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Abstract 

Most of the existing nonlinear data analysis and 
modelling techniques including neural networks 
become computationally prohibitively expensive when 
the available data set exceeds the capacity of the 
computer main memory due to the slow disc access 
operations [ l ] .  For the data received on-line from a 
source with an unknown probability distribution, the 
question addressed in this article is how to eficiently 
partition it to smaller representative subsets {data 
bases) and how to organize these data subsets in 
order to minimize the computational cost of the later 
data analysis. The proposed linear-time, on-line 
problem decomposition method achieves these 
objectives through balancing probability distributions 
of the individual disjoint data subsets, each aimed at 
approximating the original data-source distribution. 
Consequently, computationally eficient statistical 
data analysis and neural network modelling on data 
subsets fitting into a computer central memory will 
produce results similar to these obtained through a 
global, computationally infeasible data analysis. In 
addition, the proposed decomposition scheme enables 
for an effective distributed data analysis on a network 
of workstations (a fixed or an adaptive size) since 
different modeling algorithms can be run 
simultaneously on disjoint data subsets with no data 
exchange and with minimal communication of higher- 
level locally obtained knowledge. 

Purpose 

Data mining and decision making based on the 
distributed data-bases are becoming increasingly 
important for both scientific and economic reasons 
[2]. The availability of huge data sets and the demand 
for a decentralized decision making have resulted in 
the need for the optimization of the distributed data 
bases [3]. 

In this paper we assume that the data is generated by 
an unknown distribution and then send in blocks to 
different data bases. Moreover, we assume that the 
data selection is biased. This means that the bock of 
the N data to be sent is not chosen randomly from the 
original data-pool but was subject to deterministic 
ordering. A simple theoretical example is a case where 
data corresponding to a Gaussian distribution are 
ordered and then the first third of the data sent to the 
first data base, second third to the second data base 
and remaining third to the last data base. This data 
selection will result in data distributions that differ 
from each other and from the original Gaussian 
distribution. Consequently, any statistical data mining 
or data decision process based on any individual data- 
base will be biased. The bias will be avoided only if 
access to all three data bases is possible, which might 
be infeasible or computationally too expensive. 
Another simple but practical situation with potential 
biased sampling problems is a customer database of a 
major medical insurance company collecting claim 
data from pediatrics, family practice, adult health care 
and other clinics, where clients age distribution is 

?artial support by the INEEL University Research Consortium grant No.C94-175936 and the NSF research grant NSF- 
CSE-IIS-9711532 to Z Obradovic is gratefully acknowledged. 

0-7803-5529-6/99/$10.00 01999 IEEE 2535 

mailto:mchp.siemens.de
http://eecs.wsu.edu


clearly different for data stemming from various sites 
(data bases). In order to address such problems, we 
derive a novel data-assignment mechanism based on 
the information theoretic postulates that minimizes the 
difference between the individual data distribution 
functions. 

Method 

Let there be M data bases and let the block of data to 
be sent be of size N. Furthermore, let the data range be 
known which will enable construction of bins for the 
histogram evaluation. If a probability density function 
of the i-th data base is pa&), then the difference 
between the two distributions pi@) and pj(x) is defined 
by the Kullback-Leibler distance [4]: 

The Kullback-Leibler distance is a semi measure, i.e. 
it is equal to zero if the two distributions are equal, it 
is always positive if distributions differ but it does not 
satisfy the triangular inequality. Moreover, the 
Kullback-Leibler measure is non-symmetric, i.e. 
K(PbPj) # K(Pj9Pi). 

In order to avoid the problem of non-symmetry, we 
will construct a new distance KI: 

The resulting distance is also non-negative but it is 
symmetric. The remaining thing to be done is to 
construct a variable that evaluates the differences 
among all M data distributions. A valid candidate is a 
sum of all the pairwise distances: 

Since the actual probability density function is 
unknown, the Kullback-Leibler distance has to be 
estimated from the data. A straightforward estimation 
is obtained by approximating the continuous density 
function pi(x) with a histogram having the prespecified 
bin structure corresponding to the known range of 
data. Hence, the estimate of the overall cost function 
J@,, ...,pM) will depend on the quality of the available 

histograms. In addition, potential problems might 
arise when there is a bin in one of the distributions p j  
without any data since in such a case, the 
corresponding value of the logarithm will become 
infinite. In order to avoid this over-sensitivity of the 
measure, we initially assigned a single data point to 
every bin. 

A flow-chart of the algorithm for a prespecified 
number of data bases is depicted in Figure 1 where 
data points stored to a single data base are indexed 
based on the bins they belong to. The algorithm is 
easily extendable to a scenario with an adaptive 
number of databases growing based on on-line needs 
(volume of the input data stream and physical limits of 
desired data subsets. In such a case, an index to each 
bin is implemented as a double hash data structure 
with the first hash key for a bin pointing to the 
begining and the second to the middle of a 
corresponding data list. When a single data base 
overgrows the prespecified capacity (e.g. the computer 
central memory size, or an external storage device 
size) this index structure is used to efficiently split the 
oversized set into two equal-size, similar distribution 
subsets by moving halph of the data from each bin to 
a new subset on the same external storage device. 

Results 

An important characteristic of the proposed method is 
that the variable x can be multidimensional as well as 
conditioned on some other variable y. Consequently, 
our algorithm is capable of optimally assigning 
multidimensional and/or conditional data to several 
data bases. 

To store a new data block to an ap ropriate data base, 
it requires computing order of M K1 distances each 
obtained in a constant-time, N inserts to a single data 
base and possibly extra time to split an oversized data 
base which can be done in time linear in the size of 
such a data base. The number of available databases M 
as well as a block size is typically a constant, and so 
the cost of a single data block assignment for a fixed 
M is a small constant in practice. 

The proposed data assignment algorithm is tested on a 
Gaussian distribution containing 2000 data points. It is 
assumed that the number of data bases is M=3 while 
the length of the data block was chosen to be N=5. 
The center of the bins are fixed at positions:[-2, -1.5, - 

P 

1, -0.5,0,0.5, 1, 1.5,2]. 

The initial assumption was that the data is ordered in 
ascending order and the blocks are sequentially taken 
from the smallest value on. First, we considered the 
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naive assignment where the blocks are sent initially to 
the first, then to the second and at the end to the third 
data base so that each of them contains one third of 
the data. The corresponding histograms are depicted in 
Figure 2. It is easy to see that the corresponding 
distributions are very much different from the original 
Gaussian distribution and that, therefore, any 
statistical analysis of the individual data subsets 
would lead to the wrong understanding of the original 
data set. The properties of the original data set can be 
reliably estimated only by combining the data from all 
three data bases which is very expensive (all the data 
have to be copied from one place to another). 

On the other hand, the results of the herein proposed 
algorithm are depicted in Figure 3. It is evident that 
the distributions of all three constructed data bases are 
approximately Gaussian. Hence, it suffices to analyze 
a single data base to recover the properties of the 
original data set in spite of the fact that its distribution 
was assumed to be unknown (the algorithm does not 
require knowledge of the original distribution, it only 
minimizes the differences between distributions 
corresponding to individual data bases). 

New aspects of work 

The introduced algorithm automatically and 
efficiently assigns the incoming data blocks to 
multiple databases so that the the corresponding data 
distributions are kept as close as possible to each other 
according to the modified Kullback-Leibler distance. 
The knowledge of the original distribution is not 
required. 

Conclusions 

The proposed on-line problem decomposition method 
achieves a near optimal performance through 
balancing probability distributions of the individual 
disjoint data subsets, each aimed at approximating the 
original data-source distribution. Consequently, 
computationally efficient statistical data analysis and 
neural network modelling on data subsets fitting into a 
computer central memory produce results similar to 
these obtained through a global, computationally 
infeasible data analysis. In addition, the prwosed 
decomposition scheme enables an eEective distflbuted 
data analysis on a network of workstations, since the 
different modeling algorithms can be run 
simultaneously on disjoint data sets with no data 
exchange and with minimal communication of higher- 
level locally obtained knowledge. 
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Figure 1. Flow chart of the assignment algorithm for a 
prespecified number of data bases 
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Figure 2. Histograms of the 3 data bases after the “naive” assignment 
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Figure 3. Histograms of the resulting data bases after applying the assignment algorithm 
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