
 

THEME ARTICLE: DATA MINING FOR CYBERSECURITY 

Predicting Adversarial 
Cyber-Intrusion Stages 
Using Autoregressive 
Neural Networks 

Current cybersecurity approaches are response-

driven and ineffective, as they do not account for 

dynamic adversarial movement. Using empirical 

evidence from observations of two Red Team–Blue 

Team cybersecurity training exercises held at Idaho 

National Laboratory and the Michigan Cyber Range, 

we used four different models to make temporal 

predictions of how adversaries progress through cyberattacks: nonlinear autoregressive 

(NAR) neural network, NAR neural network with exogenous input (NARX), NAR neural 

network for multi-steps-ahead prediction, and autoregressive integrated moving 

average (ARIMA). The obtained results demonstrate that the trained models can 

capture different variations in adversarial movement across the two datasets with 

reliable accuracy. 

Rapidly advancing technologies have resulted in highly interconnected information networks and 
integrated systems, which has made them more accessible and vulnerable to cyberattacks.1 Ad-
vanced persistent threats (APTs) have increasingly been targeting critical infrastructures such as 
power grids, transportation networks, and water supplies, constantly circumventing traditional 
reactive security measures and resulting in large and costly damages.2 Organizations thus need to 
develop rapid, proactive, and dynamic defenses to more effectively manage APTs.1 Many schol-
ars have researched moving-target defense techniques that use spatiotemporal randomization to 
distort attackers’ view of the network3 as well as bipartite graph-based machine learning algo-
rithms and synthetic data learning methods that serve as proactive filter-based methods for net-
work defense.1 These important contributions aid in the paradigm shift from reactive to 
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anticipatory cybersecurity, but they are technical in nature and minimize the significance of ad-
versarial trajectories. 

Toward this end, we sought to create a framework for predicting how adversaries move as 
cyberattacks progress. Applying various machine learning algorithms and four different predic-
tive models, we examined the adversarial cyber-intrusion stages using datasets of qualitative ob-
servations conducted at two cybersecurity training events: a US Industrial Control Systems 
Computer Emergency Response Team (ICS-CERT) Red Team/Blue Team cybersecurity training 
exercise held at Idaho National Laboratory (INL) in 2014, and a force-on-force paintball exercise 
held at the 2015 North American International Cyber Summit (NAICS 2015). In this article, we 
first discuss the 12 stages of adversarial movement, known as the intrusion chain. We then out-
line our methodology of creating time-series data and describe the predictive models. Next, we 
present and review the prediction results. Finally, we evaluate the findings and discuss possible 
implications for the intrusion chain model, as well as the importance and temporal characteristics 
of certain intrusion stages. 

INTRUSION-CHAIN MODEL FOR ADVERSARIAL 
ATTACK TRAJECTORIES 
Intrusion-chain models capture the step-by-step process of cyberattacks. We use the 12-stage 
model proposed by Mike Cloppert2 (see Figure 1), as it allows for 

• thorough analysis of adversaries’ progression through the stages of a cyberattack, 
• a means to assess how much time adversaries spend on different stages, 
• exploring the possibly iterative nature of the cyberattack process through its cyclical 

structure, and  
• incorporating human behavior (stages 2 and 4).  

 

 

Figure 1. Mike Cloppert’s 12-stage intrusion-chain model. 

The 12 stages are as follows. First, adversaries select their targets. Second, they find and form 
alliances with partners that complement and supplement their own skill sets. Adversaries then 
design and build their attack vectors and/or gather toolkits necessary to execute attacks. Fourth, 
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they obtain target infrastructure blueprints, identify target vulnerabilities, and employ social en-
gineering practices. Fifth, adversaries gather information on any security protocols set in place 
by defenders that they may encounter in order to create appropriate evasion and response plans. 
Next, adversaries deploy their attack vectors, skills, and knowledge to gain a foothold into the 
target environment. In the seventh stage, they gain preliminary access to the targeted environ-
ment that allows them to install malware. Adversaries then establish more points of access into 
the targeted environment and penetrate additional systems that will increase their control. Tenth, 
adversaries who want to persist in their attacks will strengthen their presence by gaining creden-
tials, using these to move laterally and deeper into the targeted environment and thereby estab-
lishing control over as many parts of the system as possible. Finally, adversaries remove data 
and/or accomplish their objectives and remove evidence of their presence and actions in the tar-
geted environment.  

RESEARCH SITES FOR DATA COLLECTION 
Red Team/Blue Team exercises (RTBTEs) are often used in the cybersecurity arena for training 
purposes and involve one group of security experts (Red Team) attacking a computer system 
while the opposing group (Blue Team) defends it.4 RTBTEs serve as a learning platform for par-
ticipants to better understand vulnerabilities, points of attacks, how best to secure and defend 
systems in real time, how to manage limited resources, and how to ensure that system confidenti-
ality, integrity, and availability are maintained during cyberattacks.4 They offer a rich platform to 
do social science field research, where researchers can observe the complex phenomena of real-
time adversarial movement, adaptations, and group dynamics. Our study collected data from two 
RTBTE research sites.  

Research Site 1: ICS-CERT offers cybersecurity training events hosted at INL (henceforward 
referred to as ICS-CERT/INL). An 8-hour RTBTE was conducted in which the Red Team at-
tacked cyber-physical systems that had to be defended by the Blue Team. The Red Team was 
randomly composed of 10 members who were a mix of system administrators, control systems 
engineers, and information technology specialists. Researchers observed the Red Team over the 
course of the exercise.  

Research Site 2: Alphaville, a robust virtual environment provided by the Merit Network and 
the Michigan Cyber Range, mirrors services and information found in small cities and has five 
locations. Each of these locations—a school, a library, a city hall, a small business, and a power 
company—has servers and firewalls with intentional vulnerabilities, making Alphaville an ideal 
platform for cybersecurity training exercises. During NAICS 2015, a force-on-force paintball 
exercise was conducted in which teams of four or five participants battled to penetrate and con-
trol Alphaville’s network, critical servers, and firewalls and then defend these controlled assets 
from rival teams. Researchers observed one of the competing teams that had four members. The 
exercise lasted 5 hours. 

METHODOLOGY 
At both sites, researchers conducted detailed observations, which formed the bulk of the dataset, 
and interviewed participants before and after the exercise to supplement and complement the ob-
servations. Once RTBTEs commenced, participants often became focused on the exercise and 
the researchers did not wish to break their concentration or disrupt their efforts by asking inter-
view questions. 

The researchers recorded each event, including the reactions and conversations of the team mem-
bers as well as their time stamps. Then, they assigned each event to their matching intrusion 
stage from the 12-stage model. They used interviews conducted during and after the exercise to 
ensure that this was done correctly. The two datasets were then analyzed by transforming the ob-
servations from the compiled field notes into the time series representing the amount of time the 
team spent on each of the 12 intrusion-chain stages. 

The time stamps of the start and end times of the events were used to generate the time series, 
where each time point in the time series represents 1-minute time span. Also, for each 1-minute 
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time span, the value of the time series is determined by accumulating the time in minutes spent 
by the entire observed team on the corresponding intrusion stage. Figure 2 shows an example 
time series which was generated through this criteria for one intrusion stage (intrusion stage 6, 
deployment; see Figure 1) for the Red Team from the ICS-CERT/INL event. Note that the value 
of the time series can be larger than 1 due to the fact that the time-series values represent the sum 
of the number of minutes spent by the whole team on an intrusion stage within a 1-minute time 
span. This figure shows that, for example, the observed Red Team spent 2 minutes on deploy-
ment stage during the one-minute time span between 7:41 am and 7:42 am. 

 

Figure 2. Example time series generated using the accumulated number of minutes spent by the 
entire Red Team for the first 20 minutes of intrusion stage 6 (Deployment) of the INL dataset within 
each 1-minute time interval. 

After creating the time-series, several different structures of recurrent neural networks (RNNs) 
were used to predict the amplitudes of the future time points. RNNs are popular predictive mod-
els in identification and prediction of dynamic processes. Generally, this family of algorithms 
consists of a multi-layer perceptron (MLP) that takes as input a window of past independent in-
puts as well as past outputs to calculate the current output. In this study, the values of the time-
series representation of the intrusion-chain stages and their prior prediction outputs are used as 
the inputs to the MLP. Therefore, if the prior activities of the attacking team members are rec-
orded through a defense log mechanism, predicting their future activities becomes possible 
through this approach. In other words, the goal is to predict the amount of time the attacking 
team will invest on each intrusion-chain stage n steps later. This prediction can help improve the 
efficiency and precision of dynamic defense measures by providing the possibility of targeting 
the intrusion stages that are more likely to be focused on by the adversarial team. 

PREDICTION MODELS 
In this study we compare the results of four predictive models on our application: nonlinear auto-
regressive (NAR) neural network, NAR neural network with exogenous input (NARX), NAR 
neural network for multi-steps-ahead prediction, and autoregressive integrated moving average 
(ARIMA). Given our focus on the family of autoregressive models, other neural network models 
such as long short-term memory (LSTM) were not included. 
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Nonlinear Autoregressive Neural Network 
In various applications, time series are characterized by high variations and sporadic behavior. 
This makes it difficult to model time series through linear approaches. Therefore, a nonlinear ap-
proach is more appropriate for analyzing such time series data. The amount of time the adversar-
ial team spends on each intrusion stage can include fleeting transient periods for various reasons. 
These reasons include disruptions from the defense team, the attacking team’s own failures, and 
changes in team dynamics. Therefore, we use nonlinear models to predict the values of the time-
series data generated for the intrusion stages. 

The first neural network structure employed in this study is the nonlinear autoregressive neural 
network (NAR). A NAR neural network model can be written as follows:5 

y(t) = h(y(t1), y(t2), …, y(t – p)) + e(t),  

where the model is used to predict the value of a data series y at time t, hence y(t), using the p 
past values of the series. Also, h is the network training function, and e(t) is the error of approxi-
mation of the series y at time t. The function h is unknown in advance, and the training of the 
neural network aims to optimize the network weights and the neuron bias. The network training 
function in our study updates the weight and bias values according to Levenberg–Marquardt op-
timization procedure.5 

NAR Neural Network with Exogenous Input 
In many real applications, there is an important correlation between the modelled time series and 
additional external data. Thus, integrating knowledge or data about weather could benefit the 
time-series modelling process to provide an accurate forecast. The NAR neural network with ex-
ogenous or external input (NARX) proposed by Tsungnan Lin and his colleagues6 predicts series 
given past values of series and another external series. The equation that models NARX network 
behavior for time-series prediction is as follows:6,7 

y(t) = h(x(t – 1), …, (t – k), y(t – 1), …, y(t – p)) + e(t). 

As Figure 3 shows, the difference between this model and the NAR model is that in addition to 
the past values of the target time series, the input to NARX model includes the past values of an-
other time series. We used two approaches to select the exogenous time series. In the first ap-
proach, to predict the value of each intrusion stage, we selected its previous stage according to 
the intrusion-chain model as the exogenous stage. For instance, to predict intrusion stage 6 (De-
ployment), we used the previous value of stage 5 (Test for Detection). In the second approach, 
we selected the most correlated time series to the target time series as the exogenous input. The 
reasoning behind this approach is that the most correlated time series provides the most infor-
mation about the target time series, which can help increase the model’s accuracy. We used Pear-
son’s correlation coefficient formula to find correlations between the time series.  

 

Figure 3. Nonlinear autoregressive neural network with exogenous input (NARX) model 
architecture. 
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NAR Neural Network for Multi-Steps-Ahead Prediction 
In many applications, predicting the value of time series for more than one step ahead has signif-
icant value. For the purpose of predicting cyber-intrusion stages, it makes more robust proactive 
measures possible. We can train a neural network up to the present time point with all the known 
values of a time series in open-loop mode, then convert the architecture to closed-loop mode for 
multi-steps-ahead predictions of future values.8 Thus, to predict the next p time steps, we can use 
the network to predict the y outputs using each of its predictions’ feedback to help the network 
perform the next prediction. 

Autoregressive Integrated Moving Average 
The autoregressive integrated moving average (ARIMA) model9 predicts the values of time-se-
ries based on their prior values as well as the errors made by previous predictions. This allows 
the model to adjust to sudden variations in the time series. Therefore, the ARIMA forecasting 
equation for a stationary time series is a linear regression equation in which the predictors are the 
lags from the dependent variable and/or the lags from the prediction errors. This method can be 
modeled as:  

1 1 2 2t t t tx x x wδ ϕ ϕ− −= + + + ,  

where xt is a linear function of the values of x at the previous two times. Assuming we have ob-
served p data values of the time series and wish to use the observed data and estimated model to 
forecast the value of xp +1, the values of the series at the next time point, the equation for making 
this prediction is as follows: 

1 1 2 1 1p p p px x x wδ ϕ ϕ+ − += + + + . 

In the equation above, the observed values of xp and xp−1 are used and wp+1 is obtained as the as-
sumed mean of the errors. 

EXPERIMENTAL SETUP AND HYPERPARAMETERS 
Each time point in the generated time series represents a 1-minute time span of the cyber training 
event. For each time point, the value of each time series is the accumulated number of minutes 
spent by the entire team on its corresponding intrusion stage. Therefore, one time series repre-
sentation is created for each intrusion stage. We created 10 time series for the first dataset and 
eight for the second dataset. The length of the generated time series for the first and second da-
tasets were 480 and 300 minutes, respectively. 

The datasets were randomly divided into two segments for training and testing purposes: 85 per-
cent of each time series (336 minutes for dataset 1, and 210 minutes for dataset 2) was used for 
training, and 15 percent (72 minutes for dataset 1 and 45 minutes for dataset 2) for testing. Also, 
five-fold cross-validation was performed during training. This segmentation was applied to the 
two datasets in separate experiments. The neural network structures consisted of 10 hidden neu-
rons, and the number of delays d was set to 2. To ensure that the neural networks had reliable 
accuracy, each model was trained 20 times, and the mean squared error (MSE) values were aver-
aged to obtain a final MSE value. 

PREDICTION RESULTS 
Through the aforementioned experiments, we tried to predict the total time that the observed 
team would spend on each intrusion stage in the next step(s). This means that a prediction takes 
place for each generated intrusion-chain time series separately, and the predicted value repre-
sents the amount of time, in minutes, that the whole team will spend on the corresponding intru-
sion stage during the next step(s). We compared the models’ predictive performance in terms of 
their error rate, namely the MSE, which measures the average of the squares of the errors and is 
defined as follows: 
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Figure 4 presents the prediction results of the NARX model for time series corresponding to two 
intrusion-chain time series (Deployment and Initial Intrusion) where the bottom subgraphs show 
the prediction error for each time point. The training (blue), validation (green), and testing (red) 
time points are randomly sampled. The error rate during each of these phases for the two time 
series is shown in the graphs on the right side of the figure. Note the convergence of the error 
rate as the neural network epoch progresses. The circles indicate the first epoch where the best 
(converged) performance is achieved. For instance, the best testing performance (red line) for 
Deployment is at epoch 4, where the MSE is 0.046. 

 

Figure 4. NARX prediction results for intrusion stages 6 (Deployment) and 7 (Initial Intrusion) for 
dataset 1. 

The NARX method in this study included two variations of the exogenous input. The first ap-
proach used the 12-stage intrusion-chain model in which the intrusion steps occur in sequential 
order. Using that model, in order to make a prediction for each intrusion stage, we used its previ-
ous stage as the exogenous input. For instance, to predict the value of a time point in the Initial 
Intrusion stage, in addition to its own time series, we use the Deployment stage for neural net-
work learning. In the second approach, we used the most correlated time series to each of the 
time series as the exogenous input. This approach tried to find which time series could reinforce 
the neural network’s learning power without considering the order of the time series based on the 
intrusion-chain model. 

Figure 5 shows the correlation matrices for all intrusion stages for both datasets. For instance, in 
dataset 1 (left matrix), to make a prediction for intrusion stage 2 (Find and Organize Accom-
plices), aside from using the data from previous steps of its corresponding time series we also 
incorporate the data from the previous steps of the most correlated time series to it, which be-
longs to intrusion stage 4 (Research Target Infrastructure/Employees). 

Tables 1 and 2 provide the complete prediction results for four neural network architectures: 
NAR; NARX in two variations, sequential (S) and correlation-based (C); ARIMA, and multi-
steps-ahead NAR(M). Lower MSE results are displayed in bold. Because we did not observe in-
trusion stage 11 during the Alphaville experiment, it is not included in Table 2. 
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Figure 5. Correlation matrices for datasets 1 (left) and 2 (right). The numbers at the bottoms of the 
columns correspond to the intrusion stages in Figure 1. 

Table 1. Comparison of the MSE values of the four prediction methods for dataset 1. 

Intrusion 
stage 

NAR NARX(S) NARX(C) ARIMA NAR(M) 

2 0.0908 0.0720 0.0531 0.1048 0.0586 

3 0.1140 0.0466 0.0203 0.0070 0.1220 

4 0.0154 0.0833 0.0601 0.0216 0.0442 

5 0.0424 0.0085 0.0622 0.0432 0.0662 

6 0.2100 0.0467 0.0188 0.0344 0.0312 

7 0.0463 0.0804 0.0422 0.0743 0.0845 

8 0.0786 0.0601 0.0611 0.0306 0.0588 

9 0.0497 0.0957 0.0232 0.0861 0.0918 

10 0.0132 0.0223 0.0080 0.0324 0.0324 

11 0.0416 0.0632 0.0481 0.0557 0.0870 

Mean 0.0702 0.0578 0.0397 0.0800 0.0676 

Table 2. Comparison of the MSE values of the four prediction methods for dataset 2. 

Intrusion 
stage 

NAR NARX(S) NARX(C) ARIMA NAR(M) 

2 0.0373 0.0713 0.0266 0.0637 0.0412 

3 0.0311 0.0412 0.0233 0.2452 0.3122 

4 0.2004 0.2820 0.2218 0.0216 0.0266 

5 0.0022 0.0016 0.0056 0.0106 0.0092 

7 0.0542 0.0822 0.0450 0.0743 0.9044 

8 0.1206 0.1488 0.1152 0.1821 0.1571 

9 0.0045 0.0072 0.0021 0.0133 0.0155 

10 0.1602 0.2086 0.1288 0.2084 0.2213 

Mean 0.0763 0.0906 0.0729 0.0964 0.2109 
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We can observe from Table 1 that NARX(C) provides the highest accuracy in six cases in the 
first experiment. These results offer empirical proof that utilizing the most correlated time series 
as the exogenous input improves the accuracy of the model more than picking the time series ac-
cording to the sequential 12-stage intrusion model. One can argue that this conclusion is under-
standable due to the fact that in the correlation-based model, we heuristically look for the 
intrusion-chain time series most relevant to the target time series and employ it to enhance the 
model’s learning process. A similar conclusion can be drawn from the results of the second ex-
periment in Table 2. In that experiment, the predictions made by incorporating the most corre-
lated intrusion-stage time series show superior accuracy for more than half of the intrusion stages 
compared to the other models. 

EVALUATION 
This article offers a verifiable framework for dynamic prediction of adversarial movement across 
the cyber-intrusion chain. However, it is important to note that our analysis is based on two da-
tasets, which has implications for the generalizability of the model prediction results. Many per-
mutations and combinations of attack scenarios as well as different adversary types and 
motivations, objectives, and organizational dynamics cannot be accounted for by only two case 
studies. Therefore, more observations are needed to make a reliable mechanism for intrusion-
chain analysis. Despite these limitations, our framework can be utilized in various experimental 
setups, as RNNs have shown robust performance in a wide range of applications involving time-
series prediction and analysis. 

Here we present our conclusions from our experimental analysis. 

NARX(C) best predicted adversarial movement (for both datasets) for 60 percent of the intrusion 
stages in dataset 1 and 75 percent of the stages in dataset 2. Despite the multitude of differences 
in the datasets with regards to exercise duration (8 hours vs. 5 hours), structure (RBTE vs. paint-
ball), setting (cyber-physical facility vs. virtual city), team size (10 members vs. 4 members), and 
team members’ familiarity (randomly assembled vs. some prior relationship), the model still pre-
dict each team’s movement through the 12 stages and the time spent on these stages with reliable 
accuracy in the next time step/unit. 

NARX(C) was best at predicting behavior, indicating that using the most correlated stages for 
prediction had better accuracy than predictions based on sequential stages. This might indicate 
that intrusion chains are complex and do not effectively capture adversarial back-and-forth 
movements, with adversaries working on multiple intrusion chains (and stages) concurrently. 

NARX(C) best predicted three stages of the intrusion chain: Find and Organize Accomplices (2), 
Expand Access and Obtain Credentials (9), and Strengthen Foothold (10). The stages used for 
predicting these stages in dataset 1 were Research Target Infrastructure/Employees (4), Exfiltrate 
Data (11), and Initial Intrusion (7); for dataset 2, stages 4, 10, and 9 were used for prediction. 
Thus, for example, stage 9 was used to predict stage 10. This meant that the intruders spent more 
time on these stages (relative to the other stages), for similar durations, at similar temporal points 
during the exercise. 

Prior research10 suggests that after intruders experience disruptions (caused by opponent play-
ers), they spend more time on certain stages for at least 5–10 minutes immediately after the dis-
ruptions. Therefore, we used a closed-loop architecture to predict the next 10 time steps of the 
intrusion stages using feedback from previous predictions. This offered insight into which stages 
intruders focused on, how much time they spent on these stages, and whether they also focused 
on other stages simultaneously. As Tables 1 and 2 show, our results suggest that a more accurate 
1-minute prediction was achieved compared to the 10-minutes-ahead prediction using the closed-
loop network. However, both the 1-minute and 10-minutes-ahead models predict adversarial 
movements within 1- and 10-minute time stamps, respectively, and show strong performance 
adapting to sudden variations in the process, which can help illuminate variations in attack pro-
gression. 
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CONCLUSION 
Cybersecurity experts have identified five APT trends—there will be more attacks, more obfus-
cation, continued false attribution, greater shifts from opportunity-based attacks to more targeted 
attacks, and more damage ranging from data manipulation to data encryption or deletion. Gov-
ernments and companies must continuously adapt to an ever-changing and evolving threat land-
scape by embracing proactive cybersecurity approaches that try to anticipate the who, what, 
where, when, and how of attacks and the best way to prepare for them. This article proposed an 
innovative mixed-methods-based approach to predict adversarial movement that our experi-
mental results reveal to be reliable, though further research is needed to evaluate and compare 
different machine learning models. 
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