
Evolutionary Design of Application TailoredNeural NetworksZoran Obradovi�c and Rangarajan SrikumarAbstract|First, an evolutionary algorithmfor designing a single hidden layer feedfor-ward neural networks is proposed. The al-gorithm constructs a problem tailored neu-ral network by incremental introduction ofnew hidden units. Each new hidden unit isadded to the network by linear partitioningof the hidden-layer representation through agenetic search. Second, a two stage algo-rithm speed-up is achieved through: (1) dis-tributed genetic search for hidden layer unitsconstruction along with the appropriate in-put to hidden layer weights; and (2) the dy-namic pocket algorithm for learning the hid-den to output layer weights. Finally, promis-ing experimental results are presented on fastconstruction of small networks having goodgeneralization property.I. IntroductionResearch on using genetic algorithms for neural net-works learning is increasing. Typically, genetic searchis used for the weights optimization on a prespeci-�ed neural network topology (for survey, see [8]).However, determining the appropriate size of a neu-ral network is one of the most di�cult tasks in itsconstruction. An attempt to overcome the �xed ar-chitecture problem are constructive learning algo-rithms that grow or shrink the network in an appli-cation speci�c manner [3, 4]. An interesting systemcan be obtained by combining an existing construc-tive learning algorithmand the weights optimizationof neural networks using genetic algorithms [5, 7].However, the space de�ned by a combination of twotechniques might be di�cult for the genetic search.Another previously suggested approach to neuralnetworks design using genetic algorithms is archi-tecture optimization only[6]. In those applicationsThis work was supported in part by the National Science Foun-dation under grant IRI-9308523.Z. Obradovi�c's address is the School of Electrical Engineeringand Computer Science, Washington State University, PullmanWA 99164-2752, USA. He is also a�liated with the MathematicalInstitute, Belgrade, Yugoslavia.R. Srikumar's address is Microsoft Corporation, 3219 Building16, One Microsoft Way, Redmod WA 98052-6399.

once the networks are constructed, slow backpro-pogation algorithm is used for learning appropriateinterconnection weights.In the evolutionary algorithm that we proposehere there is no need for additional adaptation ofconnections from input to the hidden layer after anarchitecture is designed. The algorithm designs aneural network growing one hidden unit at a time,each constructed using genetic search on a relativelysimple space. Each hidden unit is immediately as-signed appropriate connection weights from the in-put layer. The pocket algorithm[3] is then used tolearn the connection weights between the hiddenand the output layer. Experiments indicate that thealgorithm generates small networks with good gen-eralization ability. The drawback of this algorithmis that it is highly computation intensive when im-plemented on a sequential machine, which makesit inappropriate for large scale problems. The pro-posed algorithm is speeded-up by parallelization ofthe genetic search and the pocket algorithm to thelevel that it is applicable to large real life problems.A description of the sequential algorithm is givenin Section 2. A parallel version of the algorithm isproposed in Section 3. The theoretical analysis andexperimental results are discussed in Section 4.II. The Evolutionary AlgorithmFor a given domain D � Rm we de�ne a region byits bounding set of hyperplanes in Rm. A region issaid to be resolved if almost all training examples(high percentage) belonging to that region are ofone class, otherwise the region is unresolved .Let us assume that the given problem can be rep-resented by a feedforward neural network of a singlehidden layer with units computing threshold func-tions of their weighted input sum (usually calledhard limiter units). Each hidden unit in such neuralnetwork can be interpreted as a hyperplane throughthe problem domain <m. Hyperplanes correspond-ing to the network's hidden units partition the do-main into resolved regions. Consequently, learninggoal can be interpreted as a construction of a smallset of hyperplanes (corresponding to hidden layerunits) which partition the training set into resolved



regions.The outline of the proposed constructive learningalgorithm follows:(1) Start froma single unresolved region of all train-ing examples, and with a neural network with-out hidden units.(2) Generate a new hidden unit (inter-connectionweights and threshold) using genetic search andadd it to the current network.(3) Partition the current unresolved region(s) fur-ther with the generated unit. Discard resolvedregions.(4) Go back to step 2 till all regions are resolved.(5) Learn hidden to output layer inter-connectionweights.Let us form pairs of training examples, each pairconsisting of two examples belonging to di�erentclasses. Let A and B be such a pair of training ex-amples. For perfect classi�cation of training exam-ples by a single hidden layer neural network, theremust be a hyperplane corresponding to a hiddenunit separating A fromB. Assume that the line con-necting A and B is completely covered by k disjointbuilding blocks all of the same length. For a perfectclassi�cation there must be a building block betweenA andB such that the hyperplane separating A fromB passes through it. For large k the block is smalland consequently the hyperplane can be assumed topass through the center of it. A hyperplane in <m isuniquely determined by m points. So, the equationof the hyperplane separating A from B is de�ned bym building blocks appropriately positioned betweenm pairs of training examples similar to A and B.A genetic search can be used to determine m suchappropriately positioned building blocks that de�nea desired separating hyperplane in <m (for m = 2see an example on Figure 1).In the genetic algorithm, population represents aset of hyperplanes each being a candidate for thenext hidden unit that we want to add to the neuralnetwork. Each individual hyperplane is representedby �xed length binary string. For m dimensionalinput space, each string consists of m concatenatedsubstrings of equal length. Each of those substringsencodes a 4-tuple: a region, pair of a positive and anegative training examples both belonging to thatregion, and the index (one of k possibilities) of abuilding block between those two examples that de-�nes a point on the hyperplane.Here, genetic search consists of a sequence of steps(called generations) where in every generation a bet-ter population of candidates for the next hidden unitto be added to the network is created. For thatmatter an incremental static population model is

Subregion I

Subregion II

SlidesFigure 1: The XOR function realized by the net withtwo hidden units. The �gure shows building blockson the dotted lines between the examples belongingto the opposite classes (between (0; 0) and (0; 1);(0; 0) and(1; 0); (0; 1) and (1; 1); (1; 0) and (1; 1)).Each block can be in one of the k di�erent positionson the dotted line.used where the population is ranked according to�tness [10]. The two best ranked strings from pre-vious generation are copied into the next generation.The rest n� 2 strings of the new generation are theresult of crossover and mutation on the n strings ofthe previous generation. This model ensures thatthe best strings are not destroyed.In each generation the hyperplanes in the pop-ulation are evaluated for their �tness. If �i is thepercentage of all training examples from class i cor-rectly classi�ed by the hyperplane, then its �tnessis de�ned as the sum of �i over all classes. Thecrossover occurs with equal probability between anytwo adjacent bits.Initially, the problem domain is a single unre-solved region. Genetic search for a pre-speci�ednumber of generations is performed and the hiddenunit corresponding to the generated hyperplane isadded to the existing network hidden layer. Thishidden unit is used to partition the unresolved re-gions further. All resolved regions can be ignoredin future constructive steps of adding new hiddenunits because a set of hidden units that can classifythose regions correctly is already designed. The un-resolved regions are maintained in a linked list. Theprocess continue construction of new hidden units,each using new genetic search, till all the regions areresolved.The hidden layer units and the connections fromthe input to the hidden layer can be easily generatedfrom the constructed hyperplanes. The �nal step inthe algorithm is to learn the connection weights be-



tween the hidden and the output layer. This task isperformed using the pocket algorithm[3], a modi�-cation of the perceptron algorithm able to producethe optimal separation between non-linearly separa-ble classes.III. Construction Speed-UpA speed-up of hidden layer construction is possi-ble through distributed genetic search. Additionalspeed-up is achievable through parallelization of thehidden to the output layer learning.A. Distributed Genetic SearchIn the genetic search algorithm from Section 2 themost expensive step in a genetic cycle is strings �t-ness evaluation. If a population consists of n strings,in each generation the �tness will have to be evalu-ated for all n strings. In practice n ranges between50 to 200. Our experiments show that in the sequen-tial implementation of the algorithmmore than 80%of the time is spent computing the �tness.The estimation of the �tness value of the stringsare independent of one another, and this makes itappropriate for distributed computing. Given a net-work of n+1 processors (Main and n Fitness nodes),estimation of the �tness could be performed concur-rently, each on a di�erent processor in a distributedenvironment.In a distributed algorithm that we propose Mainnode process initially broadcast the unresolved re-gion (the training set) to all Fitness nodes. Mainnode process executes the algorithm sequentially tillthere is a need to evaluate strings based on their �t-ness. At that point, Main node process distributes nstrings (population) each to one of n Fitness nodesthat work in parallel, where each of them computes�tness of a string assigned to it. Fitness values arecomputed using current list of unresolved regionsand returned back to the Main node process whichthen broadcast the �ttest hyperplane back to all theFitness nodes. On receiving the �ttest hyperplaneeach of the Fitness nodes concurrently modi�es itscurrent list of unresolved regions, partitioning unre-solved regions further and discarding the regions re-solved by this new hyperplane. At the same time theMain process continues sequential computation tillthere is a need to compare �tness values of strings inthe next generation. The process terminates whenall regions are resolved. If less than n+1 processors(workstations) are available then the estimation of�tness is evenly distributed among available proces-sors.For an e�cient distributed algorithm, communi-cation among processors should be minimized sinceit can be very expensive. Observe that in the pro-

posed parallelization each message is of the samesize and it is indeed quite small (one string ratherthen the whole population). In addition, the ge-netic search is performed for a pre-speci�ed numberof generations (a small constant), and consequentlythe total cost of message exchanges per each hiddenunit construction is a small constant (one commu-nication per generation).B. Dynamic Pocket AlgorithmThe basic idea of the pocket algorithm is to run theperceptron algorithm while keeping a backup hy-pothesis (weights assignment) \in pocket" [3]. When-ever the perceptron hypothesis has a better perfor-mance it replaces the pocket hypothesis. The �nalpocket hypothesis is the output of the algorithm.The drawback of the algorithm is that the processesof estimating the better of the two hypothesis (per-ceptron and pocket) is computationally extremelycostly. This is especially true when the training setis large.To speed-up the pocket algorithm we propose re-placement of the existing pocket memory with an-other special perceptron called Slave. In the dy-namic pocket algorithm the perceptron, here calledMaster, and the Slave run in parallel on the sameinput. The Slave is devoid of power to update itscurrent hypothesis, but in contrast to the originalpocket algorithm it evaluates the quality of the pockethypothesis concurrently with the evaluation of theMaster's hypothesis.The Slave in addition to its current hypothesis �,keeps ' which is current number of consecutive cor-rect classi�cation by �, and � the maximum ' sofar. The Master on the other hand has its currenthypothesis �, and keeps � which is current numberof consecutive classi�cation of the training samplesby �. Both the Master and the Slave start of withrandomized � and �. The indices � and � indicatethe respective goodness of � and � at any particularmoment. When � becomes greater that �, an esti-mate of goodness of � and � are made. If � is foundto be better, then previous � is replaced by �. Thetraining procedure goes on till the training samplesare classi�ed correctly or a predetermined numberof iterations are completed. The Monitoring subsys-tem is responsible for estimating the quality of theMaster and the Slaves hypothesis (i.e., � and �).If the Master hypothesis is found to be better, theMonitor subsystem replaces Slaves weights by thatof the Master.Using this dynamic approach the threshold � forevaluation of the current hypothesis � is subject todynamic update unlike the original pocket algorithm(i.e., � increases to ' if ' > �). Thus, a signi�cant



Problem Tower EvolutionaryUgen Ptest Ugen PtestMonk1 6 81% 3 95%Monk2 8 82% 8 87%Monk3 5 83% 6 99%Table 1: The Tower and the evolutionary algorithmcomparison on the Monks problems. Here, Ugen isthe number of units generated and Ptest is the per-formance on the testing set.computing time is saved by reducing the number ofuseless quality evaluations of the current master'shypothesis. The experimental results of Section 4are consistent with this observation.IV. ResultsFirst, convergence and size of the constructed net-work and quality of its generalization are studied.Second, time needed for the network design is dis-cussed.A. Network Generalization and ComplexityThe following theorem proves the convergence of theproposed network design algorithm.Theorem 1: The proposed constructive neuralnetwork design algorithm will always converge.Proof: With the addition of each hidden unit(hyperplane) one of the following will occur: (1)number of training examples belonging to unresolvedregions decreases; (2) number of existing unresolvedregions increases. Consequently, all regions will beeventually resolved since both the number of train-ing examples belonging to unresolved regions, andthe number of unresolved regions are bounded bythe number of examples. 2In general the algorithm uses genetic search withan aim to discover the best hidden unit that we thenadd to the existing network. The constructed net-work complexity and generalization is experimen-tally tested on a number of problems. For the XORproblem the evolutionary algorithm constructs theminimum con�guration of 2 hidden units shown inFigure 1. All generalization and complexity resultspresented in this paper are obtained by averagingover ten experiments and rounding to the nearestinteger. The experiments are identical in all pa-rameters except for the seed of the random numbergenerator. In all experiments a region is consideredto be resolved only if it is 100% pure. The intentionwas to test if this oversimpli�cation will result in anover�tt. However, in our experiments the obtainednetworks generalized quite well as demonstrated bythe following results.

In the �rst experiment of the constructed net-work complexity and generalization, the algorithmdesigned a network with two hidden units learningfrom 300 training examples of the votes database ofthe U.S House of Representatives congressmen on 16key votes identi�ed by the Congressional QuarterlyAlmanac [1]. This database of two classes consistsof 435 examples each of 17 attributes, and has previ-ously published classi�cation generalization resultsof about 90 - 95% correct. The generalization per-formance of the evolutionary designed neural net-work on the test set of 135 randomly selected pre-viously unseen examples is 97% correct.The second test was on another standard bench-mark, the Monk's problems relying on the arti�cialdomain in which robots are described by six di�erentattributes[9]. It comprises of three di�erent tasks.Each learning task is a binary classi�cation prob-lem given by a logical description of a class. Robotsbelong either to a particular class or not, but in-stead of providing a complete class description tothe learning problem, only a subset of 432 possiblerobots with their classi�cation is given. The learn-ing task is then to generalize using these examples.The results of the evolutionary algorithm on theseproblems are listed in Table 1, where the trainingset had 125, 170, 350 examples respectively. Evo-lutionary design algorithm performed better thananother popular constructive technique called theTower algorithm[3].Finally, tests were conducted on learning two ran-domly generated networks with three and �ve hid-den units. For both test problems the algorithmlearned the minimal networks from a training setof 50 examples with an accuracy of 99% (see threeunits result on Figure 2).
Figure 2: Test on a randomly generated networkwith 3 hidden units. A neural network with threehidden units was constructed from this partitioning,This is a minimal architecture.



B. Network Design TimeThe speed-up of distributed genetic search is givenby the following theorem.Theorem 2: Let Ts be the time spent in design-ing a network's hidden layer using the algorithm de-scribed in Section 2 on a sequential machine, andc � Ts (0 < c < 1) the time spent computing the�tness. Then execution time Tp on a distributedenvironment of n + 1 processors organized as de-scribed in Section 3 isTp = Ts(1� c(1� 1n)) + �where � is the communication overhead.Proof: Follows directly from the observation thatthe time spent computing the �tness in parallel is1ncTs + �. 2In practice, the communication overhead � is smallsince genetic search consists of a constant numberof generations and in each generation processes com-municate just a single smallmessage (a single string).Fraction of the sequential time c spent computing�tness depends on population size, and experimentsindicate that 0:8 < c < 1. Let us conservatively as-sume c = 0:8 (meaning that exactly 80% of sequen-tial algorithm's time is spent computing the �tness).Then given n+ 1 processors and using genetic pop-ulation of size n, a speed up of the hidden layerconstruction by a factor close to 5 can be attainedby parallelizing the genetic search as proposed. Infact, then Tp = 15Ts(1 + 4n ) + �.It is easy to show the optimality of the dynamicpocket algorithm's generalization.Theorem 3: Given a �nite set of input vectorsfxkg and corresponding desired responses fykg anda probability P < 1, there exists L such that afterl � L iterations of the dynamic pocket algorithm,the probability that the pocket weights are optimalexceeds P .Proof: A straightforward extension of optimalityresult of [3]. 2The e�ciency of the dynamic pocket algorithmwas also tested on some standard benchmark prob-lems. First test was on the Soybean database whichconsists of 307 instances belonging to 19 classes whereeach instance has 35 attributes. Based on the at-Database Pocket DynamicCpoc Upoc Cdpoc UdpocSoybean 85 6 20 6Votes 11 9 9 8Table 2: Comparison between the Pocket and theDynamic Pocket Algorithm

Window W Cdpoc Udpoc TW =TFSoybean 0.49 45 6 0.9Votes 0.46 9 8 0.84Table 3: Window size experiments for the DynamicPocket algorithmtribute values, the networks was trained to predictif the soybean crop su�ered from one of the nine-teen deceases. Second test was on already describedVotes database.The experimental comparisons between the pocketand the dynamic pocket algorithms are shown in Ta-ble 2. The number of stops for quality comparisonbetween the current and the pocket hypothesis usingthe pocket and the dynamic pocket algorithm is de-noted by Cpoc and Cdpoc respectively. The numberof useful stops for comparison for the pocket and thedynamic pocket algorithm is denoted by Upoc andUdpoc respectively. For example, on Soybean prob-lem the dynamic pocket algorithm stops 20 timesand 6 of the stops are useful. In contrast, the orig-inal pocket algorithm waist signi�cant time by 79useless stops. Reduction of the number of uselessstops using the dynamic algorithm is such a big gainthat in all performed experiments even a sequentialimplementation of the dynamic pocket algorithmruns faster than the original pocket algorithm. Inparticular, our sequential implementation of the dy-namic pocket algorithm learns Soybean database in29.4 secs (CPU time on HP 9000/730) verses 71 secsneeded by the pocket algorithm. If implemented asprocesses on two workstations, the Master and theSlave run in parallel thus reducing time further. Aspeedup of parallel dynamic algorithm over the se-quential dynamic algorithm is network dependent(communication overhead is a function of networkcapabilities). Our experience on non-trivial learn-ing problems shows speed-up close to double evenon a local network of workstations with slow com-munication link.The various experiments carried out with the dy-namic pocket algorithm indicate that a smaller win-dow of training examples for Master and Slave hy-pothesis comparison still gives a fairly good approx-imation of the quality obtained suing the full train-ing set. A smaller data window achieves additionalspeedup since then each comparison takes less time.The experimental results on data window variationsare shown in Table 3. The fraction of training setconsidered for quality estimation is denoted as W .Last column in the table TWTF is the ratio of the timetaken by the dynamic pocket algorithm using Wfraction of the training set for quality estimation to



the time taken using the full training set. Practicalexperience indicates that window size between one-forth and three-fourths of the training set providesgood prediction quality.In summary, experiments from Tables 2 and 3 in-dicate that a speed up by a factor near 4 over theexisting pocket algorithm can be attained using twoprocessors for dynamic algorithmwith reduced datawindow. V. ConclusionA new evolutionary algorithm has been proposedfor learning functions computable on a single hid-den layer feedforward neural networks. The algo-rithms has a constructive nature and adds hiddenunits incrementally using a genetic search over a rel-atively simple search space. The algorithm speed-upis achieved through parallelization. The proposedparallel algorithm is suitable for a distributed sys-tem implementation. Promising experimental re-sults are obtained for both the constructed networkcomplexity and generalization. Further research willshow if the approach is usefull for multi hidden layerarchitectures. References[1] Congressional Quarterly Almanac, 98thCongress, 2nd session 1984, Volume XL:Congressional Quarterly Inc., Washing-ton, D.C., 1985.[2] R.O. Duda and P.E. Hart, Pattern classi�-cation and scene analysis. New York: Wi-ley, 1973.[3] S. I. Gallant, \Perceptron-Based learningalgorithms", in IEEE Transaction on Neu-ral Networks, Vol. 1, No. 2, pp. 179-191,1990.[4] S.E. Fahlman and C. Lebiere, \Thecascade-correlation learning architecture,"in D.S. Touretzky Advances in Neural In-formation Processing Systems 2, Morgan-Kaufmann, pp. 524-532, 1990.[5] N. Karunanithi et al, \Genetic cascadelearning for neural networks," Proc. Int.Workshop on Combinations of Genetic Al-gorithms and Neural Networks, pp. 134-145.[6] R. Keesing and D. G. Stork, \Evolu-tion and learning in neural networks," inR.P. Lippman et al (eds) Advances inNeural Information Processing Systems 3,Morgan-Kaufmann, pp. 804-810, 1991.[7] M.A. Potter, \A genetic cascade - correla-tion learning algorithm," Proc. Int. Work-

shop on Combinations of Genetic Algo-rithms and Neural Networks, pp. 123-133.[8] J.D. Scha�er et al, \Combinations of ge-netic algorithms and neural networks: Asurvey of the state of the art," Proc. Int.Workshop on Combinations of Genetic Al-gorithms and Neural Networks, pp. 1-37,1992.[9] S. B. Thrun et al., \The Monk's Prob-lems: A performance comparison of di�er-ent learning algorithms," Carnegie MellonUniversity, Tech. report CMU-CS-91-197,Dec 1991.[10] D. Whitley, \The genitor algorithm andselection pressure: Why rank-based allo-cation of reproductive trials is best," Proc.3rd Int. Conf. on Genetic Algorithms, pp.116-121, 1989.


