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Abstract

Predictive data mining typically relies on labelddta
without exploiting a much larger amount of avaikabl
unlabeled data. The goal of this paper is to shbat t
using unlabeled data can be beneficial in a rande o
important prediction problems and therefore shaodédan
integral part of the learning process. Given anabdled
dataset representative of the underlying distribntand a

model such as mixture of Gaussians. EM has beeelyid
used in areas such as text document classificgtioh
image retrieval [22] and multispectral data clasatfon
[18]. Co-training [2] provides another popular stgy for
incorporating unlabeled data if the data can beritsesd
in two different sufficient views, or sets of aftuies. The
transduction approach [20] assigns labels to angdet of
unlabeled data by maximizing the classification gives
on both labeled and unlabeled data. However, dftisn

K-class labeled sample that might be biased, our Observed that these techniques could also degrade

approach is to learn K contrast classifiers eachiried to
discriminate a certain class of labeled data frohet
unlabeled population. We illustrate that contrast
classifiers can be useful in one-class classifaratoutlier
detection, density estimation, and learning fromaskd

performance due to violated model
convergence to local maxima [17].
Another line of research deals with learning proide
characterized by extreme bias in labeled datan&iaass
classification problems [19] only labeled examhesn a

assumption or

data. The advantages of the proposed approach aresingle class are available and the goal is to ptemlit-of-

demonstrated by an extensive evaluation on synttata
followed by real-life bioinformatics applicationsrf (1)
ranking PubMed articles by their relevance to pmote
disorder and (2) cost-effective enlargement
disordered protein database.

1. Introduction

A common assumption in supervised learning is that

labeled data conforms to the same distributiorhasdata
to which the predictor will be applied. However,edto

various reasons such as sampling bias or prohgbitiv

labeling costs, labeled datasets are often smalloan

biased, which makes them unrepresentative of the

underlying distribution. A predictor learned fronuch

data may not generalize well on out-of-sample exasp
On the other hand, it is typically easier to cdll&arge

amounts of unlabeled data at a significantly lowest.

Moreover, unlabeled samples are less likely to ibedul

and could therefore often be considered as repiasas

of the underlying data distribution. This property

unlabeled data makes it an attractive tool for maprg

accuracy of predictive data mining [17].

As a natural approach to handling unlabeled dat, t
Expectation Maximization (EM) algorithm [6] can be
used to iteratively estimate the model parameterd a
assign soft labels to unlabeled examples by trgdtie
unknown labels as missing data and assuming gérerat

sample examples either as belonging to the classsor
outliers. A possible approach to address this grokik to
apply kernel density estimation (KDE) for learnitige

of a probability density of labeled data. Another apjpiods

the support vector data description (SVDD) method
which learns from the positive examples and aitifig
generated outliers [19] to separate the positimescfrom
the rest. However, these approaches are ignoring
unlabeled data that might be readily available.tiglgr
supervised classification [9] provides a notabletsan to
one-class classification problems that utilizesabeled
data; it initially assumes that all unlabeled exEsgome
from the negative class, and then applies the EM
algorithm to refine the assumption.

In this study, we propose a novel approach foizirid
unlabeled data in data mining. It is based on cooshg
a contrast classifierthat discriminates between labeled
and unlabeled examples. The name contrast classifie
comes from the meaning of its output - it represemt
measure of difference, or contrast, in density afiven
data point between labeled and unlabeled data.nGhie
property, it is apparent that contrast classifieosld be
used in a wide range of important data mining
applications such as outlier detection, one-class
classification, density estimation, and learningnir
biased data. In Section 2, we provide a descriptbn
contrast classifiers and a range of their appbeceti In
Section 3 we compare our approach to alternative
methods on a challenging 3-class synthetic datdeet.



Section 4, we illustrate the usefulness of the remtit  decreasing function afc(x), contrast classifiers could be
classifiers on two real-life bioinformatics probleraf (1) used directly to rank examples by their contrasisuee.

re-ranking of PubMed articles based on their raleeato If labeled data consist df classesK class-specific

protein disorder and (2) cost-effective enlargemang contrast classifiers cg(x), j=1, 2, ..., K, could be

dataset of disordered proteins. constructed wherecg(x) is trained to discriminate
between unlabeled data and clasd labeled data. The

2. Methodology class-specific contrast classifiers can then bed use
construct themaximum a posterioriMAP) classifier.

2.1. Contrast classifiers Using (2), posterior probabilig(c = j|x) of clasg can be
expressed as

By g(x) we denote the probability density function o= 1%) h, (x) 9, q; [-cc; (%)) /CCJ. (X) @

(pdf) of unlabeled dat& = {x;, i = 1, ..., N}, and we = = = )

assume that it corresponds to the underlying Histion. _ % h‘ ?X) G >0 - cq_ (x))/cq (X)_

In a K-class classification problemg(x) can be  Where, for simplicityr was set to 0.5 in alig(x), j = 1,

represented as a mixture Kf class-conditional pdfs, or -+ K. Often, we have some knowledge about prior class

probabilities in unlabeled data and about the
misclassification costs, which should be used tecse
more appropriate priors in (4) insteadopfBased on (4),
the decision rule using contrast classifiers as APM
classifier can be expressed as

a(x) = Zpig;(x), wherep; is prior probability of clasgand
gi(x) is class-conditional pdf of data from clgssin a
number of applications, the available unlabelecsiztt)

is large and could be used to derive a quite ateura
estimate ofg(x). By h(x) we denote the probability

density function of labeled data= {(x;, G),i =1, ..., N, & = argmax (d-cc;(x)) 5)
¢{1, 2, ..., K}}. It can also be represented as a mixture i cc, (X) ”
of class-conditional pdfs, di(x) = Z;ghj(x), whereg; is An important result is that knowledge ofxy(is not

prior probability of clasg andhy(x) is class-conditional  needed to construct the MAP classifier from claseeific
pdf of data from clasg. Sincel could be obtained onirast classifiers. Therefore, as seen fromi{&beled
through biased samplingy(x) may not equab;(x) and  gata are an unbiased sample, contrast classif@rsbe

thush(x) may not equag(x). . directly used to provide an optimal solution for Itihu
We define acontrast classifier ox) as a classifier  jags problems.

trained to discriminate between labeled data (dlgsand
unlabeled data (class 1). Given an inputthe optimal

i _ ) 2.2. Construction of contrast classifiers
contrast classifier able to approximate posteritass

probability would output In practice, unlabeled dataset could be much larger
co(x) = rig(x) (1) than labeled dataset. Learning on such imbalanatd d
@-r)h(x)+r H(x) ' would result in a low-quality contrast classifiexhile

wherer is the fraction of unlabeled data in the training learning time could be prohibitively long. Moreoyé¢e
set. In the following subsection we will discuse tiroper quantity (1ec(x))/ce(x)/(1-r), which provides a measure
choice ofr in practical applications. It is evident that if of contrast in labeled data, is numerically lesbigt for
unlabeled and labeled data are drawn from the iclint imbalanced training data with large Learning on
distribution, i.e.g(x) = h(x), the optimakc(x) would be a  imbalanced data has received a lot of attentichéndata

constant equal to mining community, and most successful strategies ar
Assuming that the pdf of unlabeled dg(&) is known,  based on balanced training data [8]. In our apgroae
the optimalcc(x) can be used to estimdié) as train anensembleof classifiers orbalancedtraining sets

_1-ce(x) 1 consisting of equal number of labeled and unlabeled

(x) —ng_—rlig(x). @) examples randomly sampled from the available labele

and unlabeled data. Similar to bagging [5] we comtsta
contrast classifier by aggregating the predictiohthese
classifiers through averaging. With the proposedhou
we are effectively using information available frahe
contras(x) = h(x)/ g(x) =1—c_c(x)Gr_ (3) large unlabeled data, thus allowing constructiommofe

To measure the difference in density of labeled and
unlabeled data, we define tloentrastas ratioh(x)/g(x)
and from equation (2) we have

co(x) 1-r° accurate contrast classifiers.
As we will illustrate later, the contrast measuam be Classification algorithms able to approximate poste
extremely useful in a number of applications susl@e- class probability are suitable choices for contrast

class classification, outlier detection and leagninom classifiers. These algorithms include logistic esgion,
biased data. Sincecontras{x) is a monotonically feed-forward neural networks with sigmoid activatio



functions [15], or even decision trees [14]. Addlitally,
there are several types of binary classifiers (sugport
vector machines; naive Bayes) producing output escor
that can be interpreted as prediction strengtha#t been
shown that these scores could be successfullyrasdith
to posterior class probability in case of suppaetter
machine (SVM) [12] and naive Bayes [24] classifiers
The results indicate that the output from suchsifess
can be interpreted as a monotonically increasimgtfan
of the posterior class probabilities. It follows ath
h(x)/g(x) can be represented ax®k)), where F{J is a
monotonically decreasing function. In section 4 wid
illustrate that this property allows successful use
classifiers such as SVM as contrast classifiersame
important applications.

While contrast classifiers could be used to prodace
MAP classifier, it is evident that (de(x))/cc(x) term in
(4) could cause prediction instability for inputswith

small c(x). In practice, this should not be an issue since
unlabeled data can be considered to be a mixture oftheory be used

distributions with one or more mixture components
corresponding to the unlabeled data. Thereforetrasin
classifiers are not likely to produce values nearoz
Exceptions could be extreme scenarios where latuzed

can be classified as positive (outliers). Sinoatras{x) is
a monotonically decreasing function af{x), a threshold
can be applied directly on contrast classifier atgp

A choice of an appropriate threshold for one-class
classification could be difficult since the outpange of
contrast classifiers depends on the dataset. Bviale
this problem, in our approach we introduce the ghoid
6° such that conditiorcc(x)>8" is satisfied for a user-
specifiedp% of labeled examples. Therefopetepresents
an upper bound on the false negative rate (peroént
rejected positive examples), and a user shouldatsiélen
order to achieve the optimal trade-off between efals
positive and false negative rates in one-class
classification.

2.5.Contrast classifiers for learning from biased
data and generalized outlier detection

As seen from equation (4), contrast classifierdctcou

to substitute standard multi-class
classification algorithms. Therefore, in scenarmlsere
labeled data is an unbiased sample \mit) = g(x) both
approaches should achieve the similar classifinatio
accuracy. However, in the more general setup where

are outliers obtained by highly biased sampling and |abeled data is a biased sample wiitx) # g(x), the

covering a highly limited portion of a feature spadhe
property of unlabeled data that allows constructain
well-behaved contrast classifiers in most realistises is
essential for the success of the proposed methggolo

2.3. Contrast classifiersfor density estimation

As seen from equation (2), contrast classifierdccbe
used for class-conditional density estimation. &inc
unlabeled dataset could be very large, relativelyueate
estimation ofg(x) should be feasible using some of the
standard nonparametric methodologies such as raixtur
modeling or kernel density estimation. Thereforfeai
contrast classifier able to approximate posteritass
probability is used, it should be possible to abtaifairly
accurate estimate of labeled data pdf from (2). e,
in this paper we will not pursue this direction dasther.

2.4.Contrast classifiersfor one-class classification
and outlier detection

In one-class classification, labeled dataset costai
examples from only one class, callpdsitive class. The
goal is to build a model able to recognize whethe&rew
example is from positive class. Complementary, tesk
can be detection of outlying examples that are
distributionally underrepresented in labeled data.

benefits of contrast classifiers become appareheyT
follow from the ability of contrast classifiers tetect
examples underrepresented in labeled data while
achieving near-optimal classification on the others

For a given exampl, letcg(x),j = 1, 2, ... K, denote
the outputs oK class-specific contrast classifiers. If Kl
outputs are large is likely to be an outlier or an example
underrepresented in the labeled data. In such e thas
best policy could be not to provide classificatidhis
would result in an increased overall accuracy atdbst
of somewhat decreased coverage. Similar to theofise
contrast classifiers in one-class classification, dur
approach a user-specified constpris used to determine
K thresholdsg®, j = 1, 2, ...,K, such thap% of positive
training examples satisfyg(x) > 4, foreachj = 1, 2, ...,
K. Classification is not provided for examples waity(x)
> g for allj = 1, 2, ... K. Otherwise, equation (4) is used
for classification.

It is evident that the procedure for classification
biased data includes detection of outliers thatdemote
asgeneralized outlier detectiosince it detects examples
underrepresented in each of tKeclasses available in
labeled data.

3. Experiments on waveform data

In this section we use the well-known waveform

Therefore,contras{x) from equation (3) is very suitable dataset [4] to illustrate the effectiveness of approach
for both tasks: given an appropriate threshold, all on one-class classification in the presence of heiél
examples withcontras{x) above (below) the threshold data, as well as on multi-class classification obiased



and biased data. In this 3-class dataset, there2are of waveform data with 20 irrelevant attributes. The
attributes defined as a linear combination of twib @f 3 accuracy of one-class classification was measured as the
basic waveforms with randomly generated coeffigent true positive rate when the false positive rate was 20%.
Its noisy version includes 20 additional irrelevant For CC and KDE, the desired false positive rate was
attributes with Gaussian distribution. Learning tire obtained by selecting appropriate thresholds. For SVDD,

waveform dataset is generally considered a difficagk it was obtained from the ROC curve generated by the

with reported accuracy of 86.8% using a Bayes agtim dd_toolssoftware.

classifier. In Figure 1 we show that the accuracy of contrast
classifiers improved with the number of component

3.1. One-class classification neural networks but then saturated at around 20.

Therefore, in the remaining experiments in Section 3 we
We first compared contrast classifier (CC) with two used an ensemble of 20 neural networks as the contrast
alternatives for one-class classification: kernehndty classifier. Table 1 compares the accuracies of the three
estimation (KDE) and support vector data descnptio methods. In all four scenarios, contrast classifier was
(SvDD) [19]. While both KDE and SVDD learn superior to the other two methods showing that unlabeled

exclusively from labeled data to directly or inditly data could greatly improve the accuracy of one-class
estimate h(x), the contrast classifier utilizes unlabeled classification. It is worth noting that the performance of
data to estimath(x)/g(x). the KDE method degraded as irrelevant attributes were

Kernel density estimators directly estimétix) from introduced, while CC and SVDD appeared to be robust to
labeled data as noise.

n
h() =+ 3 Glwix-x,) ©)
Ni=1 96

whereG is theGaussiankernel with bandwidtiw andn
is the number of labeled examples. If a new example has
h(x) below a certain threshold it is considered an outlier. s
The threshold can be determined as described in Section
2.4. The optimal bandwidtv is the value that maximizes
the data likelihood.

Instead of estimating thé(x) directly, the SVDD
method uses artificially generated outliers [19] along with
the positive examples to construct a hyperspherical

95 |
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91 -

90 -

decision boundary of minimal possible volume that 89 -

separates the positive class examples from others. To a6 L ‘ ‘ ‘ ‘
construct more flexible decision boundaries, kernel roos 1o 20 30
functions are introduced to map the data into a higher Number of component networks

dimensional space. For SVDD experiments we used the  Figure 1. The effect of the number of component
data description toolbox  (dd_tool3g from neural networks on accuracy for N = 2000 noisy
http://ida.first.gmd.de/~davidt/ scenario

The contrast classifier was implemented as an . . .
ensemble of feed-forward neural networks. Each network3-2- Classification with unbiased data
had 10 hidden and 1 output sigmoid neurons. The number

. As shown in Section 2.1, if labeled data is unbiased,
of component neural networks was determined

o . : class-specific contrast classifiers could be used to
empirically. To train a single network, a balanced dataset s ; X :
construct a MAP classifier. In this section, we compare it

was formed from N examples taken randomly with o o
with a standard 3-class neural network classifier, which is
replacement from the labeled data and another N from the

unlabeled data. As discussed in Section 2.4. we used ensemble of 20 3-output neural networks each trained
contrast classifier outputc(x) instead ofcontrastx) for ona boots?rlap replicated sam_p_le of the Iabelgd data.. The 3
classification. class-specific contrast classifiers were trained with a

Two sets of waveform data were generated: N (<< balanced set consisting of labeled examples from a given

150,000) labeled examples from class 1 and 150 000Class and unlabeled examples. For this experiment, a total

unlabeled examples, 50,0060m each of the 3 classes. To of 15?0 labeled exargple_sh daf?d 15(?’000 unlat_)eled
examine the effect of labeled data size and irrelevant™@MPIeS Were generated with different class proportions.
attributes, experiments were performed under four In _Table 2 we report their accuracies o_btalned in
scenarios: 1) N = 200, 2) N = 200 noisy, 3) N = 2000, 4 experiments with 3 different class proportions. The
N = 2000.noisy Here"‘noisy” refers to the noisy versi’on overall accuracy was calculated as average of individual



class accuracies weighted by class proportions.is It x was labeled with class 1 and vice versa.
evident that the contrast classifier approach aekie We generated labeled data with examples from
accuracy comparable to the best multi-class classif classes 1 and 2. The unlabeled data consisted,00%0
when labeled data is unbiased. As will be seehénniext examples for each of the 3 classes. Two experinveers
subsection, the true strength of contrast classifie performed: (aN = 500 with 20 noisy attributes, (I =
becomes apparent when labeled data is biased. 5000 without noisy attributes. For a range of chsiof
parameterp with both CC and KDE approaches we
measured (1) classification accuracy of classesdl 2
(2) prediction coverage of classes 1 and 2, and (3)
Dataset Method Accuracy (%) prediction coverage of class 3. An ideal predictoould

CC 94.9 have a 100% accuracy and 100% coverage of classes 1

N = 200 KDE 63.8 0
SVDD 677 and 2, but 0% coverage of class 3.

CcC 92.7
N = 200 noisy KDE 54.3
SVDD 68.6 10 / 1.0
CcC 96.1 ol H.9
N = 2000 KDE 65.2 S /]
SVDD 68.1 81 /18
CcC 95.1 CC - ROC curve /
N = 2000 noisy KDE 56.9 CC - AC curve /
SVDD 65.3
CC - contrast classifier, KDE - kernel density estioratSVDD - support
vector data description

Table 1. Comparison of three methods in one-class
classification

777777 KDE - ROC curve /
——— KDE - AC curve

Table 2. Comparison of a MAP based on class-specific
contrast classifier and a standard 3-class neural network
in classification with unbiased labeled data
Class_ Method Class1l Class2 Class3 Overall
Proportion (%) (%) (%) (%)
111 ccC 81.9 88.1 88.4 86.1
NN 80.9 87.1 89.4 85.8
ccC 54.9 94.4 94.2 90.4
NN 65.2 91.1 94.7 90.1 () N = 500 noisy
CcC 62.9 75.0 99.5 93.4
NN 69.7 78.6 98.5 93.6

CC - the MAP classifier based on 3 class-specific centiassifiers
NN - an ensemble of 20 neural network with 3 outputs

Coverage of class 3
Accuracy at class 1+2

Coverage of class 1+2
1:45:4.5

1:1:8

10 10

CC-ROC curve /
Nas CC - ACcurve / 7
—————— KDE - ROC curve /
—-—-—-  KDE-AC curve /

3.3. Classification with biased data

We consider a biased data scenario where examples
from class 3 are completely missing from the lathelata.

In such a case, the desired classifier should Hegk
classification accuracy on examples from classandl 2,
while it should be able to recognize class 3 exampls
underrepresented in labeled data and thus refusesttct

on them. We examined the performances of contrast
classifier (CC) and kernel density estimation (KDE)
approaches on this challenging problem.

For the CC approach, two contrast classifiers $igeci
for classes 1 and 2 were constructed and combioed t
detect underrepresented examples as describediioiSe (b) N = 5000
2.5. For the KDE approach, the class-conditionakdies Figure 2. ROC and AC curves for classification with
h(x|c=1) andh(x|c=2) were estimated from the labeled biased data
data. Ifh(x|c5) < g°for bothj=1, 2,x was characterized
as an outlier and classification was not providéte
thresholdsg” were determined such thato of class;j
examples satisfyi(x|c5) < g°. Otherwise, classification
was provided using the Bayes rulehfk|c=1) >h(x|c=2),

Coverage of class 3
Accuracy at class 1+2

Coverage of class 1+2

In Figure 2 we report the performance of both
approaches as: (1) ROC curve - class 3 coveragdass
1+2 coverage (2) AC curve - accuracy vs. class 1+2
coverage. Clearly, CC achieves both better accuaacdy
lower class 3 coverage than KDE for a whole ranfje o



class 1+2 coverage. As in Figure 2(b), while retan
95% coverage on classes 1+2, CC approach reduassl cl
3 coverage to about 20% vs. 70% by KDE, thus waemo
effective in detecting outliers. An interestingukgs that
slight increase in accuracy was achieved with desgrén
class 1+2 coverage in both scenarios with both teode
Consistent with results reported in Section 3.Intrast
classifiers proved to be very robust to noisy htiiés and
small labeled data size. These results show tHabeled
data can be extremely useful in classification @fséd
labeled samples and should be an integral pagashing
process whenever available.

4. Bioinformatics application: analysis of
protein disorder

Disordered proteins are characterized by long regio
of amino acids that do not have a stable three-dsmeal
conformation under normal physiological conditions.
Recent results indicate that, despite the traditiatew,

protein names. After removing infrequent and stapds,
remaining words were preprocessed into terms by
eliminating suffixes wusing Porter stemmer [13].
Frequencies of terms were computed over C and # set
and terms were ranked based on the differencedin th
frequency in C and P. The most discriminative Krtgr
called keywords, were used to represent each PubMed
abstract as a vector of TF-IDF weights [16] caltedaas

a ratio between the term frequency and the inverse
document frequency. Following the approach outlimed
Section 2.2, we then trained the contrast classdie a
linear SVM to rank the unlabeled abstracts basedtson
output.

Using the top 200 keywords (K = 200), significant
improvement was achieved in ranking as compared to
PubMed default output: the fraction of citationaked in
the top 5 (top 10) was increased from 13% (28%90%h
(71%). These results suggest that labor involved in
finding relevant literature can be reduced manyetm
through the proposed re-rankings by contrast. Wk no

disordered proteins are common in nature and arethat while the illustrated use of unlabeled datatert
responsible for a spectrum of important biological mining is not novel, the value of our work is insdebing

functions [7]. However, due to the historical oweking
of this property, the knowledge about protein digoris
scattered across literature and described withumified
terminology. Important data mining challenges ideu
allowing cost-effective extraction of knowledge abo
protein disorder from literature, as well as agsistin
better understanding available information abouwttgin
disorder. In this section we illustrate that costra
classifiers are appropriate tools for addressingseh
challenges.

4.1. Ranking of PubMed articles

In a search for biological papers describing proger
of uncharacterized disordered proteins, we stdrmd a
set of 178 articles describing properties of 90 vkmo
disordered proteins collected through intensiverditure

this approach through the statistically appealing
framework of contrast classifiers.

4.2.Contrast classifiers for study of protein
disorder

Here the problem was to discover and understand
proteins that are underrepresented in a labeleabdaé of
known ordered and disordered proteins. By usindrash
classifiers we showed that the outlying proteing ar
numerous and have specific properties that mayigeoy
novel insight into structural and functional praes of
proteins.

4.2.1. Contrast classifiers for ordered and disordered
proteins prediction. The labeled dataset we used
consisted of 152 proteins containing disorderedorey

search by several experts [7]. By querying PubMed longer than 30 consecutive residues and 290 coetplet

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db+Ru

ordered proteins [21]. Every pair of the labelegusnces

ed), an open access web-based archive of biomedicahad less than 30% sequence identity. The unlalnzés

literature, with names of the 90 disordered prateine

was constructed from the October 2001 release 40 of

found that 67 of these proteins had more than 100SWISS-PROTatabase [3] containing 101,602 proteins.

PubMed citations, 35 had more than 1,000 citatians,
12 had more than 10,000 citations. Out of the Ifi8les
only 13% (28%) were returned as the top 5 (10) PedbM
retrievals. Our goal was to improve this fractiog b
ranking the abstracts retrieved by PubMed basethein
relevance to properties of disordered proteinsaektd
automatically from the relevant articles.

In this one-class classification scenario, the lkede
(positive) set P contained 166 abstracts stor&lbMed,
while the unlabeled set contained 18,499 abstracta

The ProtoMap database [23] was used to group these
proteins into 17,676 clusters based on their sempen
similarities [21]. One representative protein waent
selected from each cluster, resulting in an unkabel
dataset of 17,676 proteins.

In our previous work it was found that order/disard
properties of a given sequence position could kedipted
fairly accurately based on sequence propertiesirwigh
symmetric input window centered on that positiorur O
currently best disorder predictor VL3 [11], an enbée

PubMed obtained by querying with the 90 disordered of 10 neural networks, uses 20 window-based at&iu



including 18 relative frequencies of 18 out of the
amino acids within an input window of length 41geth
flexibility index averaged over the window, and tka-
entropy. Its overall accuracy is 83.9%, with 76.9%4%
accuracy on disorder/order class.

In a more recent study [21] two class-specific
autoassociator neural networks were constructetbtect
underrepresented proteins. The two resulting modete
effective in discovering important classes of unrder
represented proteins. However, the overall accuodcy

interesting keywords

homologues of 152 disordered proteins. Similar tw o
previous approach [21], for each dataset we caledithe
frequencies of 840 keywords listed 8WISS-PROThat
summarize the structural and functional propertés
given protein. Table 3 shows a summary for the 3tmo
selected according to
frequencies, which correspond to a large family of
membrane proteins known to have specific structanal
functional characteristics. It can be seen thay thee
highly underrepresented among our labeled ordengdd a

their

disorder predictor based on the two models was onlydisordered proteins as comparediISSwhile they are

69.8%, more than 10% worse than that of VL3, inilica
that more accurate outlier detection is possible.

very common in the identified set of outlie®utAvg
Thus, it is likely that most of the bias in our d¢ddd data

In this study, we built two class-specific contrast comes from membrane proteins. It is the matteuahér

classifiersccyisorger aNd CCorger @S €nsembles of 50 neural

research to determine the full significance of ¢hesd

networks using the same attributes as VL3. A MAP other detected underrepresented functional groupbk a

disordered predictor was then constructed accordting
equation (5) where both priors were set to 0.50Usrall
accuracy was 84.0%, with 75.6%/92.3% on disorddefor
class, which were practically identical to those\Wif3.
This result suggests the effectiveness of contrast
classifiers in the selection and analysis of
underrepresented proteins.

4.2.2. Application of contrast classifiers to selection
and analysis of underrepresented proteins. We first
filtered the 17,676 unlabeled proteins by applyome
round ofblastp algorithm [1] with E-value threshold 1 to
remove proteins similar to the labeled proteinse lwve
retained only those with lengths between 200 an@d 50
amino acids, which resulted in ti8NISSset with 6,964
proteins.

After applying the two contrast classifiers on atpmn
of length L, two L-dimensional vectors of positibg-
position predictions are obtained. To allow detactof
proteins that are overall the most different frohe t
labeled ordered and disordered proteins, we suragshri
each protein  with cc_av@ger and cC_av@isorden
representing the average predictions of the cantras
classifiers. Similar to the approach described écti®n
2.5, we determined threshol@.qe: ® and Giisorger”, SUch
that p% of SWISSroteins satisfiec_avgger > Ghrae’ and
CC_aVGisorder > Bhisorder, F€SPeECctively. In Figure 3 we show
the proportions of selected outliers frdWISSset and
the labeled proteins for differept As could be seen, the
proportion of outliers iIrBWISSset is significantly higher
than the labeled proteins for a whole range of am®ior
p. This shows that a significant portion of protefrem
SWISS-PROhave properties different from the known
ordered and disordered proteins.

Using p = 50 we selected 1,259 outliers frdBWISS
proteins and denoted this set @sitAvg To properly
evaluateOutAvg proteins, we constructed two additional
datasetsOrdHom with 539 SWISS-PROTomologues of
290 ordered proteins, amisHomwith 356 SWISS-PROT

their impact on our study of protein disorder.
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disordered
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Figure 3. The proportion of selected outliers from

SWISS set,
different p.

disordered and ordered proteins for

Table 3. Comparison of frequencies of the 3 most
interesting keywords associated with proteins in 4

datasets.
Keyword SWISS  OrdHom DisHom  OutAvg
Inner Membrane 21 2.2 6.5
Membrane 211 13.4 57.6
Transmembrane 17.7 9.3 55.7

5. Conclusions

We proposed a framework for exploiting large amount
of available unlabeled data in order to improveusacies
of various predictive data mining tasks such asaass
classification, outlier detection, and learninghwitiased

data.

As the crucial part of our approach, the contrast



2002, pp. 387-394.

[10] K. Nigam, A. McCallum, S. Thrun and T. MitchelText
classification from labeled and unlabeled documeisiag
EM”, Mach. Learning 2000, vol. 39(2/3), pp. 103-134.

[11] Z. Obradovic, K. Peng, S. Vucetic, P. Radiwj&. J.
Brown and A. K. Dunker, “Predicting intrinsic distar

classifiers are trained to characterize the contcas
difference between the possibly biased labeled dath
unlabeled data. Performance of contrast classifieas
similar to standard classifiers when labeled saniple
unbiased. However, the true strength of contrastsifier
comes from Its ab"'_ty to ef‘fec_tlvely dete‘?t outlgi from amino acid sequenceRroteins Special Issue on
examples with statistical properties contrastingsth of CASP5in press.

labeled data. While the extensive experiments on[12]J. C. Platt, “Probabilistic outputs for suppovector
synthetic data provided a useful characterizatibrihe machines and comparison to regularized likelihood
proposed framework compared to a range of standard methods”, InAdvances in Large Margin Classifier. J.
alternatives, the two successful applications ioldgy Smola, P. Bartlett, B. Scholkopf, D. Schuurmanss(ed

domain showed that contrast classifiers could bey ve

useful in solving important practical problems.

The conclusion is that unlabeled data, if available

large amount should be considered as an integralopa
data mining process and, therefore, should nogberéed.
The results indicate that the appropriate use tdhated
data could be greatly beneficial to improvement of [15] M. D. Richard and R. P. Lippmann, “Neural netk
predictive data mining quality.
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