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Abstract—Capturing the patterns in adversarial movement
can provide valuable information regarding how the adversaries
progress through cyberattacks. This information can be further
employed for making comparisons and interpretations of decision
making of the adversaries. In this study, we propose a framework
based on concepts of social networks to characterize and compare
the patterns, variations and shifts in the movements made by
an adversarial team during a real-time cybersecurity exercise.
We also explore the possibility of movement association with the
skill sets using topological sort networks. This research provides
priliminary insight on adversarial movement complexity and
linearity and decision-making as cyberattacks unfold.
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I. INTRODUCTION

Cyberadversaries execute their attacks in discernible stages,
known as the intrusion chain model. There are multiple intru-
sion chain models in the open literature [1],[2],[3],[4],[5] all
with varying details (number/depth of stages) and structure
(sequential vs. iterative). For instance, the model provided in
Figure 1 is thorough, cyclical, and even captures human aspects
of cyberattacks (stages 2 and 4) [11]. While intrusion chain
models were intended to provide incident responders with a
framework for reasoning about intrusions, it can serve as a
foundation to delve deeper into how cyberadversaries progress
through a cyberattack. Furthermore, sophisticated attacks may
be conducted by groups of cyberadversaries; Advanced Per-
sistent Threats, such as nation-state actors, organized crime
groups, cybercriminals, and hacktivists are a case in point
[4]. How might an intrusion chain model capture multiple
adversaries acting as a single group? This paper uses data
from a cybersecurity exercise to examine how cyberadversaries
working as a group progress through intrusion chains, whether
their skill set impacts movement across the chain, and whether
there are similarities in the group member movements.

This paper is structured as follows. In the next section, we
discuss the mixed-methods approach to this paper. We discuss
the qualitative data collected during a real-time cybersecurity
exercise. We also discuss topological sort networks, graph
similarity measures, and structural comparisons techniques. We
discover that adversarial movement is not linear and is not
necessarily associated with skill sets.

II. METHODOLOGY

A. Case Study Data

In September 2014, a five-day cybersecurity training event
was run by the Industrial Control Systems-Cyber Emergency
Readiness Team (ICS-CERT) held at Idaho National Lab-
oratory(INL), which is henceforward referred to as ICS-
CERT/INL. The first three days covered basic training for
all participants, such as understanding networks, identifying
vulnerabilities and how to exploit them, and comprehending
defense tactics for critical infrastructure. Participants then
implemented their training by participating in an eight-hour
attack-defense cybersecurity exercise. The data used in this
paper are from time-stamped observations of the attack team
during this exercise.

B. Topological Sort Networks

Capturing and analysis of adversarial movement can pro-
vide crucial information about the decision making process
of the cyber crimes. In order to capture the characteristics of
the adversarial team members'movements during the attack,
we propose a network representation of their activities. This
representation is based on a concept known as topological
ordering. A topological ordering is a linear ordering of the
nodes of a graph such that for every directed edge uv from
node u to node v a directed edge is drawn from u to v, meaning
that u comes before v in the ordering. [7],[8]. In our case study,
the vertices of the graph represent intrusion chain stages to
be performed, and the directed edges denote the constraint
that one intrusion stage is performed by subject S1 before
another. For instance, if subject S1 performs intrusion stage
A, and then preforms stage B, we draw a directed edge from
A to B for the topological sort graph corresponding to that
subject. Through this criteria, we create a topological sort for
each subject in the Red team. Therefore, we obtain a directed
acyclic graph (DAG) for each subject which we can analyze
and compare with the graphs belonging to other subjects. In
the next sections we discuss the methodology for measuring
the similarity of the graphs created for each subject with each
other. This measurement can help us gain further information
about adversarial movements through their commonalities or
differences.

C. Graph Similarity Measure

Measuring the structural similarity between the topological
representation among the members of the adversarial team



Fig. 1. 12-stage Intrusion Chain Model [1]

Fig. 2. An example of edit distance graph transformations (distance between the leftmost and the rightmost graphs is 3) [10].

Fig. 3. Topological sorting graph of the activities of the first three subjects. The numbers inside the nodes denote the intrusion chain stage and the arrow from
intrusion stage A to B represents the order of the subject's movement from stage A to stage B.



can provide the level of commonalities in their movement.
One of the common network similarity measurement methods
is the edit distance method which measures the minimum
number of graph operations (e.g. edge additions or deletions)
needed to transform one graph to another. [12]. The smaller the
distortion needed, the more similar the two graphs are. The set
of elementary edit operators commonly includes: introducing
a new node to a graph, replacing the label of a node with new
label of a given vertex, removing a node from a graph, inserting
a new edge between a pair of nodes, deleting an edge between
a pair of nodes. A simple example of graph edit distance
method is illustrated at Figure 2 where the operators needed to
transform the leftmost graph to the rightmost graph include one
edge modification, one edge addition and one edge deletion.
The effectiveness of edit distance-based pattern recognition
relies on the adequate definition of cost functions for the basic
edit operations. In case of unlabeled graphs, the cost is usually
defined via unit cost for all deletions and insertions of both
nodes and edges, while substitutions are free of cost.

D. Structural Comparisons

After creating the DAGs for each subject of the Red team,
we can perform further analysis through structural character-
istics of the generated networks [6]. One of the structural
characteristics that we measure and compare for this work,
is the longest path in the networks. The longest path in a
given network is defined as the length of the simple path of
maximum length in it(A path is called simple if it does not
have any repeated vertices) [9]. In this work, the length of the
path between node A and node B is measured by the number of
edges that it takes to traverse from A to B. Note that since we
have directed graphs, the graph traversal can only take place
along the direction of the edges. This means that there can be a
case where there is a path from A to B, but no paths from B to
A. To understand this scenario in our case study, one can think
about be the case where subject Si performs intrusion stage B
after intrusion stage A, and never goes back to A again. The
reason we use longest path as a measurement is that it can
show the level to which the adversarial movement of a subject
is linear, i.e. does not contain a loop back to a previously
performed stage. An extreme case can be the completely linear
movement where each intrusion stage happens only once, and
every stage takes place after its previous stage. In that case,
the longest path is maximized.

The other structural feature measured in this study is the
number of edges, which indicates the frequency of movement
from one stage to another by the subject. A DAG with high
edge density indicates high level of alterations in the subject's
focus from one intrusion chain to other.

The results of the case study are discussed in the next
section.

III. RESULTS

The background and expertise of each member of the Red
team is provided in Table 1. The third column shows the
number of different intrusion stages that each member was
involved in throughout the exercise. For instance, Subject S1

was involved in 7 different intrusion stages out of the 12 stages
in Dell's kill chain model. This observation is provided to

create a comparison between each member's skill set and the
number of different intrusion stages that they were engaged
in. As can be seen in Table 1, subject 2 had the highest
involvement in various stages followed by subject 1. As can
be seen in that table, the rest of the subjects were involved in
smaller number of stages, meaning that their focus was mainly
on a specific stages.

The topological sorting for each member was performed
and their corresponding directed graphs were created using the
observation field notes. An example of the graphs generated
for subjects one, two, and three are depicted in Figure 3. As
explained in the methodology, the directed edges show the
movement of a subject from one intrusion stage to the next one
as the exercise progresses. In some cases, such as for stages 9
and 11 for subject 1, directed edges are drawn between both
stages. This means that the subjects put their focus back on
the previous stage after spending time on the current stage.
This can be seen for subject 2 as well. As one can conclude,
the stages without any incoming nodes are the stages that the
subjects begin working on. For subjects 1 and 2, this is stage
4 (Research Target Infrastructure) and for subject 3 this is
stage 2 (Find/Organize Accomplices). The same conclusion
can be made for the final stage focused by the subjects, which
is the stage without any outgoing edge. This is the stage 3
(Build/Acquire Tools) for subject 1, stage 11 (exfiltrate data),
and for subject 3, stage 6 (Deployment).

Also, as mentioned through column 3 of Table 1, we
can see that the focus of subject 2 was placed on more
unique stages than subjects 1 and 3. Therefore, the topological
ordering graph in fact provides information complementary
to Table 1. Another point worth mentioning is that the final
movement of subject 1 from stage 11 (exfiltrate data) back
to stage 3 (Build/Acquire Tools) can indicate a failure that
occurred in the subject's effort to advance to the final step.
Another possible explanation for this could be the fact that
necessary tools are required to cover tracks therefore, this
stage was performed. Yet another possibility is that subject
1 started a new objective after completing stage 11, which
required different tools. This is an example analysis that can be
done through the topological ordering graphs of the adversarial
movement of the members of the Red team.

After creating the directed networks for each subject,
we employed the graph similarity measure explained in the
methodology to find the similarities between the adversarial
movements among the team members. The result of this
analysis is provided as a heat map in Figure 4 where the higher
values mean the higher similarity between the movement of
the subjects. As an example in that figure, the similarity
between the adversarial movement order of subject 2 and
other subjects is lower, whereas there is a higher similarity
among subjects 6 and 8. The topological graph of subjects 6
and 8 are provided in Figure 5 where the similar sub-pattern
between the two networks is marked with dashed lines. Due to
this similarity, the edit distance transformation does not need
many operations. In fact, by adding node 2, replacing node 11
with node 6, and adding one edge from node 6 to node 7 we
can convert the graph of subject 6 to the graph of subject 8.
Therefore, the movement patterns of these two subjects show
higher similarity. This analysis provides further insight into
the association between the skill set of the subjects and their



Fig. 4. Heat map of similarities between the topological network corresponding to each subject.

Fig. 5. Heat map of similarities between the topological network corresponding to each subject.

adversarial movement.

As explained in the methodology section, the longest path
in the directed graph generated for each subject shows the level
of linearity in their movement and the number of intrusion
stages. performed by them. This information is included in
Table 2. Also, the edge density of the graphs are provided
in that table. Comparable to Table 1, we can observe that
the adversarial movement of subject 2 has the highest edge
density followed by subject 1. However, the longest path
length of subject 1 was higher than that of subject 2. This
further shows that subject 2 did more frequent back-and-forth
between various intrusion stages. One possible explanation for
this could be the difference between the approaches that the

two subjects decided to take: subject 1 was more focused
on an intrusion stage before moving to another stage while
subject 2 made quicker changes in its decision making process.
Alternatively, one can argue that subject 1 was simply pursuing
a different objective with a different sophistication level that
required d toggling between different intrusion chain stages.
This analysis can provide further insight into the decision
making process of the adversarial team members.

IV. CONCLUSION

This paper provides a framework for analysis of of adver-
sarial movement across the cyber intrusion chain through meas
of network theory and algorithms. Despite existing limitations



Subject Backgrounds and Skill Sets No. of
Stages

S1 Linux, Sniffing 7
S2 Metasploit 9
S3 Programmable Logic Controller (PLC) Program-

ming, Minimal Linux, Strategy Planning
3

S4 Project Supervisory Control and Data Acquisition
(SCADA), Metasploit, Several Capture The Flag
(CTF)

4

S5 Cyber Security Compliance, Management, Mini-
mal Industrial Control Systems (ICS), Network-
ing, Switching Configurations

3

S6 Cyber security, Distributed Control Systems
(DCS) Networks, Networking, ICS Pen Testing,
Metasploit

4

S7 Critical Manufacturing, Systems Engineering, Pro-
gramming PLC, Minimal Linux

4

S8 Threat Advisories/Warnings, Broad Cyber Secu-
rity Knowledge

5

S9 PLC Connectivity, Remote iOS 5
S10 Network Engineering 4

TABLE I. RED TEAM MEMBER BACKGROUND AND EXPERTISE AND
THE NUMBER OF DIFFERENT INTRUSION STAGES PERFORMED BY EACH

SUBJECT

Subject Maximum
Path
Length

Edge den-
sity

S1 6 0.083
S2 5 0.0833
S3 2 0.25
S4 3 0.15
S5 3 0.107
S6 2 0.091
S7 4 0.211
S8 3 0.1302
S9 2 0.169
S10 3 0.1141

TABLE II. THE STRUCTURAL CHARACTERISTICS OF THE
TOPOLOGICAL GRAPH ORDERING OF EACH SUBJECT

to the analysis provided in this work with regards to gener-
alizability of the analysis to real cyber attacks as well as the
limited case study data, this paper aims to lay the groundwork
for further similar analysis using data science methodology.
Moreover, the case study used in this paper is one of the most
well-established Red Team/Blue Team exercises (RTBTE) in
the United States. Having stated these facts, we provide a
number of conclusions based on our analysis of the case study.

1) There is little association between the breadth of the of
the team member's skill set and the patterns in their adver-
sarial movement: The expertise and background knowledge
of the subjects does not necessarily display a high level of
association with the patterns of their adversarial movement.
These patterns include but are not limited to linearity of the
movement or multiple back-and-forth movements, focused on
small number of stages or frequent changes from one stage to
another, etc. This means that subjects with similar set of skills
did not necessarily take similar paths during their adversarial
movement. However, we cannot make the same conclusion
about the depth of the members'skill set as the information
related to that matter was not available in the dataset.

2) Common adversarial movements are not linear: By
observing the structural characteristics of the topological net-
works related to the adversarial movements of each subject
we can conclude that most graphs contained edges back-
and-forth between stages which indicates the fact that the

subjects move from one intrusion chain stage back to the one
they performed previously. This can be due to their failure
in advancing through the kill chain, differences between the
objectives, or the fact that the subjects are involved in more
than one intrusion chain. While the adversarial kill chain model
in Figure 1 provides a basic set of sequential stages, it does
not capture the fact that subjects may take non-linear paths
and progress through the different stages in a non-sequential
manner. As mentioned previously, there are several possible
explanations for the patterns of subjects'movements.

3) The adversarial movements of the Red team is not ho-
mogeneous throughout the exercise: By comparing the infor-
mation provided in Table 2 and Figure 4 we can conclude that
despite some similarities, the pattern of adversarial movement
is not homogeneous among the team members. This means that
the overall decision making of the Red team throughout the
case study was rather individual than based on a centralized
process.

While this paper analyses a single case study, it offers
a unique mixed-methods approach that sheds light on the
complexity of adversarial movement. We hope this research
starts a dialog on group adversarial dynamics and how indi-
vidual adversaries may exhibit different movement trajectories
and properties within the group. Future research could use
empirical data to delve further into adversarial dynamics and
movement.
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