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Abstract

Most of the existing nonlinear data analysis and
modelling techniques including neural networks
become computationally prohibitively expensive when
the available data set exceeds the capacity of the
computer main memory due to the slow disc access
operations [1]. For the data received on-line from a
source with an unknown probability distribution, the
question addressed in this article is how to efficiently
partition it to smaller representative subsets (data
bases) and how to organize these data subsets in
order to minimize the computational cost of the later
data analysis. The proposed linear-time, on-line
problem decomposition method achieves these
objectives through balancing probability distributions
of the individual disjoint data subsets, each aimed at
approximating the original data-source distribution.
Consequently, computationally efficient statistical
data analysis and neural network modelling on data
subsets fitting into a computer central memory will
produce results similar to these obtained through a
global, computationally infeasible data analysis. In
addition, the proposed decomposition scheme enables
for an effective distributed data analysis on a network
of workstations (a fixed or an adaptive size) since
different modeling  algorithms can be run
simultaneously on disjoint data subsets with no data
exchange and with minimal communication of higher-
level locally obtained knowledge.

Purpose

Data mining and decision making based on the
distributed data-bases are becoming increasingly
important for both scientific and economic reasons
[2]. The availability of huge data sets and the demand
for a decentralized decision making have resulted in
the need for the optimization of the distributed data
bases [3].

In this paper we assume that the data is generated by
an unknown distribution and then send in blocks to
different data bases. Moreover, we assume that the
data selection is biased. This means that the bock of
the N data to be sent is not chosen randomly from the
original data-pool but was subject to deterministic
ordering. A simple theoretical example is a case where
data corresponding to a Gaussian distribution are
ordered and then the first third of the data sent to the
first data base, second third to the second data base
and remaining third to the last data base. This data
selection will result in data distributions that differ
from each other and from the original Gaussian
distribution. Consequently, any statistical data mining
or data decision process based on any individual data-
base will be biased. The bias will be avoided only if
access to all three data bases is possible, which might
be infeasible or computationally too expensive.
Another simple but practical situation with potential
biased sampling problems is a customer database of a
major medical insurance company collecting claim
data from pediatrics, family practice, adult health care
and other clinics, where clients age distribution is
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clearly different for data stemming from various sites
(data bases). In order to address such problems, we
derive a novel data-assignment mechanism based on
the information theoretic postulates that minimizes the
difference between the individual data distribution
functions.

Method

Let there be M data bases and let the block of data to
be sent be of size N. Furthermore, let the data range be
~ known which will enable construction of bins for the
histogram evaluation. If a probability density function
of the i-th data base is p;(x), then the difference
between the two distributions p;(x) and p;(x) is defined
by the Kullback-Leibler distance [4]:

pi(x )

K(p;,p;)= [ p,(x)log == e ”

The Kullback-Leibler distance is a semi measure, i.e.
it is equal to zero if the two distributions are equal, it
is always positive if distributions differ but it does not
satisfy the triangular inequality. Moreover, the
Kullback-Leibler measure is non-symmetric, i.e.

K(pipj) # K(@;,p).

In order to avoid the problem of non-symmetry, we
will construct a new distance K;:

K\(pi»p;)=K(p;,p;)+K(p;,p) =

p;(x) &
pi(x)

_Jp,(x)logp'( dx+j (x)log

The resulting distance is also non-negative but it is
symmetric. The remaining thing to be done is to
construct a variable that evaluates the differences
among all M data distributions. A valid candidate is a
sum of all the pairwise distances:

M M
J(Pyoes Par) =22K1(P1’Pj)

i=l j#i

Since the actual probability density function is
unknown, the Kullback-Leibler distance has to be
estimated from the data. A straightforward estimation
is obtained by approximating the continuous density
function p(x) with a histogram having the prespecified
bin structure corresponding to the known range of
data. Hence, the estimate of the overall cost function
J(y,....py) Will depend on the quality of the available
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histograms. In addition, potential problems might
arise when there is a bin in one of the distributions p;
without any data since in such a case, the
corresponding value of the logarithm will become
infinite. In order to avoid this over-sensitivity of the
measure, we initially assigned a single data point to
every bin.

A flow-chart of the algorithm for a prespecified
number of data bases is depicted in Figure 1 where
data points stored to a single data base are indexed
based on the bins they belong to. The algorithm is
easily extendable to a scenario with an adaptive
number of databases growing based on on-line needs
(volume of the input data stream and physical limits of
desired data subsets. In such a case, an index to each
bin is implemented as a double hash data structure
with the first hash key for a bin pointing to the
begining and the second to the middle of a
corresponding data list. When a single data base
overgrows the prespecified capacity (e.g. the computer
central memory size, or an external storage device
size) this index structure is used to efficiently split the
oversized set into two equal-size, similar distribution
subsets by moving halph of the data from each bin to
a new subset on the same external storage device.

Results

An important characteristic of the proposed method is
that the variable x can be multidimensional as well as
conditioned on some other variable y. Consequently,
our algorithm is capable of optimally assigning
multidimensional and/or conditional data to several
data bases.

To store a new data block to an apzpropriatc data base,
it requires computing order of M~ K distances each
obtained in a constant-time, N inserts to a single data
base and possibly extra time to split an oversized data
base which can be done in time linear in the size of
such a data base. The number of available databases M
as well as a block size is typically a constant, and so
the cost of a single data block assignment for a fixed
M is a small constant in practice.

The proposed data assignment algorithm is tested on a
Gaussian distribution containing 2000 data points. It is
assumed that the number of data bases is M=3 while
the length of the data block was chosen to be N=35.
The center of the bins are fixed at positions:[-2, -1.5, -
1,-05,0,05,1, 1.5, 2].

The initial assumption was that the data is ordered in
ascending order and the blocks are sequentially taken
from the smallest value on. First, we considered the



naive assignment where the blocks are sent initially to
the first, then to the second and at the end to the third
data base so that each of them contains one third of
the data. The corresponding histograms are depicted in
Figure 2. It is easy to see that the corresponding
distributions are very much different from the original
Gaussian distribution and that, therefore, any
statistical analysis of the individual data subsets
would lead to the wrong understanding of the original
data set. The properties of the original data set can be
reliably estimated only by combining the data from all
three data bases which is very expensive (all the data
have to be copied from one place to another).

On the other hand, the results of the herein proposed
algorithm are depicted in Figure 3. It is evident that
the distributions of all three constructed data bases are
approximately Gaussian. Hence, it suffices to analyze
a single data base to recover the properties of the
original data set in spite of the fact that its distribution
was assumed to be unknown (the algorithm does not
require knowledge of the original distribution, it only
minimizes the differences between distributions
corresponding to individual data bases).

New aspects of work

The introduced algorithm automatically and
efficiently assigns the incoming data blocks to
multiple databases so that the the corresponding data
distributions are kept as close as possible to each other
according to the modified Kullback-Leibler distance.
The knowledge of the original distribution is not
required.

Conclusions

The proposed on-line problem decomposition method
achieves a near optimal performance through
balancing probability distributions of the individual
disjoint data subsets, each aimed at approximating the
original data-source distribution. Consequently,
computationally efficient statistical data analysis and
neural network modelling on data subsets fitting into a
computer central memory produce results similar to
these obtained through a global, computationally
infeasible data analysis. In addition, the proposed
decomposition scheme enables an effective distr:buted
data analysis on a network of workstations, since the
different modeling algorithms can be run
simultaneously on disjoint data sets with no data
exchange and with minimal communication of higher-
level locally obtained knowledge.
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Figure 1. Flow chart of the assignment algorithm for a
prespecified number of data bases
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Figure 2. Histograms of the 3 data bases after the “naive” assignment

Q
-25 -2 -15 -1 -05 0 05 1 i5 2 28
Figure 3. Histograms of the resulting data bases after applying the assignment algorithm
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