
Selection of Learning Algorithms for Trading Systems Based onBiased EstimatorsZoran Obradovi�c1;� Tim Chenoweth1;2;3zoran@eecs.wsu.edu tchenowe@eecs.wsu.edu1 School of Electrical Engineering and Computer Science2 Department of Management and Systems3 Department of EconomicsWashington State University, Pullman WA 99164-2752Phone: 509-335-6601, Fax: 509-335-3818AbstractIn our previous trading system for the S&P 500 index, promising results were obtained bypartitioning the historic data into disjoint subsets used to design two biased local estimatorswhose partial estimates were combined into a trading recommendation [3, 4]. The objective ofthis study is to explore whether using cascade-correlation learning instead or in addition to thepreviously used back-propagation to train either one or both of the local estimators improvesthe trading system's performance. Several learning algorithm combinations were explored andtested using real �nancial data. The system yielding the best results used a mixture of learningalgorithms (both back-propagation and cascade-correlation) and achieved an annual rate ofreturn of 20.49% without a commission and 14.37% with a 0.05% commission over a �ve yeartrading period. This is signi�cantly better than the annual rate of return achieved by boththe buy and hold strategy (13.36%) and a system con�guration that did not use the cascade-correlation algorithm (11.54% with no commission, 5.35% with a 0.05% commission).�Research sponsored in part by the NSF research grant NSF-IRI-9308523.

1. IntroductionThe prediction of future returns for �nancial markets is a highly complex time series problemthat is receiving much attention from researchers in industry [10] and academia [14]. In general,�nancial markets are highly e�cient, which means there is little relationship between historicaldata and future market returns. Those relationships that do exist disappear rapidly once they arediscovered. This is especially true when linear relationships are involved because most traditionalmarket forecasting techniques rely on linear modeling and are capable of identifying such linearrelationships in the data [1]. However, it may be the case that nonlinear relationships exist thatare overlooked by simple linear models. A nice characteristic of nonparametric machine learningtechniques is their ability to discover existing nonlinear relationships automatically and directlyfrom provided historical data [12]. One possible learning method is based on neural networks, whichare powerful computational structures that can theoretically approximate almost any nonlinearcontinuous function on a compact domain to any degree of accuracy [6]. Previous published neuralnetwork research related to this study includes an attempt to build several �nancial time seriesprediction models using various measures [9], some of which are used in our work. Another relatedwork uses a gating network to integrate the results from several local experts for speci�c marketconditions [11].This study extends our previous neural network based trading system described in [3, 4]. Ourapproach partitions the prediction problem into two subproblems, models each subproblem sepa-rately, and combines the estimates into a �nal prediction. This partitioning is accomplished byseparating the training set into disjoint subsets that are used to train neural networks, which actas local estimators. The local estimates from both neural networks are integrated into a singleprediction by the combining algorithm, which suggests a trade. Training the local estimators ondisjoint data sets (as opposed to data sets that overlap) creates less correlated local estimates,resulting in improved system performance.

In our previous work, local estimators were prespeci�ed neural networks employing back - prop-agation learning [13]. Although this simpli�ed model assumes that the proposed problem partition-ing results in subproblems of similar complexity and that the problem complexity is not changingsigni�cantly over time, the obtained results were encouraging. This paper extends the previousmodel by allowing the system to be further improved through the use of the cascade-correlationlearning algorithm [7], which can vary the neural network size for each prediction step. The studyalso analyzes whether a mixture of neural networks employing both back-propagation and cascade-correlation learning could further reduce the correlation between the local estimators, yielding abetter trade recommendation.A primary advantage of cascade-correlation learning is that the algorithm does not requireexhaustive experimentation in order to specify an appropriate number of neural network compu-tational units. The algorithm adds computational units one at a time until a stopping criteriais reached. This improves the model's
exibility since it allows the number of model parametersto vary in accordance to the problem's changing distribution. In contrast, the back-propagationlearning algorithm requires that the number of computational units be prespeci�ed. Additionally,a neural network using the cascade-correlation algorithm is trained faster than one using back-propagation.In summary, the objective of this paper is to determine whether the cascade-correlation algo-rithm can be employed in a manner that improves our trading system's performance. Results fromthis study are compared to our previous results and to the buy and hold strategy. A brief overviewof relevant neural network terminology and ideas is provided in Section 2, followed by system im-plementation details explained in Section 3. Experimental results are discussed in Section 4 andconclusions are presented in Section 5.

Synaptic

Weights

Summing

Junction

.

.

.

Activation

Function

x1

x2

x3

.

.

.
xn

w1,k

w2,k

w3,k

w

Output y

n,k

vk

Inputs

Figure 1: Model of a Neuron.2. BackgroundA neural network is a parallel computational structure composed of relatively simple interconnectedcomputational units (neurons). A neural network acquires its knowledge through a learning processaccording to a learning algorithm. The knowledge gained in this manner is distributed throughoutthe net by modifying the strength of the interconnection links (weights).An individual neuron (shown in Figure 1) computes the weighted sum of inputs asvk = nXj=1wj;kxj ; (1)where the xj 's are the inputs to neuron k, and the wj;k's are the corresponding connection weightsfrom neuron j to neuron k. The output of neuron k then becomesyk = '(vk � �k); (2)where �k is called the threshold and the function ' is called the activation function.The activation is typically a nonlinear function that limits the output of a neuron to a spe-ci�c range and gives the network the capability of modeling nonlinear functions. Commonly used

1,1
w

1,2

w
1,3 w

2,1
w

2,2
w

2,3

w
3,1

w
3,2

w
3,3

w
1

w
2 w

3

w

Input Layer

. . .Hidden Layer

Output LayerFigure 2: Multilayer Feedforward Network Architecture.activation functions are the sigmoid function de�ned as'(vk) = 11 + e�vk (3)and the hyperbolic tangent function de�ned as'(vk) = 1� e�2vk1 + e�2vk : (4)The sigmoid function maps the output of a neuron to the (0; 1) range, whereas the hyperbolictangent function maps it to the (�1; 1) range.The structure of neurons in a neural network is often referred to as the network architecture.The multilayer feedforward neural network architecture shown in Figure 2 is a popular choice in theliterature. The main characteristic of this architecture is an acyclic interconnection graph with oneor more hidden layers of neurons. These hidden layers allow the network to extract higher orderstatistics from the training data set, enabling the network to model unknown nonlinear functions.Neurons in the input layer supply the individual components (features) of the input to the neurons

in the �rst hidden layer. The output from the neurons in the �rst hidden layer becomes the input tothe neurons in the following layer. The output from the neurons in this layer becomes the input tothe neurons in the next layer and so on, from layer to layer, throughout the entire neural network.The output from the neurons in the output layer is the network response to the speci�ed input.Feedforward neural networks are generally fully connected, meaning that every neuron in a speci�clayer is connected to every neuron in the previous layer.A key characteristic of a neural network model is the ability to adapt to its environment throughlearning. This is an iterative process accomplished through repeatedly changing the network'sweights. A learning algorithm thus becomes a sequence of steps that alter the network's weights inorder to improve the model's performance on a given training data set. Once learning is completedthe neural network is generally presented with a test example and a corresponding predictioncomputed using the �nal network con�guration. Two well known learning algorithms used in thisstudy, called back-propagation [13] and cascade-correlation [7], are brie
y described in the followingsections. Practical details concerning neural networks in general and both algorithms in particularmay be found in [8].2.1. The Back-Propagation Learning AlgorithmThe back-propagation method computes the prediction error for a particular input and attempts tominimize it by adjusting the neural network weights according to the gradient descent optimizationprinciple. More precisely, each training example is an input-output pair (~p; d(~p)) from an unknownfunction, which we want to approximate using a given training set of such examples. For a giveninput ~p, the desired output d(~p) is compared to the network's output y(~p) and an error value iscomputed as e(~p) = d(~p)� y(~p): (5)

Back-propagation learning is a process of adjusting the neural network weights in a manner thatminimizes the sum of squared errors on the training set examples. Each weight adjustment stepdistributes responsibility for the error to all neurons through appropriate modi�cation of theircorresponding weights. Once all network weight corrections are computed for one training example,the corrections are added to the corresponding weights and the process is repeated using the nextexample. A complete pass through the training set is called an epoch, and a training sessiongenerally lasts several thousand epochs. The stopping criteria for the back-propagation learningalgorithm is either the average error over all training examples falling below some minimum errorvalue, or reaching the maximum allowable number of epochs.The objective of the back-propagation algorithm is to optimize the weight parameters in aprespeci�ed �xed neural network architecture. This means that the number of neurons and theinterconnection graph is prespeci�ed and does not change during the learning process. In thisstudy, back-propagation learning is applied to single hidden layer feedforward neural networks witha prespeci�ed number of neurons determined by a trail and error process.2.2. The Cascade-Correlation Learning AlgorithmAnother learning algorithm employed in this paper is cascade-correlation [7]. This algorithm uti-lizes the cascade architecture which, in contrast to the architecture used by the back-propagationalgorithm, starts without any hidden units and adds them dynamically during the training process.The cascade-correlation training algorithm is also totally di�erent from the back-propagation al-gorithm. Although the method is still gradient descent based, connections to the hidden units aretrained in a manner that maximizes the correlation between the hidden units' output and the errorvalue for the output unit. The connections to the output unit are trained as in back-propagation.Cascade-correlation learning starts with an architecture that has only input and output units(see Figure 3). The neural network is trained for a number of epochs and the weights are adjustedusing gradient descent optimization to minimize the sum of squared errors as described in the

Output Unit

Input Units

Figure 3: Initial Cascade Architecture.previous section. When the network is trained (a stopping criterion is satis�ed) an additional passthrough the training set is made and an error value is computed for each training example. Next,a hidden unit is added to the network as shown in Figure 4. Initially, the weights correspondingto the new connections marked with a square in Figure 4 are trained to maximize the correlationbetween the output of the hidden unit and the corresponding error value for the output unit. Thislocal optimization problem is solved by adjusting only the input-to-hidden unit weights using thegradient descent technique over a number of epochs. The connections to the new hidden unit are�xed after this local training process for the remainder of the training session. Now, the weightscorresponding to the connections leading to the output unit (connections marked with a circle inFigure 4) are trained again to minimize the sum of squared errors.Next, an additional hidden unit is added to the network with the resulting architecture shown inFigure 5, and the weight optimization process is repeated. The new weights marked with a squarein Figure 5 are trained to maximize the correlation between the new hidden unit's output and theerror value for the output unit. Then, the weights marked with a circle are trained to minimizethe sum of squared errors. The weights marked with an X are �xed and do not change during theremainder of the training session. Additional hidden units are added to the network until somestopping criterion is satis�ed and the training session ends. The stopping criterion used in this

Output Unit

Input Units

Hidden Unit

Figure 4: Cascade Architecture with Hidden Unit.paper for the cascade-correlation learning algorithm is either the sum of squared errors averagedover all training examples falls below some minimum error value, the correlation between the newhidden unit's output and the error value of the output unit falls bellow some minimum correlationvalue, or that the maximum allowable number of hidden units is reached.In theory, the cascade-correlation algorithm is computationally more e�cient than the back-propagation learning algorithm. Each neuron in a back-propagation network uses an iterativeapproach to adjust the weights leading to it in a manner that will minimize the sum of squarederrors. However, all the neurons in the network are adjusting their weights at the same time,making the minimization problem quite complex. The cascade-correlation algorithm addresses thisproblem by training only part of its weights at a time, keeping the rest of the parameters �xed.As each new hidden unit is added to the network, the weights leading to the unit are trained,while the rest of the network weights are kept constant. When the weights leading to the unit aresatisfactorily trained, they are �xed for the remainder of the training session. The only networkweights that are retrained each cycle are those leading to the output unit.A second disadvantage of the back-propagation algorithm is that the network architecture must

Hidden Units

Input Units

Output UnitFigure 5: Cascade Architecture with Two Hidden Units.be completely �xed at the beginning of the session. This is a serious problem, since there is nosystematic and e�cient approach for determining an optimal network architecture for a speci�cproblem. Given appropriate stopping criteria, the cascade-correlation algorithm addresses thisissue by allowing the network architecture to grow to whatever level of complexity is necessary toaddress the current problem. The initial architecture is extremely simple, with no hidden units.Each iteration adds a single unit to the system, increasing the number of system parameters andthe computational power of the network. The architecture stops growing when the network hasenough computational power to address the problem.It is very important, however, that this growth be controlled through the proper selection ofstopping criteria. If the cascade architecture is allowed to grow too large, over�tting may becomea problem. Over�tting means that the neural network memorizes the training set data and loosesits generalization ability. This results in poor predictions when the network is presented withan example that was not used in the training process. Over�tting is easier to control for neuralnetworks using back-propagation learning since the number of system parameters can be �xed ata level that makes memorizing the training set very di�cult.

3. MethodologyThe trading system discussed in this study uses a limited amount of historically ordered trainingexamples in order to design a model that provides the trading recommendation for the current daybased on the predicted return for the following day. When the actual return for the following daybecomes know, it is added to the training set and the oldest training example is removed. Themodi�ed training set is now used to design a new model, which is used to determine a new traderecommendation. This process of shifting the training window forward and designing a new modelby learning from more recent examples is repeated each day. Designing a new model for eachprediction step is much more computationally expensive than designing a model once and using itfor an extended period. However, our experience suggests that the proposed methodology providesbetter results when dealing with a nonstationary time series with a changing distribution such asthe S&P 500 index.The trading system used in this study is composed of three components. The �rst is a prepro-cessing component that is used to perform feature selection and data �ltering. Feature selectionidenti�es the most informative data, while the data �lter splits the training data into three disjointsets, a positively biased set, a negatively biased set, and a noise set that is discarded.The learning component, composed of two neural networks, is used to perform a predictionprocess. One network is trained using the positively biased training set, whereas the other is biasedusing the negatively biased set. The predictions from each neural network are combined into asystem prediction by the postprocessing component. This component is composed of a single neuralnetwork that takes as input the predictions of each of the biased networks and combines these intoa single system prediction.

3.1. System DescriptionThe feature selection process, described in detail in [5], is necessary because the gradient descentbased neural networks used in this study are computationally very expensive. In addition, theybecome signi�cantly more expensive as the size of the input vector increases. Another considerationis the number of parameters in the model. More features used as input to the network result inmore parameters in the model. To properly �t more parameters, more data is needed for neuralnetwork training. Therefore, to design a good and practical trading system it is important to usea manageable number of informative input features. The goal of feature selection is to reduce theset of candidate features to a manageable size in a manner which minimizes predictive informationloss.The feature selection technique used in our trading system consisted of combining the resultsfrom several di�erent statistically based methods into a �nal feature set. This reduces the instabilityproblems described by Breiman in [2]. Breiman pointed out that small changes in the data set usedin the feature selection process can cause drastic changes in the �nal set of features. To minimizethis e�ect for multivariate �nancial time series, we suggested a procedure which averages the resultsof several feature selection methods.With our method, all the candidate features are ranked according to a speci�c selection techniqueand criterion and assigned a score based on this ordering (a score of one being the best). Theprocedure is repeated several times using di�erent combinations of selection techniques and criteria.The scores for each combination are summed, providing a �nal score for each feature. A �nalfeature set with cardinality n is then determined as the n features with the lowest scores. Theinitial candidate feature set for the S&P 500 index predictions contained 67 features, which wasreduced by the preprocessing component to the feature set used in this study, containing only the6 features shown in Table 1.The data �lter partitions the training set into three disjoint sets. The �rst set, containing

S&P 500 index returnS&P 500 index return lagged one dayS&P 500 index return lagged two daysU.S Treasure Rate lagged 2 monthsU.S Treasure Rate lagged 3 months30 Year Government Bond RateTable 1: Features of Each Example.training examples corresponding to large positive returns, is used to train our optimistically biasedneural network. The second data set, containing examples corresponding to large negative returns,is used to train the pessimistically biased neural network. The third data set, containing theremaining examples, is discarded as noise (see [4] for details). The set to which a speci�c trainingexample is assigned depends on the magnitude of the corresponding S&P 500 index return. Thedesired output (d(~p), de�ned in Section 2) is the actual return value for the next day. This valueis compared to a prede�ned threshold h and if d(~p) is greater than h, training example (~p; d(~p))is added to the training set for the positively biased neural network. If d(~p) is less than �h, thetraining example is added to the training set for the negatively biased neural network. Finally, ifd(~p) is between �h and h (�h < d(~p) < h), the training example is discarded as noise. For thisstudy, h was experimentally set to 0.5% as explained in [4].The motivation for partitioning the training set in this manner is to create two biased localestimators with the correlation between these two estimators as small as possible. Such a designwith local estimators trained on disjoint data sets (as opposed to data sets that overlap) results inless correlated local estimates provided to the post processing component and hopefully in a bettertrading performance. The local estimators used in our system are the two neural networks. Onenetwork is trained using the positively biased training set and as such has an optimistic view of themarket, while the other network is trained using the negatively biased training set and thereforehas a pessimistic view for the market.The postprocessing component of our trading system is a small neural network that takes the

Component

Preprocessing

Component

Optimistic

Prediction

Back-propagation

Neural Network

Back-propagation

Neural Network

Postprocessing

Data

Prediction

Pessimistic

Positively

Biased

Negatively

Biased

Data

Figure 6: System A Structure.biased predictions from each local estimator and combines them into a single prediction, which isused to make a trade recommendation. The postprocessor neural network has two input units, twohidden units, and one output unit and uses the back-propagation learning algorithm. The systemtrade recommendation depends on the output of the combiner neural networks. If the output isnegative, the trade recommendation is to establish a short market position. If it is positive therecommendation is to establish a long market position. A long position means purchasing an assetfor later resale, while a short position means selling a borrowed asset now and purchasing it later.3.2. Learning Component StructureOur previous trading system (System A having a structure as shown in Figure 6) employed neuralnetworks using the back-propagation algorithm for both local estimators [3, 4]. Experiments wereconducted over a short time period to determine the number of hidden units for each local estimator,which was then �xed throughout the global trading experiments over a much longer time period.A perceived problem with this system architecture was that the number of modeling parameterswas determined at the beginning of the trading process by �xing the number of neural network

Component

Preprocessing

Component

Optimistic

Prediction

Postprocessing

Data

Cascade-Correlation

Neural Network

Cascade-Correlation

Neural Network

Prediction

Pessimistic

Positively

Biased

Negatively

Biased

Data

Figure 7: System B Structure.hidden units. It would make more sense to allow these parameters to
uctuate according to thecomplexity of the problem. The objective of this study is to explore whether it is possible tofurther improve the results by using neural networks that employ the cascade-correlation learningalgorithm. In particular, this study explores whether an architecture such as System B, shownin Figure 7, using cascade-correlation local estimators will further improve the trading results byreducing the correlation between estimators. As described in Section 2, the number of parametersin a network using the cascade-correlation learning algorithm is not �xed, but can grow to meetthe demands of the current problem. This gives cascade-correlation based networks an advantageover the back-propagation based networks, which have a �xed number of parameters. It is alsopossible that a mixed con�guration (for instance, a back-propagation network for the optimisticestimator and a cascade-correlation network for the pessimistic estimator) could improve resultsby further reducing the correlation between the biased local estimators. Figures 8 and 9 show themixed structure systems C and D tested in this study.

Component

Preprocessing

Component

Optimistic

Prediction

Back-propagation

Neural Network

Postprocessing

Data

Cascade-Correlation

Neural Network

Prediction

Pessimistic

Positively

Biased

Negatively

Biased

Data

Figure 8: System C Structure.
Component

Preprocessing

Component

Back-propagation

Neural Network

Optimistic

Prediction

Postprocessing

Data

Cascade-Correlation

Neural Network

Prediction

Pessimistic

Positively

Biased

Negatively

Biased

Data

Figure 9: System D Structure.

3.3. System Performance MeasuresThe primary performance measure for a trading system is its annual rate of return (ARR). Assuch, the system's compounded annual rate of return is computed asARR = 100 � KT (TYt=1(1 + strt)� 1); (6)where T is the total number of experimental trading days, K is the number of trading days peryear (K = 253 days for this study), rt is the actual return for day t, and st is the trading signal forday t. The trading signal has two possible values: st = 1 means the trading system recommends along position, while st = �1, means the trading system recommends a short position.It is also important, when measuring the performance of a trading system, to consider commis-sions. These are costs incurred when a trade is actually executed. A trade occurs whenever stchanges its value. For this study, the ARR is computed for transaction costs equal to 0%, 0.01%,and 0.05% per trade.An additional measure reported in this study is the overall market direction correctness (MDC)of the system, computed as MDC = 100 � CT ; (7)where C is the number of trading days in which the system correctly predicted the market direction.4. Results and AnalysisThe data used for making S&P 500 trade recommendations is an ordered, daily, �nancial mul-tivariate times series from January 2, 1982 to December 31, 1993. The initial training set containsthe data through December 31, 1988, whereas daily trade recommendations are made on data fromJanuary 3, 1989 to December 31, 1993. Each recommendation is obtained by training the systemusing the most recent �ve years of data. The measurements used for each experiment are the

Parameter ValueTraining Window Size 2000Activation Function Hyperbolic TangentNetwork Topology 6-3-1Learning Rate 0.05Number of Epochs 5000Table 2: Con�guration Parameters for Back-Propagation Based Local Experts.Parameter ValueTraining Window Size 2000Activation Function Hyperbolic TangentInput Units 6Learning Rate{Output Unit 0.01Learning Rate{Hidden Unit 0.05Training Set MDC at most 55%Training Examples per Parameter at least 4Number of Epochs per Neuron 500Table 3: Con�guration Parameters for Cascade-Correlation Based Local Experts.compound annual rate of return assuming no commission, a 0.01% commission, and a 0.05% com-mission. The total number of trades and the overall market direction correctness are also reported.The results are compared to those achieved for the same period using the buy and hold strategy, asingle back-propagation neural network, and a single cascade-correlation network.The con�guration parameters for back-propagation based local estimators is shown in Table2. The network topology gives the explicit network con�guration, with 6-3-1 corresponding to anetwork with six input units, a single hidden layer with three units and a single output unit. Theinitial training window contains 2000 examples, but it is important to note that this training set ispartitioned into three disjoint sets as described in Section 3. On average, this partitioning resultedin 1000 examples being discarded, about 450 examples in the negatively biased training set and 550examples in the positively biased set. The stopping criterion employed for these back-propagationnetworks was 5000 epochs.The cascade-correlation based local estimators used the con�guration parameters shown in Table3. Two learning rates were used because the optimization problem of training the connections to

Parameter ValueTraining Window Size 2000Activation Function Hyperbolic TangentNetwork Topology 2-2-1Learning Rate 0.01Number of Epochs 1000Table 4: Con�guration Parameters for Combiner Neural Network.the output unit (minimizing the sum of squared errors) is di�erent than the optimization problemof training the connections to a hidden unit (maximizing the correlation between the hidden unit'soutput and the network error). The overall market direction correctness on the training set (55%)was used as a stopping criterion. After a new hidden unit is added, the MDC for the training setis computed and if it is greater than the predetermined maximum, the learning process is halted inorder to avoid over�tting the data. Another stopping criterion was the minimumnumber of trainingexamples per parameter (set to 4 in this study), which places an upper bound on the number ofhidden units that may be added to the network. Before a hidden unit is added to the network, thetotal number of network parameters (weights) is computed and the ratio of the number of trainingexamples to the number of network parameters is determined. If this ratio is smaller than thepredetermined minimum, the training process is halted. Each time the connections to either theoutput unit or to a hidden unit are trained, the training lasts for a prespeci�ed number of epochs(500 epochs in our experiments).The con�guration parameters for the combiner neural network, which used the back-propagationlearning algorithm in all our experiments, is shown in Table 4. It can be observed that the smallercombiner neural network is trained using much more data than is available to the correspondinglarger local estimators. Consequently, to improve system e�ciency the number of epochs for thecombiner neural network was reduced to 1000.The experimental results are shown in Table 5. The �rst column in Table 5 assigns a letter toeach system architecture. The second column describes the estimator structure. The subcolumn

System Estimators ARR for various commissions (c) MDC TradesOptimistic Pessimistic c = 0:00% c = 0:01% c = 0:05%A Back-Prop Back-Prop 11.54% 10.31% 5.35% 50.20% 527B Cascade Cascade 0.13% -1.24% -6.76% 51.45% 697C Cascade Back-Prop -5.23% -6.41% -11.12% 49.33% 711D Back-Prop Cascade 20.49% 19.26% 14.37% 51.85% 485E Single Back-Prop Estimator -2.57% -3.07% -5.10% 48.15% 261F Single Cascade Estimator 20.01% 17.73% 8.63% 52.79% 933G Buy & Hold 13.36% 52.71% 2Table 5: Experimental Results.marked Optimistic shows the learning algorithm employed by the optimistically biased local esti-mator, whereas the subcolumn marked Pessimistic shows the learning algorithm employed by thepessimistically biased local estimator. Systems E and F are single global estimators trained usingback-propagation and cascade-correlation learning, respectively. For these two experiments, thetraining data was partitioned as discussed previously and the noise set was discarded. However,the positively biased and the negatively biased training sets were combined and used to train asingle neural network with the speci�ed learning algorithm. The prediction from this single networkwas used to determine the trade recommendation. The �nal system (System G) is the simple buyand hold strategy, which means that the index (S&P 500 in this study) is bought at the beginningof the period and sold at the end (�ve years later). Another perspective to the annualized rate ofreturn for di�erent commissions is shown in Figure 10. The horizontal line in Figure 10 marks thereturn achieved using the buy and hold strategy.The best results from the perspective of the ARRmetric were achieved by systemD, outperform-ing the buy and hold strategy under all three commission assumptions. However, it is important toobserve that the other mixed con�guration (system C) had the lowest ARR. It is also interestingto note that system F achieved an ARR almost as high as system D under the zero percent com-missions assumption, and it was the only system with a percentage correct score higher than thebuy and hold strategy score. However, the results of system F were greatly reduced under more

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

-15

-10

-5

0

5

10

15

20

25

c=0.00% c=0.01% c=0.05%

Commission (c)

A
n

n
u

a
l
R

a
te

 o
f

R
e
tu

rn

AAAA
AAAA
AAAA

System A

AAAA
AAAA
AAAA

System B

AAAA
AAAA
AAAA

System C

System D

AAAA
AAAASystem E

System FFigure 10: System Returns Versus Commission.realistic assumption of paying a commission per trade since the system required a large number oftrades.Also, observe that the cascade-correlation based global estimator F outperformed the back-propagation based global estimator E. Additionally, a back-propagation based model performedbetter when used as the optimistic local estimator, while a cascade-correlation based model per-formed better as the pessimistic local estimator. This may be due to our problem partitioningcreating subproblems of di�erent complexity. While the subproblems are similar in size, theirunderlying probability distribution may be quite di�erent, with the optimistically biased subprob-lem being signi�cantly easier. If so, a cascade-correlation based model that performs well on onesubproblem may not perform well on the other without �rst modifying the stopping criteria. Itappears the the cascade-correlation stopping criteria used in this study results in a larger network(on average eight hidden units resulting in 90 weighted connections) that works well when used asthe pessimistic local estimator, but shows over�t problems as the optimistic local estimator. Incontrast, the prespeci�ed architecture for the back-propagation based model was a network with21 weighted connections, which seems to be more appropriate when used as the optimistic localestimator.

5. ConclusionThis study explored several trading systems, each of which partitions the prediction problem intotwo subproblems, models each subproblem separately using biased local estimators, and combinesthe estimates into a �nal prediction. Systems which produced an annual rate of return largerthan the buy and hold strategy did not have larger overall market direction correctness scores.The system with ARRs larger than the buy and hold strategy obtained a better performance bycorrectly predicting the larger market movements. This suggests that the best strategy for tradingsystemsmight be to focus on correctly identify majormarket movements instead of trying to achievea greater overall market direction correctness than that achieved by the buy and hold strategy.The results indicate that experimentation is very important in determining the appropriatestructure of a trading system based on biased estimators. In this study, a cascade-correlation basedmodel performed better than a back-propagation based model when used as a pessimistic localestimator, but a back-propagation model was more appropriate as an optimistic local estimator.The best results were achieved using a mixture of learning algorithms (back-propagation for theoptimistic and cascade-correlation for the pessimistic local estimator).The main point of this paper is not that one algorithm is better than the other. With moreexhaustive experimentation one should be able to discover more appropriate stopping criteria for thecascade-correlation based optimistic local estimator and a more a appropriate architecture for theback-propagation based pessimistic estimator. However, when modeling large complex problems,�nding the optimal parameters is generally not computationally feasible. Therefore it is of practicalinterest to identify a reasonably good model through limited experimentation on several systemswith prespeci�ed learning parameters, as proposed in this study.It is likely that the results of the systems employing biased local estimators can be improvedfurther by modifying the manner in which the estimates are combined. The combiner neuralnetwork takes the two local estimates as inputs and learns how much weight to assign to each

when determining the �nal prediction. Our research in progress focuses on providing the combinernetwork with context information in the form of additional inputs that could potentially improvethe system's �nal prediction.AcknowledgmentsWe would like to thank Radu Drossu and Pedro Romero for their constructive comments on thepreliminary version of this manuscript.References[1] Black F. and Scholes M., \The Pricing of Options and Corporate Liabilities," Journal ofPolitical Economy, Vol. 81, May-June, 1973.[2] Breiman L., \The Heuristics of Instability in Model Selection," Technical Report No. 416,Statistics Department, University of California, Berkeley.[3] Chenoweth T., Obradovic Z., and Lee S., \Embedding Technical Analysis into Neural NetworksBased Trading Systems," Applied Arti�cial Intelligence Journal, in press.[4] Chenoweth T. and Obradovic Z., \A Multi-Component Nonlinear Prediction System for theS&P 500 Index," Neurocomputing Journal, in press.[5] Chenoweth T. and Obradovic Z., \An Explicit Feature Selection Strategy for Predictive Modelsof the S&P 500 Index," Neurove$t Journal, Vol 3, No. 6, November 1995, pp. 14-21.[6] Cybenko G., \Approximation by Superpositions of a Sigmoidal Function," Mathematics ofControl, Signals, and Systems, 2 (1989) pp. 303-314.[7] Fahlman S. and Lebiere C., \The Cascade-Correlation Learning Architecture," Advances inNeural Information Processing Systems 2, pp. 524-532, 1990, San Mateo CA.

[8] Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College PublishingCompany, Inc., 1994.[9] Hutchinson J., Lo A., Poggio T., \A Nonparametric Approach to Pricing and Hedging Deriva-tive Securities Via Learning Networks," Technical Report, A.I. Memo No. 1471, C.B.C.L.Paper No. 92, Massachusetts Institute of Technology, April 1994.[10] Mahfoud S. and Mani G., \Genetic Algorithms for Predicting Individual Stock Performance,"Proc. Third Int. Conf. on Arti�cial Intelligence Applications on Wall Street, New York, NY,1995, pp. 174-181.[11] Weigend A. and Mangeas M., \Avoiding Over�tting by Locally Matching the Noise Level ofthe Data," Proc. Third Int. Conf. on Arti�cial Intelligence Applications on Wall Street, NewYork, NY,1995, Addendum.[12] Weiss S. and Kulikowski C., \Computer Systems That Learn," Morgan Kaufmann, 1991.[13] Werbos P., \Beyond Regression: New Tools for Predicting and Analysis in the BehavioralSciences," Harvard University, Ph.D. thesis, 1974. Reprinted by Willey & Sons, 1995.[14] White H., \Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Re-turns," Proc. IEEE Int. Conf. on Neural Networks, Vol. 2, 1988, pp. 451-458.

