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1. IntroductionA neural network is a highly parallel nonlinear system consisting of a number ofcomputing units called neurons. The interconnection pattern among neurons is adirected weighted graph. A neural network is called circuit if the interconnectiongraph is acyclic and the neurons are organized in layers with connections only amongneurons in adjacent layers, all starting in a layer that is closer to the input layer andending in the layer that is closer to the output layer.In the �rst order neural network models, a neuron with n incoming connectionsweighted as w1; : : : ; wn computes a function of the form f(w1; : : : ; wn) : Rn ! S,where S � R, wi 2 R for 1 � i � n, andf(w1; : : : ; wn)(x1; : : : ; xn) = g( nXi=1 wixi)for some transfer function g : R! S.The neural network literature considers mostly neurons with monotone transferfunctions. In the binary model, each neuron has a two-valued range S = f0; 1g. Ifa neuron's threshold is t, then its transfer function g is a linear threshold function,de�ned by g(x) = 1 i� x � t. The binary model is used in the classic perceptronlearning algorithm and its more recent extensions [2, 8]. It is one of the computa-tionally best understood neural network models as it is closely related to Booleanthreshold circuits theory [1]. However, with the development of the well-known back-propagation learning algorithm for analog neural networks [9], study of such analogmodels becomes an important research direction. Analog networks appear more useful2



in practice, although their computational abilities are still not su�ciently understood.In the analog model, S = [0; 1] and g is a continuous increasing function.For practical purposes, the restriction of limited precision on analog neural net-works appears to be a reasonable assumption (provided that the precision is not toosmall). It was shown earlier that if neuron transfer functions are monotone increasing,then an analog neural network of limited precision can be represented as a homoge-neous k-ary neural network [4]. In such homogeneous k-ary networks, neurons com-pute functions of the form f(w1; : : : ; wn) : Znk ! Zk, (where Zk = f0; 1; : : : ; k � 1g)with wi 2 Z for 1 � i � n, andf(w1; : : : ; wn)(x1; : : : ; xn) = g( nXi=1 wixi)for g(t1; t2; : : : ; tk�1) : R ! Zk being de�ned as g(x) = i i� ti � x < ti+1; wherethresholds ti 2 R are monotone increasing and t0 = �1, tk = +1. Clearly, byanalyzing homogeneous k-ary neural networks, we are actually reasoning about cer-tain aspects of behavior of monotone increasing analog neural networks of precisionlimited to log2 k bits [4, 5, 6].In the homogeneous k-ary neural network model each neuron can have its ownset of thresholds. This paper considers an extension to a heterogeneous k-ary neuralnetwork model where, in addition, each neuron can have its own set of k monotoneincreasing output values. Formally, in a heterogeneous k-ary neural network eachneuron computes a function f(w1; : : : ; wn) : Rn ! Zk for wi 2 R, 1 � i � n, wheref(w1; : : : ; wn)(x1; : : : ; xn) = g(t1; : : : ; tk�1; c0; : : : ; ck�1)( nXi=1 wixi)3



and, for some monotone increasing ti 2 R, 1 � i < k, and some monotone nonde-creasing ci 2 R, 0 � i < k � 1, each neuron's transfer function g is a generalizedmultilinear threshold function g(t1; : : : ; tk�1; c0; : : : ; ck�1) : R! R de�ned byg(x) = 8><>: c0 if x < t1ci if ti � x < ti+1 for 1 � i � k � 2ck�1 if x � tk�1:Although most of the neural network studies consider only monotone nondecreas-ing node transfer functions, the reasons for using them are not very well founded. Infact, it is known that some nonmonotone neural networks are quite promising both ascomputational and learning systems. For example, in the domain of control theory,good practical results are obtained using a nonmonotone neural network model calledradial basis functions [3]. In this simple nonmonotone model each neuron's transferfunction g(x) consists of two monotone regions. The function g(x) is monotone in-creasing for x < c and is monotone decreasing for x > c, where c is a predeterminedconstant.A very powerful nonmonotone binary model, called alternating multilinear neuralnetwork, is studied by Olafsson and Abu-Mostafa [7]. In this model neurons computealternating weighted multilinear threshold functions, f(w1; : : : ; wn) : Rn ! f0; 1g forwi 2 R, 1 � i � n, wheref(w1; : : : ; wn)(x1; : : : ; xn) = g( nXi=1 wixi)and, for some monotone increasing ti 2 R, 1 � i < k, and t0 = �1, tk = +1, each4



neuron's transfer function g is an alternating threshold function g(t1; t2; : : : ; tk�1) :R! f0; 1g de�ned byg(x) = ( 0 if t2i < x < t2i+1 for some 0 � i < k=21 otherwise.This paper extends homogeneous and heterogeneous k-ary as well as alternatingmultilinear neural networks to more general nonmonotone k-ary neural networks.Their neurons compute functions of the form f(w1; : : : ; wn) : Rn ! Zk for wi 2 R,1 � i � n, wheref(w1; : : : ; wn)(x1; : : : ; xn) = g(t1; : : : ; tk�1; c0; : : : ; ck�1)( nXi=1 wixi)and, for some monotone increasing ti 2 R, 1 � i < k, and some c0; : : : ; ck�1 2 Zk,each neuron's transfer function g is a nonmonotone multilinear threshold functiong(t1; : : : ; tk�1; c0; : : : ; ck�1) : R! R de�ned byg(x) = 8><>: c0 if x < t1ci if ti � x < ti+1 for 1 � i � k � 2ck�1 if x � tk�1:Nonmonotone k-ary neural networks correspond to limited precision analog neuralnetworks whose transfer function is not necessarily monotone nondecreasing. In thispaper we considered the computational and learning ability of such nonmonotonek-ary neural networks, comparing them to previously studied monotone k-ary and tononmonotone binary models.The paper is divided into four sections. In Section 2 the relationship betweenthe nonmonotone networks and the homogeneous k-ary networks, as well as the re-lationship between the nonmonotone networks and the alternating neural networks,5



is given. In Section 3 a resource trade-o� involving depth, size and weights amongvarious multivalued neural network models is explored.2. Relationship Between ModelsThis section considers the resources of running time, size, depth and weight of mono-tone k-ary and alternating multilinear neural networks needed to simulate given non-monotone k-ary neural networks. A neural network M2 is f(t)-equivalent to networkM1 i� for all inputs x, for every computation of M1 on input x which terminates intime t there is a computation of M2 on input x which terminates in time f(t) withthe same output. If f(t) is the identity function, we simply say that M2 is equivalentto M1. The depth of a neural network is measured as the number of layers, and thesize as the number of neurons in a network. The input neurons are not counted ineither the depth or the size. The weight of a neural network is the sum of the absolutevalues of all the weights in the network's interconnection graph.It is known that the alternating multilinear neural network model is closely relatedto the homogeneous k-ary model:Theorem 1 For every homogeneous k-ary neural network of size z and weight wthere is an equivalent alternating multilinear neural network of size z log2 k and weight(k�1)w log2 (k � 1) which produces the output of the former in binary representation.Also, for every alternating multilinear neural network of size z and weight w, thereis a 3t-equivalent homogeneous k-ary neural network of size 4z and weight w + 4z.6



Proof: See Obradovi�c and Parberry [4]. 2However, to simulate a nonmonotone k-ary neural network of size z, clearly atleast kz homogeneous k-ary or alternating neurons are needed. The following theoremshows that this lower bound is tight and can be achieved by a binary network whichis a special case of the homogeneous k-ary and also of the alternating multilinearmodel.Theorem 2 For every nonmonotone k-ary neural network of size z and weight wthere is an equivalent binary neural network of size kz and weight O(ckw). Here,c = maxv2V maxi2Zk jcvi j, where cvi is the ith output value of a nonmonotone neuron v andV is the set of all neurons in the network.Proof: A nonmonotone k-ary neuron v with output values cv0; : : : ; cvk�1 and thresholdstv1; : : : ; tvk�1 is replaced by a single layer circuit F v consisting of k binary neuronsv0; v1; : : : ; vk�1. A binary neuron vi, 0 � i � k�1, has threshold tvi , where tv0 is de�nedas tv0 =1. The incoming connections of a binary neuron vi and corresponding weightsare identical to incoming connections and weights of a nonmonotone neuron v. If wvuis a connection weight from neuron v to neuron u in a nonmonotone k-ary circuit,then in the corresponding binary circuit the weight from neuron vi, 0 � i � k� 1, toneuron u is set to (cvi � cvi�1)wvu, where cv�1 is de�ned to be zero. For a nonmonotonek-ary neuron with thresholds tv1; : : : ; tvk�1 shown in Figure 1 (a), the correspondingequivalent binary circuit F v is constructed as shown in Figure 1 (b).7
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Figure 1: A Nonmonotone Neuron (a) vs. Corresponding Binary Network (b)
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Let us assume that the weighted input sum y for a nonmonotone k-ary neuron vsatis�es tj � y < tj+1. Then the weighted input from neuron v to neuron u is wvucvj .By construction of the binary subcircuit F v, it is clear that the weighted input fromthe binary subcircuit F v to each gate in the binary subcircuit F u corresponding tothe nonmonotone k-ary neuron u iswvu jXi=0 (cvi � cvi�1)which also sums to wvucvj proving the equivalence claim from the theorem.The key to the weight bound is the observation thatk�1Xi=0 jwvu(cvi � cvi�1)j � 2ckjwvuj:2 In a multicase neural network each neuron computes a function of the formf(w1; : : : ; wn) : Rn ! Zk for wi 2 R, 1 � i � n, wheref(w1; : : : ; wn)(x1; : : : ; xn) = g(t1; : : : ; tk�1; c0; : : : ; ck�1)( nXi=1 wixi)and, for some monotone increasing thresholds ti 2 R, 1 � i < k, and some outputvalues c1; : : : ; ck�1 2 Zk, the neuron's transfer function g(t1; : : : ; tk�1; c0; : : : ; ck�1) :R! R is de�ned by g(x) = ( ci if x = ti for 1 � i � k � 10 otherwise.A multicase neural network is called a homogeneous k-case neural network if eachof its multicase neurons can have up to k � 1 thresholds with the output values9



ci = i, 1 � i � k � 1. Homogeneous k-case neural networks are closely related tohomogeneous k-ary neural networks as shown by the following theorem.Theorem 3 For every homogeneous k-case neural network of size z and weight wthere is a 3t-equivalent homogeneous k-ary neural network of size 5z and weight O(w+kz).Proof: A k-case neuron v with thresholds t1; : : : ; tk�1 and outputs cvi = i, 1 � i �k�1, is replaced by a k-ary circuit F v of depth 3 and size 5. The �rst layer of F v hastwo homogeneous k-ary neurons v0 and v00, the �rst with thresholds t1; : : : ; tk�1, andthe second with thresholds �tk�1; : : : ;�t1. The weighted inputs to v0 are same as forv in the original circuit. The weights of the inputs to v00 are negated. That meansthat if in the original circuit the weight from input xi to neuron v is yi, then in F v theweight from input xi to neuron v00 is �yi. The second layer has two neurons u0 and u00.Here, u0 is a homogeneous k-ary neuron with thresholds 1; 2; : : : ; k � 1 and with unitweight connection from neuron v0. Neuron u00 has inputs from v0 and v00, both withweight �1. It checks whether its weighted input sum x is x � �k + 1. The outputlayer of F v has a single homogeneous k-ary neuron with thresholds 1; 2; : : : ; k � 1.Its �rst input with weight 1 is from u0, and the second input with weight �k is fromu00. It is easy to see that such a homogeneous k-ary circuit satis�es the claim of thetheorem. 2The following corollary gives a general relation between multicase neural networks10



and nonmonotone neural networks.Corollary 4 For every k-case neural network of size z and weight w there is an3t-equivalent nonmonotone k-ary neural network of size 5z and weight O(w + kz).Proof: A k-case neuron v with thresholds t1; : : : ; tk�1 and outputs cv1; : : : ; cvk�1 isreplaced by a nonmonotone k-ary circuit F v of depth 3 and size 5. The only di�erencebetween F v from this corollary and Theorem 3 is the output values of a neuron inthe third layer are 0; cv1; : : : ; cvk�1 instead of previous outputs 0; 1; : : : ; k � 1. 23. Resource Trade-o�sSome upper-bound results for the depth, size and weight of homogeneous k-ary neuralnetworks with all weights drawn from f�1g are explored in [4]. Here we demonstratethat the improvements of these upper bounds are possible using heterogeneous k-aryand nonmonotone k-ary neural networks.Let x = x1 : : : xn and y = y1 : : : yn, where xi; yi 2 Zk for 1 � i � n, be two naturalk-ary numbers of size n. In order to compute sum z = x + y, where z = z1 : : : zn+1,let us �rst consider the problem of computing the carry c1 : : : cn+1 of x and y. Here,ci is de�ned to be 1 if there is a carry into the ith position of the result, that is, intozi. 11



Theorem 5 The carry of two natural k-ary numbers of size n can be computed bya homogeneous k-ary neural circuit with size O(n2), depth 3 and all weights drawnfrom f�1g.Proof: See Obradovi�c and Parberry [4]. 2However, the carry can be computed even in a single layer using linear number ofneurons if unit weights are not our primary concern.Theorem 6 The carry of two natural k-ary numbers of size n can be computed by ahomogeneous k-ary neural circuit of size n and depth 1.Proof: Carry ci into the ith position of x + y is 1 if the sum of two k-ary numbersx(i) = xi : : : xn and y(i) = yi : : : yn is at least kn�i. Obviously, cn+1 is always zero.Each ci, for 1 � i � n, can be computed by a single k-ary neuron vi with 2(n� i+1)inputs from xj and yj for i � j � n. The neuron vi has its �rst threshold set tokn�i and all other thresholds set to very large values that are never exceeded by theweighted input sum. Finally, the weights wji from inputs xj and yj to the neuron viare set to kn�j for i � j � n. 2The consequence of the Theorem 6 is a smaller depth and a small size neuralcircuit for computing the sum of two k-ary numbers.Corollary 7 The sum of two k-ary integers of size n can be computed by a homo-geneous k-ary neural circuit of depth 5 and size O(n2) with all weights drawn from12



f�1g. If the weights are not restricted to unit values, the complexity of a homogeneousk-ary neural circuit to compute this sum can be reduced to depth 3 and size 3n+ 2.Proof: For a unit weight solution, �rst compute the carry of x and y in quadraticsize and depth 3 using Theorem 5. Then each zi can be computed from xi�1, yi�1,and ci in constant size and depth 2. A reduced circuit is obtained by using Theorem6 instead of Theorem 5. 2However, the complexity of the neural circuit can be further reduced by usingnonmonotone (2k � 1)-ary neurons.Corollary 8 The sum of two k-ary integers of size n can be computed by a nonmono-tone (2k � 1)-ary neural circuit of size n+ 1 and depth 1.Proof: Each zi can be computed from xi�1, : : : , xn and yi�1; : : : ; yn using a single(2k�1)-ary nonmonotone neuron vi whose weights wj;i, i < j � n from inputs xj andyj are set to kn�j . The 2k � 1 thresholds of neuron vi are ti1 = kn+1�i, ti2 = 2kn+1�i,ti3 = 3kn+1�i, : : : , ti2k�1 = (2k� 1)kn+1�i and the output values cil, 0 � l � 2k� 1 arede�ned as cl = ( l if l < k,l � k otherwise.2 Consider now a trade-o� between the complexity of neurons and the size and depthof neural networks on a problem of computing an arbitrary k-ary symmetric function13



of n inputs by neural networks. There has been much interest in this problem as itis believed that natural neural networks are very e�cient in computing symmetricfunctions, while computing those functions on standard parallel processing systemsis computationally expensive. Formally, a function f : Znk ! Zk is called symmetricif its output remains the same no matter how the input is permuted. That is, for allone-to-one and onto � : f1; : : : ; ng ! f1; : : : ; ng, and all x1; : : : ; xn 2 Zk,f(x1; : : : ; xn) = f(x�(1); : : : ; x�(n)):Theorem 9 Any k-ary symmetric function on n inputs can be computed by a homo-geneous k-ary neural circuit of depth 6 and size(n+ 1)k�1(k � 2)! + 6kn+ 3k + 1with all weights drawn from f�1g.Proof: See Obradovi�c and Parberry [4]. 2If unit weights are not a primary concern, the same symmetric function can becomputed with a smaller size and depth.Theorem 10 Any k-ary symmetric function on n inputs can be computed by a ho-mogeneous k-ary neural circuit of depth 5, weight O(n2k) and size(n+ 1)k�1(k � 1)! + 3kn+ 1:14



Proof: Let S = f(y0; : : : ; yk�1) 2 Nkj k�1Xi=0 yi = ng:and S0 = fk�1Xj=0 nyj : (y0; : : : ; yk�1) 2 Sg:The function f : Znk ! Zk is symmetric, and so for each input x = (x1; : : : ; xn) 2 Znkfor which nXi=1 nxi = sfollows f(x) = fswhere fs 2 Zk is a constant.The unit weight neural circuit of Theorem 9 computes the number of 0's, 1's,...,(k�1)'s in the input and its output is based on the outcome of those k tests. Instead,here the neural circuit is reduced by computingnXi=1 nxi = sand checking if this sum is an elements of set S 0 = fs1; : : : ; smg. If the sum s is equalto si 2 S 0, the output is fsi . Consequently, the �rst layer of the circuit consists of nksubcircuit T ij , 1 � i � n and 0 � j � k � 1, of depth 2 and size 3, where T ij testswhether xi = j. The next layer consists of m subcircuit Sh, 1 � h � m, of depth 2and size 3, where Sh tests whether its weighted input sum is equal to sh 2 S 0. here,each Sh has inputs from all subcircuits T ij (1 � i � n and 0 � j � k � 1), while The15



weight from T ij to Sh is set to nj . Finally, the weight from Sh, 1 � h � m, to a singlehomogeneous k-ary neuron in the output layer with thresholds 1; 2; : : : ; k � 1, is setto fsh. 2A symmetric function can be computed even in a smaller depth and size using aneural circuit with heterogeneous k-ary neurons.Corollary 11 Any k-ary symmetric function on n inputs can be computed by a het-erogeneous k-ary neural circuit of depth 4, with unit weights and size(n + 1)k�1(k � 1)! + n + 1:Proof: The �rst layer of the circuit has n heterogeneous k-ary neurons v1; : : : ; vn.Neuron vi with thresholds 1; 2; : : : ; k� 1 and output values c0 = 0, and ci = ni�1, for1 � i � k � 1 has a unit weight on the input connection from xi. Subcircuits Sh,1 � h � m, of depth 2 and size 3 are de�ned similarly as in Theorem 10. The onlydi�erences are that the output neuron of Sh is a heterogeneous k-ary neuron withoutput values 0 and fsh, and the weight from Sh to the output neuron is 1. It is easyto see that this heterogeneous k-ary neural circuit is equivalent to the homogeneousk-ary neural circuit from Theorem 10. 2Drastic decrease in depth and size is possible if neuron transfer functions arefurther modi�ed to multicase functions as follows.16



Corollary 12 Any k-ary symmetric function on n inputs can be computed by a mul-ticase neural circuit of depth 2, with unit weights and size n + 1.Proof: The �rst layer of the circuit has n multicase neurons v1; : : : ; vn. Neuron vihas thresholds 1; 2; : : : ; k � 1, output values c0 = 0, ci = ni�1, for 1 � i � k � 1and a unit weighted input from xi. The outputs of all vi, 1 � i � k are connectedwith unit-weight edges to a single multicase neuron in the second layer. Thresholdsof that multicase neuron are s1; s2; : : : ; sm, where S 0 = fs1; s2; : : : ; smg is de�ned asin Theorem 10. The output values of the output neuron are fsi (0 � i � m). 24. ConclusionsIn this paper the computational abilities of several multivalued neural network modelsare explored. Study of these models has practical interest as they are closely relatedto limited precision analog neural networks with nonmonotone transfer functions.The f(t)-equivalence relation between di�erent models has been shown. However,a tradeo� involving resources of depth, size, weight and the complexity of neurontransfer functions, demonstrated on the example of computing symmetric functionsand of summing two natural numbers, indicates that signi�cant savings are possi-ble through selection of an appropriate nonmonotone multivalued model. Furtherresearch is needed to develop a general theory for identifying the optimal trade-o�between complexity of neurons versus size and depth of a neural network designed17
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