < k" —1)is the
number of threshold values.

Let & = (#1,...,2,) € K. Tt is well known that
any n-input k-valued logic function f can be trans-
formed into a k-valued s-threshold function gz’yi (for
some s), where y = @ -Z =3 ., w;z; is called the ea-
citation and @ = (wy,...,w,) € R" is a weight vector
associated with Z [1, 5].

A k-valued s-threshold perceptron, abbreviated as
(k, s)-perceptron, computes a weighted n-input k-valued
s-threshold function Fﬁs(w,ﬂéj given by

F(@0,1,6)(%) = g, - F) (2)
where the perceptron’s transfer function 1s a k-

valued s-threshold function gk cR— K.

A (k, s)-perceptron is monotone if & is monotone,
that 18 o9 < --- < 05 or 09 > --- > 0,5, otherwise
it i1s nonmonotone. The multiple-valued logic neuron
described in [9, 11] correspond to k-valued (k — 1)-
threshold perceptrons, that is the (k, k—1)-perceptrons
in our definition. A (k, s)-perceptron is homogeneous
if 0'is the identity permutation on A, that is o; = i for
0 < <s, otherwise 1t is heterogeneous.

A (e, p)-permutation (or permutation of e elements
out) of P = {ag,...,ap_1} is an arrangement of e dis-
tinct elements of P, with e < p. For instance, ajasaq
and asapa; are two distinet (3, 5)—permutations The
total number of (e, p)-permutations is Ty The per-
mutations we consider here are permutations without
repetitions (i.e. without repeated elements). A (k,s)-
perceptron is said to be permutably homogeneous if its
output vector is a (s + 1, k)-permutation. Thus for
permutably homogeneous (k, s)-perceptrons we neces-
sarily have s < k — 1.

2.1. Multilinear separability

The problem of computing (or simulating) a given func-
tion f € PP, by a (k,s)-perceptron for some s, is to
determine a vector ¥ = (117,15_:6) € R”"’s x K**t! such
that F(7)(F) = [(7) (VF € K™), ie. [= ().
We will refer to ¥ as a s- representatzon of By for f.
One interesting open question is to find minimal s-
representation for f € P'. In other words, to obtain
a s-representation 7 With the least possible number of
thresholds s such that FJ? (7) = f. We will refer to this
problem as the s-represéntation problem which is not
equivalent to, for a fized s, finding a s-representation
7 for f. The later problem is the focus of this paper.

In this paper, we will be mainly interested in finding
minimal s for which there exist a s-representation for
a given f € P;'. In other words, given f € P}, we
want to find a s-representation 7 with the least possible
number of thresholds s such that F? (7) = f.

Let V = {&,...,&,} C K" be a set of v vec
tors (v > 1). A k-valued logic function f de-
fined over V and specified by the input-output pairs
{(Z1, f(#1)), ..., (&, f(Xy))}, where &; € K™, f(#;) €
K, 1s said to be s-separable if there exist vectors
@€ R, { € R and &€ K*t! such that

oo W %<ty

f(fl): 05 iftj§w~fi<tj+1f0r1§j§5—1
Og 1fts§u7i=’2

(3)

for 1 < i < v. Equivalently, f is s-separable if and
only if it has a s-representation defined by (u_}',t_; g). A
k-valued logic function defined over V is said to be s-
nonseparable if it is not s-separable.

In other words, a (k,s)-perceptron partitions
the space V C K7 into s + 1 distinct classes

H([jou],..., £OS],WhereH =A{# € V|f(¥) = o; and
t; < W-& < tjx1}, using s parallel hyperplanes. We
assume that tg = —oo and t;41 = 4+00). Each hyper-

plane equation denoted by H; (1 < j < s) is of the
form

Hjilﬂ~f:tj (4)

A function implementable by a homogeneous (k, s)-
perceptron is said to be homogeneously separable (or
homogeneous, for short). A function computable by a
(k, s)-perceptron with given output vector & is said to
be &-separable. A function implementable by a (k, s)-
perceptron whose output vector is monotone is said to
be monotoneously separable. A function computable
by a permutably homogeneous (k, s)-perceptron is said
to be permutably homogeneously separable (or simply,
permutably homogeneous). For instance, the function

f1 shown in figure 1 is 3-separable, (0,2, 1, 3)-separable,
nonmonotoneously separable and permutably homoge-
neous.

At

0 1 2 3

Figure 1: Three-separable two-input four-valued logic
function.

Notice that if § € K**! then every d-separable func-
tion (for some &) is also s-separable. However the con-
verse 1s not true, that is s-separability does not im-
ply d-separability (for some o). The only case where
s-separability is equivalent to o-separability is the two-
valued one-threshold case, that is when k& = 2, s = 1
and & = (0,1) or (1,0). Every l-separable two-valued
logic function is (0, 1)-separable, and also, every (0, 1)-
separable two-valued logic function is 1-separable.

2.2. The (k, s)-perceptron learning prob-
lem

For a fixed s, a threshold vector ¢ is canonical if for
every k-valued logic function f, computable by a (&, s)-
perceptron, there always exist vectors w and & such

that Fﬁs(d}',f,é) = f. In other word, ¢ is canonical
if every (k, s)-perceptron computable function f has a

s-representation of the form (7,,5), for some @ and

. For instance, the vector ¢ = (0) is canonical for a

-

(2, 1)-perceptron and the vector ¢ = (0, 1) is canonical
for a (3, 2)-perceptron. One of the results from [11]
was that there is no canonical set of thresholds for a
(k, k—1)-perceptron when k > 4. This result which also
applies to (k, s)-perceptrons in general indicates that
learning algorithms which modify only the weights do
not necessarily converge and that the threshold vector
should be learned in addition to the weight vector.

Let f € P be a target function to learn. The (&, s)-
perceptron learning problem is the problem of deter-
mining a s-representation for f. That is, to search for
vector 7 € R"T* x K*+1 such that FJ' (7) = f.

[10] proposed a learning algorithm for homoge-
neous (k,k — 1)-perceptrons (we call it homogeneous

(k, k — 1)-perceptron learning algorithm). As a conse-
quence of the (2, 1)-perceptron convergence theorem
[6], it is proven in [10] that the homogeneous (k, k—1)-
perceptron learning algorithm converges if and only if
there exists a (k — 1)-representation (u_}',t_;) for f.

3. Computing optimal s-representations
with genetic algorithms

Holland [4] first proposed genetic algorithms (GA)
in the early 70’s as computer program to mimic the
evolutionary processes in nature. Genetic algorithms
manipulate a population of potential solutions to an
optimization (or search) problem. Specifically, they
operate on encoded representations of the solutions,
equivalent to the genetic material of individuals in na-
ture, and not directly on the solutions themselves. Hol-
land’s genetic algorithm encodes the solutions as bi-
nary chromosome (strings of bits). As in nature, se-
lection provides the necessary driving mechanism for
better solutions to survive. Each solution is associated
with a fitness value that reflects how good or bad it is,
compared with other solutions in the population. The
higher the fitness value of an individual, the higher
its chances of survival and reproduction and the larger
its representation in the subsequent generations. Re-
combination of genetic material in genetic algorithms
is simulated through a crossover mechanism that ex-
changes portions between two chromosomes. Another
operation, mutation, causes sporadic and random alter-
ations of the chromosomes. Mutation too has a direct
analogy from nature and plays the role of regenerating
lost genetic material and thus reopening the search.
In literature, Holland’s genetic algorithm is commonly

called the Simple Genetic Algorithm or SGA.

3.1. Problem representation

Fundamental to the GA structure is the encoding
mechanism for representing the problem’s variables.
For the s-representation problem, the search space 1s
the space of weight vectors @ and the representation
is more complex. Unfortunately, there is no practical
way to encode s-representation problem as a binary
chromosome to which the classical genetic operators
discussed in [3] can be applied in a meaningful fashion.
Therefore it is natural to represent the possible solu-
tions as vectors w € R™ and design appropriate genetic
operators which are suitable for the s-representation
problem. FEach weight vector will uniquely determine
a s-representation. To determine how good is a solu-
tion the GA needs a fitness function to evaluate the
chromosomes.

A note on the initial population. We initialize
the population with random real-coded chromosomes
whose coordinates are random real numbers taken from
the interval [-1, 1]. Each initial chromosome is then
normalized to a unit vector. Another method we
used for the initialization of the population is to set
w; = cos oy (for 1 < ¢ < n) for each vector W, where oy
is a random number in the interval [-F, T]. What we
are trying to do in both methods of initialization is to
generate random hyperplanes (since each & represent

a hyperplane).

3.2. Fitness function

The objective function, the function to be optimized,
provides the mechanism for evaluating each chromo-
some. To describe our fitness function we will need the
concept of valid and invalid thresholds (hyperplanes).

To compute the thresholds for a given chromosome
W, we calculate for every # € K" the value o - ¥ and
construct a sorted array (or list) of records of the form
(@-Z, f(¥)). The array is sorted using @ - # as primary
key and f(Z) as secondary key. Let these records be
sorted as follows: #1,...,Zxn, or more precisely, (& -
fl,f(fl)),l S] S k‘n, where u‘;’i"l S S wfkn
Then @ - #; is a threshold if f(Z;_1) # f(¥;). We
collect all thresholds in a list . Some thresholds in ¢
may be duplicated (i.e. t;_; = t; for some).

Let T(@) = V(&) + I(@), where T(&) is the to-
tal number of thresholds generated by @, V(W) and
I(@W) are respectively the number of valid thresholds
and invalid thresholds generated by w. A threshold
t (1 < i < TW) < k™= 1) is valid if all points
Z € K" lying in its corresponding hyperplane H; (given
by @ - # = t;) are in the same class (i.e. f(%) has
the same value for all points in hyperplane H;), other-
wise it 1s tnvalid. In other words, invalid thresholds are
those for which there exist at least two points 1 and
Z9 € K" such that @ £, = w-Z> but f(fl) ;é f(fz) A
hyperplane is valid (invalid) if it corresponds to valid
(invalid) threshold. With these definitions then dupli-
cated thresholds in ¢ are invalid while non duplicated
thresholds are valids.

T() is the total number of thresholds in # and can
be used to evaluate how good or bad is a chromosome.
The best chromosomes are those which have the least
T(@). We can therefore define our fitness function as
follows

(@
Fitnessl (W) =1 — k”(w)l (5)

Notice that a GA always maximizes an objec-
tive function and since 1 < T(@) < k" — 1, then

Fitness1 (@) is maximal when T'(@0) is minimal.

However, invalid thresholds must need severe
penalty. For instance, assume a n-input k-valued logic
function f : K™ — {0, 1} chosen at random. Then one
may take hyperplanes 1 = 0,21 =1,...,21 = k—1 as
invalid thresholds. These k hyperplanes (or k% thresh-
olds) will separate in our sense but are not really sep-
arating as such random function needs actually an ex-
ponential number of thresholds. Because of this fact,
instead of using formula 5 we can alternatively use for-
mula 6 below.

Fitness2(w) =

Here we not only minimize T'(&) (in second term)
but we also punish a chromosome that generates a large
number of invalid hyperplanes (in last term). That is
we are minimizing 7'(«@) and I(@) at the same time.
Notice that 0 < I(w) < T(&) and thus Fitness2(w)
will be maximal if both T'(&) and I(&) are minimal.

In all our experiments, both formulae of fitness yield
the same results for I(&@) = 0. We do not know for now
how they do behave for I(w) # 0 since the @’s gener-
ated valid thresholds only. The probability to generate
invalid thresholds seems to be very close to zero.

A note on the time complexity of the evaluation
function. For a given 0, it takes n-k™ steps to compute
all the w-27s, k™ -log k™ steps to sort them and at most
k™ steps to compute T'(@). Therefore the evaluation of
Fitness(w) has a time complexity of O(n - k" - log k).

Also, crossover and mutation operations below take
O(n) steps each and the initialization of the popula-
tion takes O(n - p - k™ - log k) steps (p is the number of
chromosomes and all initial chromosomes are evaluated
for their fitness). Thus the evaluation of Fitness(&) is
the most expensive operation in our GA (and is true
in general for any GA). Let g be the number of genera-
tions, then at each new generation § new chromosomes
are evaluated for their fitness and hence, our GA has a
time complexity of O(n - g -p- k™ -logk).

3.3. Crossover

Crossover i1s the GA’s crucial operation. Pairs
of randomly selected chromosomes are subjected to
crossover. For the s-representation problem we pro-
pose the following mixed crossover method for real-
coded chromosomes. Let p; and ps be two unit vectors
to be crossed over and let ¢; and ¢ be the result of
their crossing. Vectors ¢; and ¢ are obtained using

—

€1 = p1 + po (7)

and

p1, if random() < 0.5
2= { pa, otherwise (8)
Child ¢ is simply the addition of its parents and is
assured to be their exact middle vector since the par-
ents are unit vectors. Child ¢4 is a uniform crossover
of its parents, that is, at coordinate 7 each parent
have 50% chances to be selected as ¢a, (1 < i < n).
Crossover is applied only if a randomly generated num-
ber in the range 0 to 1 is less than or equal to the
crossover probability pers (in large population, peres
gives the fraction of chromosomes actually crossed).
We must emphasize that each chromosome is a unit
vector at any moment in the population. Thus the
initial random vectors are all normalized and the childs
are also normalized to unit vectors after any crossover
or mutation operation.

3.4. Mutation

After crossover, chromosomes are subjected to random
mutations. We propose two methods of coordinate-wise
mutations. Both methods are similar to the bitwise
mutation (for binary chromosomes). Let § be a unit
vector to be mutated to a child ¢.

Random replacement With some probability of
mutation, each coordinate p; (1 < i < n) of a
parent p may be replaced in the following way:

¢; = random(—1,1) (9)

where random(—1,1) returns a random real num-
ber in the interval [-1, 1] with uniform probability.

Orthogonal replacement With some probability of
mutation, each coordinate p; (1 < i < n) of a
parent p may be replaced in the following way:

¢; = rand(—1,1) - y/1 — p? (10)

where rand(—1, 1) returns -1 or 1 with equal prob-
ability (random sign).

Just as pcros controls the probability of crossover,
the mutation rate ppui, gives the probability for a
given coordinate to be mutated.

Here we treat mutation only as a secondary opera-
tor with the role of restoring lost genetic material or
generating completely new genetic material which may
be probably (near) optimal. Mutation is not a conser-
vative operator, it is highly disruptive. Therefore we
must set p,, < 0.1.

4. Experiments and discussions

In our experiments, the control parameters’ setting
for the GA were: population size p = 100; num-
ber of generations ¢ = 1000; crossover probability
Peros = 0.75; and mutation probability pueq = 0.005.
The most important parameters here are p, p.qos and
Pmuta and the values used for them seem to be opti-
mal in that they yield better results in all experiments
we have done. The high crossover rate is necessary to
widen the search while the low mutation rate is neces-
sary to avoid too much chromosome disruptions. Be-
cause we use an elitist strategy some best chromosome
in a current generation is always reproduced to the
next generation in order to avoid lost of good genetic
material. We use a large population size to preserve
the diversity of the population, that is to avoid pre-
mature convergence. The fact that we used a mixed
crossover technique also helps maintain the diversity.
In all experiments, we used Fitness?2 as our evaluation
function. Also we used stochastic universal selection
shceme as our reproduction method.

It is interesting that the proposed population rep-
resentation does not depend on k. It make us wonder
how the number of invalid thresholds vary with & (or
n). For a fixed n (or k), larger & (or n) means smaller
separation among classes and these problems are typi-
cally more difficult to learn. We did some experiments
on random functions with small & versus large &£ and
small n versus large n in order to see how the number
of invalid thresholds changes. The number of invalid
thresholds obtained (in all experiments) is always zero.
Although our approach is slow, it is slower as n grows
than as k grows.

We tested our GA on random permutably homoge-
neous functions of the form

, ~ 1

FB= U w4 nmodk (1)
where a; = 2¢+1,2< k <4 and 2 <n < 7. Each of
these functions defines itself its separating hyperplanes
and their number. The number of hyperplanes 1s sim-
ply the number of distinct values of such function minus
one, and each hyperplane H; is defined by the equation
Sy (%xl =t; for some threshold ¢; (1 <¢ < number
of threslholds). The output vector can also be obtained
by computing the value of f for ;1 = --- =2, = 0 and
1 = - = xp, = k—1 = 3 and listing in increasing
order modulo k the sequence of other distinct values of

f in between.
The difficulty for the GA to find an optimal solution
within 1000 generations depends mostly on n rather
than k. This is not surprising since the search space

is exponential on n and thus the GA needs more and
more generations to successfully obtain an optimum.
For k > 4 and n > 5, for example, the GA could not
find an optimum within ten runs of 1000 generations
each, however it was successfull within one run with
2000 generations. This suggest that given enough time
the GA will always find the minimal s-representation
for a logic function.

It is interesting to note that the permutably homoge-
neous functions are the most difficult for the GA since
their s-representations are very small. This indicates
that for most (random) functions the GA will perform
much better than for permutably homogeneous func-
tions because s is larger on average.

We compared our technique with the extended per-
mutably homogeneous (k,s)-perceptron learning algo-
rithm (EPHPLA) described in [8]. Tt is proven in [8]
that the EPHPLA always converges for permutably ho-
mogeneous functions, and that also, it always finds a
minimal s-representation for such functions. The EPH-
PLA is faster and outperform the GA on learning these
functions within one run of 1000 learning epochs. The
GA converged better only for n = 2. The main ad-
vantage of the GA method over the EPHPLA 1is that
it can learn any logic function provided enough time is
given.

5. Conclusion

We have used genetic algorithms to minimize multi-
valued multithreshold perceptrons for computing given
functions. Experiments show that the genetic search
can be very effective however slow it may be. Gener-
alization properties of the GA can be studied by mod-
ifying the fitness function to work with proper subsets
of K™.

References

[1] M.H. Abd-El-Barr, S.G. Zaky and Z.G. Vranesic
(1986), Synthesis of multivalued multithreshold
functions for CCD implementation, IEEE Trans-
actions on Computers, V.C-35, N.2, February,
pp-124-133.

[2] S.C. Chan, L.S. Hsu and H.H. Teh (1988), On
neural logic networks, Neural Networks, Perga-
mon Press, vol.1, supplement I, p.428.

[3] D.E. Goldberg (1989), Genetic algorithms in
search, optimization, and machine learning,

Reading, MA, Addison-Wesley.

[4]

[5]

[10]

J.H. Holland (1975), Adaptation in natural and
artificial systems, Ann Arbor, MI, Michigan Uni-
versity Press.

O. TIshizuka (1976), Multivalued multithreshold
networks, Proceedings of the 6th IEEE Inter-
national Symposium on Multiple-Valued Logic,
pp-44-47.

M. Minsky and S. Papert (1969), Percep-
trons: An introduction to computational geome-
try, Cambridge, MA: MIT Press, Expanded edi-
tion 1988.

A. Ngom (1998), Synthesis of multiple-valued
logic functions by neural network, Ph.D. Thesis,
Computer Science Department, University of Ot-
tawa, Ottawa, in progress.

A. Ngom, C. Reischer, D.A. Simovici and 1. Stoj-
menovié (1998), Learning with permutably homo-
geneous multiple-valued multiple-threshold per-
ceptrons, Proceedings of the 28th IEEE Interna-
tional Symposium on Multiple-Valued Logic, in
this issue.

Z. Obradovié (1996), Computing with non-
monotone multivalued neurons, Multiple-Valued
Logic - An International Journal, V.1, N.4
pp-271-284.

Z. Obradovié¢ and I. Parberry (1994), Learn-
g with discrete multivalued neurons, Journal
of Computer and System Sciences, V.49 N.2,
pp.375-390.

Z. Obradovi¢ and 1. Parberry (1992), Comput-
g with discrete multivalued neurons, Journal
of Computer and System Sciences, V.45, N.3,
pp-471-492.

T. Sasao (1989), On the optimal design of
multiple-valued PLAs, IEEE Computer, V.C-38,
N.4, pp.h82-592.

Z.Tang, O. Ishizuka and K. Tanno (1995), Learn-
g multiple-valued logic networks based on back-
propagation, Proceedings of the 25th IEEE Inter-
national Symposium on Multiple-Valued Logic,

pp-270-275.

T. Watanabe, M. Matsumoto, M. Enokida and
T. Hasegawa (1990), A design of multi-valued
logic neuron, Proceedings of the 20th IEEE Inter-

national Symposium on Multiple-Valued Logic,
pp-418-425.

