Computing with Nonmonotone Multivalued

Neurons

Zoran Obradovié !

School of Electrical Engineering and Computer Science

Washington State University, Pullman WA 99164-2752, USA

Abstract

Although most of the neural network studies use analog neurons with con-
tinuous monotone increasing transfer functions, the reasons for using them are
not very well founded. The objective of this paper is to study computational
ability of more general neural networks whose transfer functions are not nec-
essarily monotone. A nonmonotone multivalued neural network is proposed as
a model for reasoning about certain aspects of the behavior of limited preci-
sion analog neural networks with arbitrary continuous transfer functions. The
nonmonotone multivalued model is compared to previously studied monotone
multivalued and to nonmonotone binary neural networks and it is shown that
the models are essentially equivalent. However, the savings in time and hard-
ware arising from using a nonmonotone network rather than monotone can
be quite significant as demonstrated on the example of computing symmetric

functions and of summing two natural numbers.

L Also associated with the Mathematical Institute, Serbian Academy of Sciences and Arts, Bel-
grade, Yugoslavia. Internet address zoran@eecs.wsu.edu. Partially supported by the NSF research
grant NSF-IRI-9308523.

1. Introduction

A neural network is a highly parallel nonlinear system consisting of a number of
computing units called neurons. The interconnection pattern among neurons is a
directed weighted graph. A neural network is called circust if the interconnection
graph is acyclic and the neurons are organized in layers with connections only among
neurons in adjacent layers, all starting in a layer that is closer to the input layer and
ending in the layer that is closer to the output layer.

In the first order neural network models, a neuron with n incoming connections
weighted as wy,...,w, computes a function of the form f(wi,...,w,) : R* — S,

where S C R, w; € R for 1 <1 <mn, and

flwy, ..., wn)(@1, ..., 2n) = g(Z:wzmz)

for some transfer function g : R — S.

The neural network literature considers mostly neurons with monotone transfer
functions. In the binary model, each neuron has a two-valued range S = {0,1}. If
a neuron’s threshold is ¢, then its transfer function g is a linear threshold function,
defined by g(z) =1 iff z > t. The binary model is used in the classic perceptron
learning algorithm and its more recent extensions [2, 8]. It is one of the computa-
tionally best understood neural network models as it is closely related to Boolean
threshold circuits theory [1]. However, with the development of the well-known back-
propagation learning algorithm for analog neural networks [9], study of such analog

models becomes an important research direction. Analog networks appear more useful

in practice, although their computational abilities are still not sufficiently understood.
In the analog model, S = [0, 1] and g is a continuous increasing function.

For practical purposes, the restriction of limited precision on analog neural net-
works appears to be a reasonable assumption (provided that the precision is not too
small). It was shown earlier that if neuron transfer functions are monotone increasing,
then an analog neural network of limited precision can be represented as a homoge-
neous k-ary neural network [4]. In such homogeneous k-ary networks, neurons com-
pute functions of the form f(wy,...,w,) : Z} — Zj, (where Z = {0,1,...,k —1})

with w; € Z for 1 <1 <mn, and

flwy, ..., wn)(@1, ..., 2n) = g(é W;T;)
for g(t1,t2,...,tk—1) : R — Zj being defined as g(z) = ¢ iff ¢; < z < t;41, where
thresholds ¢; € R are monotone increasing and t, = —o0, tx = 4o0. Clearly, by
analyzing homogeneous k-ary neural networks, we are actually reasoning about cer-
tain aspects of behavior of monotone increasing analog neural networks of precision
limited to log, k bits [4, 5, 6].

In the homogeneous k-ary neural network model each neuron can have its own
set of thresholds. This paper considers an extension to a heterogeneous k-ary neural
network model where, in addition, each neuron can have its own set of & monotone
increasing output values. Formally, in a heterogeneous k-ary neural network each

neuron computes a function f(wi,...,w,): R® — Z; for w; € R, 1 <1 < n, where

flwy, ..., wn)(21, ..., 20) = g(t1, ..., te-1, Co, - - .,ck_l)(Zwimi)
=1

and, for some monotone increasing t; € R, 1 < 17 < k, and some monotone nonde-
creasing ¢; € R, 0 < 7 < k — 1, each neuron’s transfer function g is a generalized

multilinear threshold function g(t1,...,tk—1,¢0,...,ck—1) : R — R defined by

Co iz < tl
9(z) =1 « if t,<z<tyifor 1<2<k—2
CL_1 if = Z tk—l-

Although most of the neural network studies consider only monotone nondecreas-
ing node transfer functions, the reasons for using them are not very well founded. In
fact, it is known that some nonmonotone neural networks are quite promising both as
computational and learning systems. For example, in the domain of control theory,
good practical results are obtained using a nonmonotone neural network model called
radial basis functions [3]. In this simple nonmonotone model each neuron’s transfer
function g(z) consists of two monotone regions. The function g(z) is monotone in-
creasing for z < ¢ and is monotone decreasing for z > ¢, where ¢ is a predetermined
constant.

A very powerful nonmonotone binary model, called alternating multilinear neural
network, is studied by Olafsson and Abu-Mostafa [7]. In this model neurons compute
alternating weighted multilinear threshold functions, f(wi,...,w,): R™ — {0,1} for

w; € R, 1 <12 <n, where

flwy, ..., wn)(@1, ..., 2n) = g(Z:wzmz)

and, for some monotone increasing ¢t; € R, 1 <12 < k, and ty = —o0, ty = +00, each

neuron’s transfer function g is an alternating threshold function g(t1,ta,...,tk—1) :

R — {0,1} defined by

(o) = 0 if t9 < T < tgi41 for some 0 <7< k/2
g |1 1 otherwise.

This paper extends homogeneous and heterogeneous k-ary as well as alternating
multilinear neural networks to more general nonmonotone k-ary neural networks.
Their neurons compute functions of the form f(wy,...,wn) : R* — Zj; for w; € R,
1 <2 <mn, where

n

flwy, ..., wn)(21, ..., 20) = g(t1, ..., te-1, Co, - - .,ck_l)(Zwimi)

=1
and, for some monotone increasing t; € R, 1 <1 < k, and some cg,...,cx_1 € Zg,
each neuron’s transfer function g is a nmonmonotone multilinear threshold function

g(t1, ..., tk—1,¢0y...,¢k—1) : R > R defined by

Co iz < tl
9(z) =1 « if t,<z<tyifor 1<2<k—2
CL_1 if = Z tk—l-

Nonmonotone k-ary neural networks correspond to limited precision analog neural
networks whose transfer function is not necessarily monotone nondecreasing. In this
paper we considered the computational and learning ability of such nonmonotone
k-ary neural networks, comparing them to previously studied monotone k-ary and to
nonmonotone binary models.

The paper is divided into four sections. In Section 2 the relationship between
the nonmonotone networks and the homogeneous k-ary networks, as well as the re-

lationship between the nonmonotone networks and the alternating neural networks,

is given. In Section 3 a resource trade-off involving depth, size and weights among

various multivalued neural network models is explored.

2. Relationship Between Models

This section considers the resources of running time, size, depth and weight of mono-
tone k-ary and alternating multilinear neural networks needed to simulate given non-
monotone k-ary neural networks. A neural network M, is f(t)-equivalent to network
M iff for all inputs z, for every computation of M; on input x which terminates in
time t there is a computation of M on input z which terminates in time f(¢) with
the same output. If f(¢) is the identity function, we simply say that M, is equivalent
to M;. The depth of a neural network is measured as the number of layers, and the
size as the number of neurons in a network. The input neurons are not counted in
either the depth or the size. The weight of a neural network is the sum of the absolute
values of all the weights in the network’s interconnection graph.

It is known that the alternating multilinear neural network model is closely related

to the homogeneous k-ary model:

Theorem 1 For every homogeneous k-ary neural network of size z and weight w
there is an equivalent alternating multilinear neural network of size zlog, k and weight
(k—1)wlog, (k — 1) which produces the output of the former in binary representation.
Also, for every alternating multilinear neural network of size z and weight w, there

15 a 3t-equivalent homogeneous k-ary neural network of size 4z and weight w + 4z.

Proof: See Obradovi¢ and Parberry [4]. O

However, to simulate a nonmonotone k-ary neural network of size z, clearly at
least kz homogeneous k-ary or alternating neurons are needed. The following theorem
shows that this lower bound is tight and can be achieved by a binary network which
is a special case of the homogeneous k-ary and also of the alternating multilinear

model.

Theorem 2 For every nonmonotone k-ary neural network of size z and weight w

there is an equivalent binary neural network of size kz and weight O(ckw). Here,

¢ = max max |c?|, where ¢ is the 1" output value of a nonmonotone neuron v and
vE = k

V' 1s the set of all neurons in the network.

Proof: A nonmonotone k-ary neuron v with output values cg, ..., ¢f_; and thresholds
t7,...,ti_; 1s replaced by a single layer circuit F* consisting of k£ binary neurons
v° vl ..., v*"1. A binary neuron v*, 0 <1 < k—1, has threshold ¢?, where t3 is defined
as t¥ = 0o. The incoming connections of a binary neuron v* and corresponding weights
are identical to incoming connections and weights of a nonmonotone neuron v. If w,,
i1s a connection weight from neuron v to neuron u in a nonmonotone k-ary circuit,
then in the corresponding binary circuit the weight from neuron v*, 0 <7 < k —1, to
neuron u is set to (¢ — ¢¥_;)Wy, where ¢”, is defined to be zero. For a nonmonotone

k-ary neuron with thresholds ty,...,¢;_; shown in Figure 1 (a), the corresponding

equivalent binary circuit F" is constructed as shown in Figure 1 (b).

(Cra- Cr)W

(b)

Figure 1: A Nonmonotone Neuron (a) vs. Corresponding Binary Network (b)

Let us assume that the weighted input sum y for a nonmonotone k-ary neuron v
satisfies t; <y < t;;11. Then the weighted input from neuron v to neuron u is W, €Y -
By construction of the binary subcircuit £, it is clear that the weighted input from
the binary subcircuit F¥ to each gate in the binary subcircuit F'* corresponding to

the nonmonotone k-ary neuron wu is

J
wou) (¢ = ¢/_q)
=0

which also sums to w,,c} proving the equivalence claim from the theorem.

The key to the weight bound is the observation that

k—1
> [weu(e} = ¢f_)| < 2¢kfwen.

=0

In a multicase neural network each neuron computes a function of the form

flwy,...,wn): R® = Zj for w; € R, 1 <1 <n, where

flwy, ..., wn)(21, ..., 20) = g(t1, ..., te-1, Co, - - .,ck_l)(Zwimi)
=1

and, for some monotone increasing thresholds ¢; € R, 1 <1 < k, and some output

values ci,...,ck—1 € Zg, the neuron’s transfer function g(¢1,...,tk-1,¢0y- .-, Ck—1) :

R — R is defined by

(o) = ¢ if z=t;for 1 <2<k—1
g 1 0 otherwise.

A multicase neural network is called a homogeneous k-case neural network if each

of its multicase neurons can have up to £ — 1 thresholds with the output values

¢ =1,1 <1< k—1. Homogeneous k-case neural networks are closely related to

homogeneous k-ary neural networks as shown by the following theorem.

Theorem 3 For every homogeneous k-case neural network of size z and weight w

there is a 3t-equivalent homogeneous k-ary neural network of size 5z and weight O(w+

kz).

Proof: A k-case neuron v with thresholds ¢4,...,tt_1 and outputs ¢ =1,1 <2 <
k —1, is replaced by a k-ary circuit F of depth 3 and size 5. The first layer of F'¥ has
two homogeneous k-ary neurons v’ and v”, the first with thresholds ¢, ...,%x_1, and
the second with thresholds —t;_1,...,—t;. The weighted inputs to v’ are same as for
v in the original circuit. The weights of the inputs to v" are negated. That means
that if in the original circuit the weight from input z; to neuron v is y;, then in £ the
weight from input z; to neuron v"” is —y,;. The second layer has two neurons v’ and u".
Here, v’ is a homogeneous k-ary neuron with thresholds 1,2,...,k — 1 and with unit
weight connection from neuron v’. Neuron u” has inputs from v’ and v”, both with
weight —1. It checks whether its weighted input sum z is ¢ > —k 4+ 1. The output
layer of F¥ has a single homogeneous k-ary neuron with thresholds 1,2,...,k — 1.
Its first input with weight 1 is from v/, and the second input with weight —k is from
u”. It is easy to see that such a homogeneous k-ary circuit satisfies the claim of the

theorem. O

The following corollary gives a general relation between multicase neural networks

10

and nonmonotone neural networks.

Corollary 4 For every k-case neural network of size z and weight w there is an

3t-equivalent nonmonotone k-ary neural network of size 5z and weight O(w + kz).

Proof: A k-case neuron v with thresholds ¢,...,%¢—1 and outputs ¢J,...,c{_; is
replaced by a nonmonotone k-ary circuit £V of depth 3 and size 5. The only difference
between F from this corollary and Theorem 3 is the output values of a neuron in

the third layer are 0,¢j, ..., c}_; instead of previous outputs 0,1,...,k—1. O

3. Resource Trade-offs

Some upper-bound results for the depth, size and weight of homogeneous k-ary neural
networks with all weights drawn from {+1} are explored in [4]. Here we demonstrate
that the improvements of these upper bounds are possible using heterogeneous k-ary
and nonmonotone k-ary neural networks.

Let z =21...2, and y = y1 ...Yn, where z;,y; € Zi for 1 <12 < n, be two natural
k-ary numbers of size n. In order to compute sum z = z + y, where z = 21... 2,11,
let us first consider the problem of computing the carry ¢y ...cn11 of z and y. Here,
c; is defined to be 1 if there is a carry into the #** position of the result, that is, into

Z;.

11

Theorem 5 The carry of two natural k-ary numbers of size n can be computed by

a homogeneous k-ary neural circuit with size O(n?), depth 3 and all weights drawn

from {£1}.

Proof: See Obradovi¢ and Parberry [4]. O

However, the carry can be computed even in a single layer using linear number of

neurons if unit weights are not our primary concern.

Theorem 6 The carry of two natural k-ary numbers of size n can be computed by a

homogeneous k-ary neural circuit of size n and depth 1.

Proof: Carry ¢; into the 1** position of z 4 y is 1 if the sum of two k-ary numbers
@ = z;. ..z, and y® = y; ...y, is at least k*~*. Obviously, c,11 is always zero.
Each ¢;, for 1 <17 < n, can be computed by a single k-ary neuron v; with 2(n —z+ 1)
inputs from z; and y; for ©+ < 37 < n. The neuron v; has its first threshold set to
k"% and all other thresholds set to very large values that are never exceeded by the
weighted input sum. Finally, the weights wj, from inputs z; and y, to the neuron v,

are set to k"7 for 1 < j <n. O

The consequence of the Theorem 6 is a smaller depth and a small size neural

circuit for computing the sum of two k-ary numbers.

Corollary 7 The sum of two k-ary integers of size n can be computed by a homo-
geneous k-ary neural circuit of depth 5 and size O(n?) with all weights drawn from

12

{£1}. If the weights are not restricted to unit values, the complezity of a homogeneous

k-ary neural circuit to compute this sum can be reduced to depth 3 and size 3n + 2.

Proof: For a unit weight solution, first compute the carry of z and y in quadratic
size and depth 3 using Theorem 5. Then each z; can be computed from z;_q, y;_1,
and ¢; in constant size and depth 2. A reduced circuit is obtained by using Theorem

6 instead of Theorem 5. O

However, the complexity of the neural circuit can be further reduced by using

nonmonotone (2k — 1)-ary neurons.

Corollary 8 The sum of two k-ary integers of size n can be computed by a nonmono-

tone (2k — 1)-ary neural circuit of size n + 1 and depth 1.

Proof: Each z; can be computed from z; 4, ..., z, and y;_1,...,yn using a single
(2k —1)-ary nonmonotone neuron v* whose weights w;;, 1 < j < n from inputs z; and

y; are set to k"7, The 2k — 1 thresholds of neuron v* are & = k"+1=* ¢, = 2kn+1~t

th =3kt Ly, = (2k —1)k™*1" and the output values ¢}, 0 <1 < 2k —1 are
defined as
) if [<k,
TTV1—k otherwise.

Consider now a trade-off between the complexity of neurons and the size and depth
of neural networks on a problem of computing an arbitrary k-ary symmetric function

13

of n inputs by neural networks. There has been much interest in this problem as it
is believed that natural neural networks are very efficient in computing symmetric
functions, while computing those functions on standard parallel processing systems
is computationally expensive. Formally, a function f : Z} — Zi is called symmetric
if its output remains the same no matter how the input is permuted. That is, for all

one-to-one and onto I1: {1,...,n} — {1,...,n}, and all z4,...,z, € Z,

f(mh s 7:1;11) = f(ml_[(l)7 <. '7:1;1_1(11))-

Theorem 9 Any k-ary symmetric function on n inputs can be computed by a homo-

geneous k-ary neural circuit of depth 6 and size

(n+ 1)1

(6 —2) + 6kn + 3k + 1

with all weights drawn from {+1}.

Proof: See Obradovi¢ and Parberry [4]. O

If unit weights are not a primary concern, the same symmetric function can be

computed with a smaller size and depth.

Theorem 10 Any k-ary symmetric function on n inputs can be computed by a ho-

mogeneous k-ary neural circuit of depth 5, weight O(n?*) and size

(n+ 1)1

6= 1) 4+ 3kn + 1.

14

Proof: Let

k-1
S ={(yo,---,yk-1) € Nk| Zyi =n}.
=0
and
k-1
S'={>"n¥%:(yo,...,yk-1) € S}.
7=0
The function f: Z} — Zi is symmetric, and so for each input z = (z1,...,z,) € Z}
for which
Zn’” =s
=1
follows

where f, € Zi is a constant.
The unit weight neural circuit of Theorem 9 computes the number of 0’s, 1s,...,(k—
1)’s in the input and its output is based on the outcome of those k tests. Instead,

here the neural circuit is reduced by computing

and checking if this sum is an elements of set S’ = {s1,..., s, }. If the sum s is equal
to s; € S, the output is f,,. Consequently, the first layer of the circuit consists of nk
subcircuit T;, 1<2<mand 0 <j < k-1, of depth 2 and size 3, where T; tests
whether z; = j. The next layer consists of m subcircuit S*, 1 < h < m, of depth 2
and size 3, where S” tests whether its weighted input sum is equal to s, € S’. here,

each S* has inputs from all subcircuits T; (1<:<nand0<j<k-—1), while The

15

weight from T; to S* is set to n?. Finally, the weight from S*, 1 < h < m, to a single
homogeneous k-ary neuron in the output layer with thresholds 1,2,...,k — 1, is set

to fs,. O

A symmetric function can be computed even in a smaller depth and size using a

neural circuit with heterogeneous k-ary neurons.

Corollary 11 Any k-ary symmetric function on n inputs can be computed by a het-

erogeneous k-ary neural circuit of depth 4, with unit weights and size

(n+ 1)1
— 1.
(k- 1) +n+
Proof: The first layer of the circuit has n heterogeneous k-ary neurons vy,...,v,.
Neuron v; with thresholds 1,2,...,k — 1 and output values ¢, = 0, and ¢; = n*~ %, for

1 <12 <k —1 has a unit weight on the input connection from ;. Subcircuits Sh,
1 < h < m, of depth 2 and size 3 are defined similarly as in Theorem 10. The only
differences are that the output neuron of S* is a heterogeneous k-ary neuron with
output values 0 and f,,, and the weight from S* to the output neuron is 1. It is easy
to see that this heterogeneous k-ary neural circuit is equivalent to the homogeneous

k-ary neural circuit from Theorem 10. O

Drastic decrease in depth and size is possible if neuron transfer functions are

further modified to multicase functions as follows.

16

Corollary 12 Any k-ary symmetric function on n inputs can be computed by a mul-

ticase neural circuit of depth 2, with unit weights and size n + 1.

Proof: The first layer of the circuit has n multicase neurons vq,...,v,. Neuron v;
has thresholds 1,2,...,k — 1, output values ¢ = 0, ¢; = n*™}, for 1 <1 < k—1
and a unit weighted input from z;. The outputs of all v;, 1 < 2 < k are connected
with unit-weight edges to a single multicase neuron in the second layer. Thresholds
of that multicase neuron are sy, 8, ..., Sm, where S’ = {s1,82,...,8m} is defined as

in Theorem 10. The output values of the output neuron are f;; (0 <z <m). O

4. Conclusions

In this paper the computational abilities of several multivalued neural network models
are explored. Study of these models has practical interest as they are closely related
to limited precision analog neural networks with nonmonotone transfer functions.
The f(t)-equivalence relation between different models has been shown. However,
a tradeoff involving resources of depth, size, weight and the complexity of neuron
transfer functions, demonstrated on the example of computing symmetric functions
and of summing two natural numbers, indicates that significant savings are possi-
ble through selection of an appropriate nonmonotone multivalued model. Further
research is needed to develop a general theory for identifying the optimal trade-off

between complexity of neurons versus size and depth of a neural network designed

17

using those neurons as its building blocks. Also, further research is needed to develop

efficient learning methods for identified nonmonotone multivalued neural networks.

Acknowledgements

I would like to thank lan Parberry, whose encouragement of my work on this
project has been invaluable. Further, I thank Radu Drossu for his constructive com-
ments on a preliminary version of the manuscript. Finally, I am grateful to three
anonymous reviewers for their careful reading and fast handling of the manuscript,

and most grateful to a reviewer who pointed out a simple way of improving Theorem

2 and Corollary 8.

References

[1] P. Dunne, The Complexity of Boolean Networks, Academic Press, 1988.

[2] S.I. Gallant, Perceptron-Based Learning Algorithms, IEEE Trans. Neural Net-

works 1 (1990), pp. 179-191.

[3] J. Moody, and C. Darken, Learning with Localized Receptive Fields, Proc. 1988

Conectionist Models Summer School, (1988), pp. 133-143.

[4] Z. Obradovié, and I. Parberry, Computing with Discrete Multivalued Neurons,

J. Comput. System Sci. 45 (1992), pp. 471-492.

[5] Z. Obradovi¢, and 1. Parberry, Learning with Discrete Multivalued Neurons, J.
Comput. System Sci. 49 (1994), pp. 375-390.

18

[6] Z. Obradovié, and P. Yan, Small Depth Polynomial Size Neural Networks, Neural

Computation, 2 (1990), pp. 402-404.

[7] S. Olafsson, and Y.S. Abu-Mostafa, The Capacity of Multilevel Threshold Func-
tions, IEEE Trans. Pattern Analysis and Machine Intelligence, 10 (1988), pp.

277-281.

[8] F. Rosenblatt, Principles of Neurodynamics, Spartan, 1962.

[9] D.E.Rumelhart, G.E.Hilton and R.J.Williams, Learning Internal Represen-
tations by Error Propagation, in Parallel and Distributed Processing, Eds.

D.E.Rumelhart and J.L.McClelland, Cambridge, MA, MIT Press, 1986.

19

