Evolutionary Design of Application Tailored
Neural Networks

Zoran Obradovi¢ and Rangarajan Srikumar

Abstract— First, an evolutionary algorithm
for designing a single hidden layer feedfor-
ward neural networks is proposed. The al-
gorithm constructs a problem tailored neu-
ral network by incremental introduction of
new hidden units. Each new hidden unit is
added to the network by linear partitioning
of the hidden-layer representation through a
genetic search. Second, a two stage algo-
rithm speed-up is achieved through: (1) dis-
tributed genetic search for hidden layer units
construction along with the appropriate in-
put to hidden layer weights; and (2) the dy-
namic pocket algorithm for learning the hid-
den to output layer weights. Finally, promis-
ing experimental results are presented on fast
construction of small networks having good
generalization property.

I. INTRODUCTION

Research on using genetic algorithms for neural net-
works learning is increasing. Typically, genetic search
is used for the weights optimization on a prespeci-
fied neural network topology (for survey, see [8]).
However, determining the appropriate size of a neu-
ral network is one of the most difficult tasks in its
construction. An attempt to overcome the fixed ar-
chitecture problem are constructive learning algo-
rithms that grow or shrink the network in an appli-
cation specific manner [3, 4]. An interesting system
can be obtained by combining an existing construc-
tive learning algorithm and the weights optimization
of neural networks using genetic algorithms [5, 7].
However, the space defined by a combination of two
techniques might be difficult for the genetic search.
Another previously suggested approach to neural
networks design using genetic algorithms is archi-
tecture optimization only[6]. In those applications

This work was supported in part by the National Science Foun-
dation under grant IRI-9308523.

Z. Obradovié’s address is the School of Electrical Engineering
and Computer Science, Washington State University, Pullman
WA 99164-2752, USA. He is also affiliated with the Mathematical
Institute, Belgrade, Yugoslavia.

R. Srikumar’s address is Microsoft Corporation, 3219 Building
16, One Microsoft Way, Redmod WA 98052-6399.

once the networks are constructed, slow backpro-
pogation algorithm is used for learning appropriate
interconnection weights.

In the evolutionary algorithm that we propose
here there is no need for additional adaptation of
connections from input to the hidden layer after an
architecture is designed. The algorithm designs a
neural network growing one hidden unit at a time,
each constructed using genetic search on a relatively
simple space. Each hidden unit is immediately as-
signed appropriate connection weights from the in-
put layer. The pocket algorithm[3] is then used to
learn the connection weights between the hidden
and the output layer. Experiments indicate that the
algorithm generates small networks with good gen-
eralization ability. The drawback of this algorithm
is that it is highly computation intensive when im-
plemented on a sequential machine, which makes
it inappropriate for large scale problems. The pro-
posed algorithm is speeded-up by parallelization of
the genetic search and the pocket algorithm to the
level that it is applicable to large real life problems.

A description of the sequential algorithm is given
in Section 2. A parallel version of the algorithm is
proposed in Section 3. The theoretical analysis and
experimental results are discussed in Section 4.

II. THE EVOLUTIONARY ALGORITHM

For a given domain D C R™ we define a region by
its bounding set of hyperplanes in R™. A region is
said to be resolved if almost all training examples
(high percentage) belonging to that region are of
one class, otherwise the region is unresolved.

Let us assume that the given problem can be rep-
resented by a feedforward neural network of a single
hidden layer with units computing threshold func-
tions of their weighted input sum (usually called
hard limiter units). Each hidden unit in such neural
network can be interpreted as a hyperplane through
the problem domain R™. Hyperplanes correspond-
ing to the network’s hidden units partition the do-
main into resolved regions. Consequently, learning
goal can be interpreted as a construction of a small
set of hyperplanes (corresponding to hidden layer
units) which partition the training set into resolved



reglons.
The outline of the proposed constructive learning
algorithm follows:

(1) Start from a single unresolved region of all train-
ing examples, and with a neural network with-
out hidden units.

(2) Generate a new hidden unit (inter-connection
weights and threshold) using genetic search and
add it to the current network.

(3) Partition the current unresolved region(s) fur-
ther with the generated unit. Discard resolved
reglons.

(4) Go back to step 2 till all regions are resolved.

(5) Learn hidden to output layer inter-connection
welghts.

Let us form pairs of training examples, each pair
consisting of two examples belonging to different
classes. Let A and B be such a pair of training ex-
amples. For perfect classification of training exam-
ples by a single hidden layer neural network, there
must be a hyperplane corresponding to a hidden
unit separating A from B. Assume that the line con-
necting A and B is completely covered by k disjoint
building blocks all of the same length. For a perfect
classification there must be a building block between
A and B such that the hyperplane separating A from
B passes through it. For large k& the block is small
and consequently the hyperplane can be assumed to
pass through the center of it. A hyperplane in R™ is
uniquely determined by m points. So, the equation
of the hyperplane separating A from B is defined by
m building blocks appropriately positioned between
m pairs of training examples similar to A and B.
A genetic search can be used to determine m such
appropriately positioned building blocks that define
a desired separating hyperplane in ®™ (for m = 2
see an example on Figure 1).

In the genetic algorithm, population represents a
set of hyperplanes each being a candidate for the
next hidden unit that we want to add to the neural
network. Each individual hyperplane is represented
by fixed length binary string. For m dimensional
input space, each string consists of m concatenated
substrings of equal length. Each of those substrings
encodes a 4-tuple: a region, pair of a positive and a
negative training examples both belonging to that
region, and the index (one of k possibilities) of a
building block between those two examples that de-
fines a point on the hyperplane.

Here, genetic search consists of a sequence of steps
(called generations) where in every generation a bet-
ter population of candidates for the next hidden unit
to be added to the network is created. For that
matter an incremental static population model is

Subregion |

Subregion |1

Figure 1: The XOR function realized by the net with
two hidden units. The figure shows building blocks
on the dotted lines between the examples belonging
to the opposite classes (between (0,0) and (0,1);
(0,0) and(1,0); (0,1) and (1,1); (1,0) and (1,1)).
Each block can be in one of the k different positions
on the dotted line.

used where the population is ranked according to
fitness [10]. The two best ranked strings from pre-
vious generation are copied into the next generation.
The rest n — 2 strings of the new generation are the
result of crossover and mutation on the n strings of
the previous generation. This model ensures that
the best strings are not destroyed.

In each generation the hyperplanes in the pop-
ulation are evaluated for their fitness. If 7; is the
percentage of all training examples from class i cor-
rectly classified by the hyperplane, then its fitness
is defined as the sum of 7; over all classes. The
crossover occurs with equal probability between any
two adjacent bits.

Initially, the problem domain is a single unre-
solved region. Genetic search for a pre-specified
number of generations is performed and the hidden
unit corresponding to the generated hyperplane is
added to the existing network hidden layer. This
hidden unit is used to partition the unresolved re-
gions further. All resolved regions can be ignored
in future constructive steps of adding new hidden
units because a set of hidden units that can classify
those regions correctly is already designed. The un-
resolved regions are maintained in a linked list. The
process continue construction of new hidden units,
each using new genetic search, till all the regions are
resolved.

The hidden layer units and the connections from
the input to the hidden layer can be easily generated
from the constructed hyperplanes. The final step in
the algorithm is to learn the connection weights be-



tween the hidden and the output layer. This task is
performed using the pocket algorithm[3], a modifi-
cation of the perceptron algorithm able to produce
the optimal separation between non-linearly separa-
ble classes.

III. CONSTRUCTION SPEED-UP

A speed-up of hidden layer construction is possi-
ble through distributed genetic search. Additional
speed-up is achievable through parallelization of the
hidden to the output layer learning.

A. Distributed Genetic Search

In the genetic search algorithm from Section 2 the
most expensive step in a genetic cycle is strings fit-
ness evaluation. If a population consists of n strings,
in each generation the fitness will have to be evalu-
ated for all n strings. In practice n ranges between
50 to 200. Our experiments show that in the sequen-
tial implementation of the algorithm more than 80%
of the time is spent computing the fitness.

The estimation of the fitness value of the strings
are independent of one another, and this makes it
appropriate for distributed computing. Given a net-
work of n+1 processors (Main and n Fitness nodes),
estimation of the fitness could be performed concur-
rently, each on a different processor in a distributed
environment.

In a distributed algorithm that we propose Main
node process initially broadcast the unresolved re-
gion (the training set) to all Fitness nodes. Main
node process executes the algorithm sequentially till
there is a need to evaluate strings based on their fit-
ness. At that point, Main node process distributes n
strings (population) each to one of n Fitness nodes
that work in parallel, where each of them computes
fitness of a string assigned to it. Fitness values are
computed using current list of unresolved regions
and returned back to the Main node process which
then broadcast the fittest hyperplane back to all the
Fitness nodes. On receiving the fittest hyperplane
each of the Fitness nodes concurrently modifies its
current list of unresolved regions, partitioning unre-
solved regions further and discarding the regions re-
solved by this new hyperplane. At the same time the
Main process continues sequential computation till
there is a need to compare fitness values of strings in
the next generation. The process terminates when
all regions are resolved. If less than n+ 1 processors
(workstations) are available then the estimation of
fitness is evenly distributed among available proces-
sors.

For an efficient distributed algorithm, communi-
catlon among processors should be minimized since
it can be very expensive. Observe that in the pro-

posed parallelization each message is of the same
size and it is indeed quite small (one string rather
then the whole population). In addition, the ge-
netic search is performed for a pre-specified number
of generations (a small constant), and consequently
the total cost of message exchanges per each hidden
unit construction is a small constant (one commu-
nication per generation).

B. Dynamic Pocket Algorithm

The basic idea of the pocket algorithm is to run the
perceptron algorithm while keeping a backup hy-
pothesis (weights assignment) “in pocket” [3]. When-
ever the perceptron hypothesis has a better perfor-
mance it replaces the pocket hypothesis. The final
pocket hypothesis is the output of the algorithm.
The drawback of the algorithm is that the processes
of estimating the better of the two hypothesis (per-
ceptron and pocket) is computationally extremely
costly. This is especially true when the training set
is large.

To speed-up the pocket algorithm we propose re-
placement of the existing pocket memory with an-
other special perceptron called Slave. In the dy-
namic pocket algorithm the perceptron, here called
Master, and the Slave run in parallel on the same
input. The Slave is devoid of power to update its
current hypothesis, but in contrast to the original
pocket algorithm it evaluates the quality of the pocket
hypothesis concurrently with the evaluation of the
Master’s hypothesis.

The Slave in addition to its current hypothesis =,
keeps ¢ which is current number of consecutive cor-
rect classification by =, and ¢ the maximum ¢ so
far. The Master on the other hand has its current
hypothesis II, and keeps ® which is current number
of consecutive classification of the training samples
by II. Both the Master and the Slave start of with
randomized II and w. The indices ¢ and ® indicate
the respective goodness of 7 and II at any particular
moment. When ® becomes greater that ¢, an esti-
mate of goodness of w and II are made. If II is found
to be better, then previous = is replaced by II. The
training procedure goes on till the training samples
are classified correctly or a predetermined number
of iterations are completed. The Monitoring subsys-
tem is responsible for estimating the quality of the
Master and the Slaves hypothesis (i.e., II and ).
If the Master hypothesis is found to be better, the
Monitor subsystem replaces Slaves weights by that
of the Master.

Using this dynamic approach the threshold ¢ for
evaluation of the current hypothesis II is subject to
dynamic update unlike the original pocket algorithm
(i.e., ¢ increases to ¢ if ¢ > ¢). Thus, a significant



Problem Tower Evolutionary
Ugen Ptest Ugen Ptest
Monk1 6 81% 3 95%
Monk?2 8 82% 8 87%
Monk3 5 83% 6 99%

Table 1: The Tower and the evolutionary algorithm
comparison on the Monks problems. Here, Ug.y, is
the number of units generated and P,.,; 1s the per-
formance on the testing set.

computing time is saved by reducing the number of
useless quality evaluations of the current master’s
hypothesis. The experimental results of Section 4
are consistent with this observation.

IV. REsuLTS

First, convergence and size of the constructed net-
work and quality of its generalization are studied.
Second, time needed for the network design is dis-
cussed.

A. Network Generalization and Complezity

The following theorem proves the convergence of the
proposed network design algorithm.
Theorem 1: The proposed constructive neural
network design algorithm will always converge.

Proof: With the addition of each hidden unit
(hyperplane) one of the following will occur: (1)
number of training examples belonging to unresolved
regions decreases; (2) number of existing unresolved
regions increases. Consequently, all regions will be
eventually resolved since both the number of train-
ing examples belonging to unresolved regions, and
the number of unresolved regions are bounded by
the number of examples. O

In general the algorithm uses genetic search with
an aim to discover the best hidden unit that we then
add to the existing network. The constructed net-
work complexity and generalization is experimen-
tally tested on a number of problems. For the XOR
problem the evolutionary algorithm constructs the
minimum configuration of 2 hidden units shown in
Figure 1. All generalization and complexity results
presented in this paper are obtained by averaging
over ten experiments and rounding to the nearest
integer. The experiments are identical in all pa-
rameters except for the seed of the random number
generator. In all experiments a region is considered
to be resolved only if it is 100% pure. The intention
was to test if this oversimplification will result in an
overfitt. However, in our experiments the obtained
networks generalized quite well as demonstrated by
the following results.

In the first experiment of the constructed net-
work complexity and generalization, the algorithm
designed a network with two hidden units learning
from 300 training examples of the votes database of
the U.S House of Representatives congressmen on 16
key votes identified by the Congressional Quarterly
Almanac [1]. This database of two classes consists
of 435 examples each of 17 attributes, and has previ-
ously published classification generalization results
of about 90 - 95% correct. The generalization per-
formance of the evolutionary designed neural net-
work on the test set of 135 randomly selected pre-
viously unseen examples is 97% correct.

The second test was on another standard bench-
mark, the Monk’s problems relying on the artificial
domain in which robots are described by six different
attributes[9]. It comprises of three different tasks.
Each learning task is a binary classification prob-
lem given by a logical description of a class. Robots
belong either to a particular class or not, but in-
stead of providing a complete class description to
the learning problem, only a subset of 432 possible
robots with their classification is given. The learn-
ing task is then to generalize using these examples.
The results of the evolutionary algorithm on these
problems are listed in Table 1, where the training
set had 125, 170, 350 examples respectively. Evo-
lutionary design algorithm performed better than
another popular constructive technique called the
Tower algorithm][3].

Finally, tests were conducted on learning two ran-
domly generated networks with three and five hid-
den units. For both test problems the algorithm
learned the minimal networks from a training set
of 50 examples with an accuracy of 99% (see three
units result on Figure 2).

Figure 2: Test on a randomly generated network
with 3 hidden units. A neural network with three
hidden units was constructed from this partitioning,
This is a minimal architecture.



B. Network Design Time

The speed-up of distributed genetic search is given
by the following theorem.
Theorem 2: Let T; be the time spent in design-
ing a network’s hidden layer using the algorithm de-
scribed in Section 2 on a sequential machine, and
c*T; (0 < ¢ < 1) the time spent computing the
fitness. Then execution time T, on a distributed
environment of n 4+ 1 processors organized as de-
scribed in Section 3 is

T, =T,(1—¢(1- %)) +€
where € 1s the communication overhead.
Proof: Follows directly from the observation that
the time spent computing the fitness in parallel is
%CTS +e. O

In practice, the communication overhead ¢ is small
since genetic search consists of a constant number
of generations and in each generation processes com-
municate just a single small message (a single string).
Fraction of the sequential time ¢ spent computing
fitness depends on population size, and experiments
indicate that 0.8 < ¢ < 1. Let us conservatively as-
sume ¢ = 0.8 (meaning that exactly 80% of sequen-
tial algorithm’s time is spent computing the fitness).
Then given n + 1 processors and using genetic pop-
ulation of size n, a speed up of the hidden layer
construction by a factor close to 5 can be attained
by parallelizing the genetic search as proposed. In
fact, then

T, =iT.(1+ %)+

It is easy to show the optimality of the dynamic
pocket algorithm’s generalization.

Theorem 3: Given a finite set of input vectors
{x*} and corresponding desired responses {y*} and
a probability P < 1, there exists L such that after
I > L iterations of the dynamic pocket algorithm,
the probability that the pocket weights are optimal
exceeds P.

Proof: A straightforward extension of optimality
result of [3]. O

The efficiency of the dynamic pocket algorithm
was also tested on some standard benchmark prob-
lems. First test was on the Soybean database which
consists of 307 instances belonging to 19 classes where
each instance has 35 attributes. Based on the at-

Database Pocket Dynamic
Cpoc Upoc Cdpoc Udpoc
Soybean 85 6 20 6
Votes 11 9 9 8

Table 2: Comparison between the Pocket and the
Dynamic Pocket Algorithm

Window W Cdpoc Udpoc TW /TF
Soybean | 0.49 45 6 0.9
Votes 0.46 9 8 0.84

Table 3: Window size experiments for the Dynamic
Pocket algorithm

tribute values, the networks was trained to predict
if the soybean crop suffered from one of the nine-
teen deceases. Second test was on already described
Votes database.

The experimental comparisons between the pocket
and the dynamic pocket algorithms are shown in Ta-
ble 2. The number of stops for quality comparison
between the current and the pocket hypothesis using
the pocket and the dynamic pocket algorithm is de-
noted by Cpoc and Cgyp,. respectively. The number
of useful stops for comparison for the pocket and the
dynamic pocket algorithm is denoted by Up,. and
Ugpoc respectively. For example, on Soybean prob-
lem the dynamic pocket algorithm stops 20 times
and 6 of the stops are useful. In contrast, the orig-
inal pocket algorithm waist significant time by 79
useless stops. Reduction of the number of useless
stops using the dynamic algorithm is such a big gain
that in all performed experiments even a sequential
implementation of the dynamic pocket algorithm
runs faster than the original pocket algorithm. In
particular, our sequential implementation of the dy-
namic pocket algorithm learns Soybean database in
29.4 secs (CPU time on HP 9000/730) verses 71 secs
needed by the pocket algorithm. If implemented as
processes on two workstations, the Master and the
Slave run in parallel thus reducing time further. A
speedup of parallel dynamic algorithm over the se-
quential dynamic algorithm is network dependent
(communication overhead is a function of network
capabilities). Our experience on non-trivial learn-
ing problems shows speed-up close to double even
on a local network of workstations with slow com-
munication link.

The various experiments carried out with the dy-
namic pocket algorithm indicate that a smaller win-
dow of training examples for Master and Slave hy-
pothesis comparison still gives a fairly good approx-
imation of the quality obtained suing the full train-
ing set. A smaller data window achieves additional
speedup since then each comparison takes less time.
The experimental results on data window variations
are shown in Table 3. The fraction of training set
considered for quality estimation is denoted as W.
Last column in the table g—‘;" is the ratio of the time
taken by the dynamic pocket algorithm using W
fraction of the training set for quality estimation to



the time taken using the full training set. Practical
experience indicates that window size between one-
forth and three-fourths of the training set provides
good prediction quality.

In summary, experiments from Tables 2 and 3 in-
dicate that a speed up by a factor near 4 over the
existing pocket algorithm can be attained using two
processors for dynamic algorithm with reduced data
window.

V. CONCLUSION

A new evolutionary algorithm has been proposed
for learning functions computable on a single hid-
den layer feedforward neural networks. The algo-
rithms has a constructive nature and adds hidden
units incrementally using a genetic search over a rel-
atively simple search space. The algorithm speed-up
is achieved through parallelization. The proposed
parallel algorithm is suitable for a distributed sys-
tem implementation. Promising experimental re-
sults are obtained for both the constructed network
complexity and generalization. Further research will
show if the approach is usefull for multi hidden layer
architectures.

REFERENCES

[1] Congressional Quarterly Almanac, 98th
Congress, 2nd session 1984, Volume XL:
Congressional Quarterly Inc., Washing-
ton, D.C., 1985.

[2] R.O. Duda and P.E. Hart, Pattern classifi-
cation and scene analysis. New York: Wi-
ley, 1973.

[3] S. I. Gallant, “Perceptron-Based learning
algorithms”, in IEEE Transaction on Neu-
ral Networks, Vol. 1, No. 2, pp. 179-191,
1990.

[4] S.E. Fahlman and C. Lebiere, “The
cascade-correlation learning architecture,”
in D.S. Touretzky Advances in Neural In-
formation Processing Systems 2, Morgan-
Kaufmann, pp. 524-532, 1990.

[5] N. Karunanithi et al, “Genetic cascade
learning for neural networks,” Proc. Int.
Workshop on Combinations of Genetic Al-
gorithms and Neural Networks, pp. 134-
145.

[6] R. Keesing and D. G. Stork, “Evolu-
tion and learning in neural networks,” in
R.P. Lippman et al (eds) Advances in
Neural Information Processing Systems 3,
Morgan-Kaufmann, pp. 804-810, 1991.

[7] M.A. Potter, “A genetic cascade - correla-
tion learning algorithm,” Proc. Int. Work-

shop on Combinations of Genetic Algo-
rithms end Neural Networks, pp. 123-133.
J.D. Schaffer et al, “Combinations of ge-
netic algorithms and neural networks: A
survey of the state of the art,” Proc. Int.
Workshop on Combinations of Genetic Al-
gorithms and Neural Networks, pp. 1-37,
1992.

S. B. Thrun et al., “The Monk’s Prob-
lems: A performance comparison of differ-
ent learning algorithms,” Carnegie Mellon
University, Tech. report CMU-CS-91-197,
Dec 1991.

D. Whitley, “The genitor algorithm and
selection pressure: Why rank-based allo-
cation of reproductive trials is best,” Proc.
3rd Int. Conf. on Genetic Algorithms, pp.
116-121, 1989.



