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Abstract 
 

Predictive data mining typically relies on labeled data 
without exploiting a much larger amount of available 
unlabeled data. The goal of this paper is to show that 
using unlabeled data can be beneficial in a range of 
important prediction problems and therefore should be an 
integral part of the learning process. Given an unlabeled 
dataset representative of the underlying distribution and a 
K-class labeled sample that might be biased, our 
approach is to learn K contrast classifiers each trained to 
discriminate a certain class of labeled data from the 
unlabeled population. We illustrate that contrast 
classifiers can be useful in one-class classification, outlier 
detection, density estimation, and learning from biased 
data. The advantages of the proposed approach are 
demonstrated by an extensive evaluation on synthetic data 
followed by real-life bioinformatics applications for (1) 
ranking PubMed articles by their relevance to protein 
disorder and (2) cost-effective enlargement of a 
disordered protein database. 
 
1. Introduction 

 
A common assumption in supervised learning is that 

labeled data conforms to the same distribution as the data  
to which the predictor will be applied. However, due to 
various reasons such as sampling bias or prohibitive 
labeling costs, labeled datasets are often small and/or 
biased, which makes them unrepresentative of the 
underlying distribution. A predictor learned from such 
data may not generalize well on out-of-sample examples. 
On the other hand, it is typically easier to collect large 
amounts of unlabeled data at a significantly lower cost. 
Moreover, unlabeled samples are less likely to be biased 
and could therefore often be considered as representatives 
of the underlying data distribution. This property of 
unlabeled data makes it an attractive tool for improving 
accuracy of predictive data mining [17]. 

As a natural approach to handling unlabeled data, the 
Expectation Maximization (EM) algorithm [6] can be 
used to iteratively estimate the model parameters and 
assign soft labels to unlabeled examples by treating the 
unknown labels as missing data and assuming generative 

model such as mixture of Gaussians. EM has been widely 
used in areas such as text document classification [10], 
image retrieval [22] and multispectral data classification 
[18]. Co-training [2] provides another popular strategy for 
incorporating unlabeled data if the data can be described 
in two different sufficient views, or sets of attributes. The 
transduction approach [20] assigns labels to a given set of 
unlabeled data by maximizing the classification margins 
on both labeled and unlabeled data. However, it is often 
observed that these techniques could also degrade 
performance due to violated model assumption or 
convergence to local maxima [17]. 

Another line of research deals with learning problems 
characterized by extreme bias in labeled data. In one-class 
classification problems [19] only labeled examples from a 
single class are available and the goal is to predict out-of-
sample examples either as belonging to the class or as 
outliers. A possible approach to address this problem is to 
apply kernel density estimation (KDE) for learning the 
probability density of labeled data. Another approach is 
the support vector data description (SVDD) method 
which learns from the positive examples and artificially 
generated outliers [19] to separate the positive class from 
the rest. However, these approaches are ignoring 
unlabeled data that might be readily available. Partially 
supervised classification [9] provides a notable solution to 
one-class classification problems that utilizes unlabeled 
data; it initially assumes that all unlabeled examples come 
from the negative class, and then applies the EM 
algorithm to refine the assumption.  

In this study, we propose a novel approach for utilizing 
unlabeled data in data mining. It is based on constructing 
a contrast classifier that discriminates between labeled 
and unlabeled examples. The name contrast classifier 
comes from the meaning of its output - it represents a 
measure of difference, or contrast, in density of a given 
data point between labeled and unlabeled data. Given this 
property, it is apparent that contrast classifiers could be 
used in a wide range of important data mining 
applications such as outlier detection, one-class 
classification, density estimation, and learning from 
biased data. In Section 2, we provide a description of 
contrast classifiers and a range of their applications. In 
Section 3 we compare our approach to alternative 
methods on a challenging 3-class synthetic dataset. In 



Section 4, we illustrate the usefulness of the contrast 
classifiers on two real-life bioinformatics problems of (1) 
re-ranking of PubMed articles based on their relevance to 
protein disorder and (2) cost-effective enlargement of a 
dataset of disordered proteins.  

 
2. Methodology 

2.1. Contrast classifiers 

By g(x) we denote the probability density function 
(pdf) of unlabeled data U = {xi, i = 1, …, NU}, and we 
assume that it corresponds to the underlying distribution. 
In a K-class classification problem, g(x) can be 
represented as a mixture of K class-conditional pdfs, or 
g(x) = Σjpjgj(x), where pj is prior probability of class j and 
gj(x) is class-conditional pdf of data from class j. In a 
number of applications, the available unlabeled dataset U 
is large and could be used to derive a quite accurate 
estimate of g(x). By h(x) we denote the probability 
density function of labeled data L = {(xi, ci), i = 1, …, NL, 
ci∈{1, 2, …, K}}. It can also be represented as a mixture 
of class-conditional pdfs, or h(x) = Σjqjhj(x), where qj is 
prior probability of class j and hj(x) is class-conditional 
pdf of data from class j. Since L could be obtained 
through biased sampling, hj(x) may not equal gj(x) and 
thus h(x) may not equal g(x).  

We define a contrast classifier cc(x) as a classifier 
trained to discriminate between labeled data (class 0) and 
unlabeled data (class 1). Given an input x, the optimal 
contrast classifier able to approximate posterior class 
probability would output  
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where r is the fraction of unlabeled data in the training 
set. In the following subsection we will discuss the proper 
choice of r in practical applications. It is evident that if 
unlabeled and labeled data are drawn from the identical 
distribution, i.e., g(x) = h(x), the optimal cc(x) would be a 
constant equal to r.  

Assuming that the pdf of unlabeled data g(x) is known, 
the optimal cc(x) can be used to estimate h(x) as 
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To measure the difference in density of labeled and 
unlabeled data, we define the contrast as ratio h(x)/g(x) 
and from equation (2) we have 
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As we will illustrate later, the contrast measure can be 
extremely useful in a number of applications such as one-
class classification, outlier detection and learning from 
biased data. Since contrast(x) is a monotonically 

decreasing function of cc(x), contrast classifiers could be 
used directly to rank examples by their contrast measure. 

If labeled data consist of K classes, K class-specific 
contrast classifiers ccj(x), j=1, 2, …, K, could be 
constructed where ccj(x) is trained to discriminate 
between unlabeled data and class j of labeled data. The 
class-specific contrast classifiers can then be used to 
construct the maximum a posteriori (MAP) classifier. 
Using (2), posterior probability p(c = jx) of class j can be 
expressed as 
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where, for simplicity, r was set to 0.5 in all ccj(x), j = 1, 
…, K. Often, we have some knowledge about prior class 
probabilities in unlabeled data and about the 
misclassification costs, which should be used to select 
more appropriate priors in (4) instead of qj. Based on (4), 
the decision rule using contrast classifiers as a MAP 
classifier can be expressed as 
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An important result is that knowledge of g(x) is not 
needed to construct the MAP classifier from class-specific 
contrast classifiers. Therefore, as seen from (5), if labeled 
data are an unbiased sample, contrast classifiers can be 
directly used to provide an optimal solution for multi-
class problems.  
 
2.2. Construction of contrast classifiers 

In practice, unlabeled dataset could be much larger 
than labeled dataset. Learning on such imbalanced data 
would result in a low-quality contrast classifier, while 
learning time could be prohibitively long. Moreover, the 
quantity (1-cc(x))/cc(x)⋅r/(1-r), which provides a measure 
of contrast in labeled data, is numerically less stable for 
imbalanced training data with large r. Learning on 
imbalanced data has received a lot of attention in the data 
mining community, and most successful strategies are 
based on balanced training data [8]. In our approach, we 
train an ensemble of classifiers on balanced training sets 
consisting of equal number of labeled and unlabeled 
examples randomly sampled from the available labeled 
and unlabeled data. Similar to bagging [5] we construct a 
contrast classifier by aggregating the predictions of these 
classifiers through averaging. With the proposed method 
we are effectively using information available from the 
large unlabeled data, thus allowing construction of more 
accurate contrast classifiers. 

Classification algorithms able to approximate posterior 
class probability are suitable choices for contrast 
classifiers. These algorithms include logistic regression, 
feed-forward neural networks with sigmoid activation 



functions [15], or even decision trees [14]. Additionally, 
there are several types of binary classifiers (e.g. support 
vector machines; naive Bayes) producing output scores 
that can be interpreted as prediction strength. It has been 
shown that these scores could be successfully calibrated 
to posterior class probability in case of support vector 
machine (SVM) [12] and naive Bayes [24] classifiers. 
The results indicate that the output from such classifiers 
can be interpreted as a monotonically increasing function 
of the posterior class probabilities. It follows that 
h(x)/g(x) can be represented as F(cc(x)), where F(⋅) is a 
monotonically decreasing function. In section 4 we will 
illustrate that this property allows successful use of 
classifiers such as SVM as contrast classifiers in some 
important applications. 

While contrast classifiers could be used to produce a 
MAP classifier, it is evident that (1-cc(x))/cc(x) term in 
(4) could cause prediction instability for inputs x with 
small cc(x). In practice, this should not be an issue since 
unlabeled data can be considered to be a mixture of 
distributions with one or more mixture components 
corresponding to the unlabeled data. Therefore, contrast 
classifiers are not likely to produce values near zero. 
Exceptions could be extreme scenarios where labeled data 
are outliers obtained by highly biased sampling and 
covering a highly limited portion of a feature space. The 
property of unlabeled data that allows construction of 
well-behaved contrast classifiers in most realistic cases is 
essential for the success of the proposed methodology. 
 
2.3. Contrast classifiers for density estimation 

As seen from equation (2), contrast classifiers could be 
used for class-conditional density estimation. Since 
unlabeled dataset could be very large, relatively accurate 
estimation of g(x) should be feasible using some of the 
standard nonparametric methodologies such as mixture 
modeling or kernel density estimation. Therefore, if a 
contrast classifier able to approximate posterior class 
probability is used, it should be possible to obtain a fairly 
accurate estimate of labeled data pdf from (2). However, 
in this paper we will not pursue this direction any further. 
 
2.4. Contrast classifiers for one-class classification 

and outlier detection 

In one-class classification, labeled dataset contains 
examples from only one class, called positive class. The 
goal is to build a model able to recognize whether a new 
example is from positive class. Complementary, the task 
can be detection of outlying examples that are 
distributionally underrepresented in labeled data. 
Therefore, contrast(x) from equation (3) is very suitable 
for both tasks: given an appropriate threshold, all 
examples with contrast(x) above (below) the threshold 

can be classified as positive (outliers). Since contrast(x) is 
a monotonically decreasing function of cc(x), a threshold 
can be applied directly on contrast classifier outputs. 

A choice of an appropriate threshold for one-class 
classification could be difficult since the output range of 
contrast classifiers depends on the dataset. To alleviate 
this problem, in our approach we introduce the threshold 
θ p such that condition cc(x)>θ p is satisfied for a user-
specified p% of labeled examples. Therefore, p represents 
an upper bound on the false negative rate (percent of 
rejected positive examples), and a user should select it in 
order to achieve the optimal trade-off between false 
positive and false negative rates in one-class 
classification.  
 
2.5. Contrast classifiers for learning from biased 

data and generalized outlier detection 

As seen from equation (4), contrast classifiers could in 
theory be used to substitute standard multi-class 
classification algorithms. Therefore, in scenarios where 
labeled data is an unbiased sample with h(x) = g(x) both 
approaches should achieve the similar classification 
accuracy. However, in the more general setup where 
labeled data is a biased sample with h(x) ≠ g(x), the 
benefits of contrast classifiers become apparent. They 
follow from the ability of contrast classifiers to detect 
examples underrepresented in labeled data while 
achieving near-optimal classification on the others. 

For a given example x, let ccj(x), j = 1, 2, …, K, denote 
the outputs of K class-specific contrast classifiers. If all K 
outputs are large, x is likely to be an outlier or an example 
underrepresented in the labeled data. In such a case, the 
best policy could be not to provide classification; this 
would result in an increased overall accuracy at the cost 
of somewhat decreased coverage. Similar to the use of 
contrast classifiers in one-class classification, in our 
approach a user-specified constant p is used to determine 
K thresholds θj

 p, j = 1, 2, …, K, such that p% of positive 
training examples satisfy ccj(x) > θj

p, for each j = 1, 2, …, 
K. Classification is not provided for examples with ccj(x) 
> θj

p for all j = 1, 2, …, K. Otherwise, equation (4) is used 
for classification. 

It is evident that the procedure for classification on 
biased data includes detection of outliers that we denote 
as generalized outlier detection since it detects examples 
underrepresented in each of the K classes available in 
labeled data. 

3. Experiments on waveform data  

In this section we use the well-known waveform 
dataset [4] to illustrate the effectiveness of our approach 
on one-class classification in the presence of unlabeled 
data, as well as on multi-class classification on unbiased 



and biased data. In this 3-class dataset, there are 21 
attributes defined as a linear combination of two out of 3 
basic waveforms with randomly generated coefficients. 
Its noisy version includes 20 additional irrelevant 
attributes with Gaussian distribution. Learning on the 
waveform dataset is generally considered a difficult task 
with reported accuracy of 86.8% using a Bayes optimal 
classifier. 

 
 3.1. One-class classification 

We first compared contrast classifier (CC) with two 
alternatives for one-class classification: kernel density 
estimation (KDE) and support vector data description 
(SVDD) [19]. While both KDE and SVDD learn 
exclusively from labeled data to directly or indirectly 
estimate h(x), the contrast classifier utilizes unlabeled 
data to estimate h(x)/g(x). 

Kernel density estimators directly estimate h(x) from 
labeled data as  
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where G is the Gaussian kernel with bandwidth w and n 
is the number of labeled examples. If a new example has 
h(x) below a certain threshold it is considered an outlier. 
The threshold can be determined as described in Section 
2.4. The optimal bandwidth w is the value that maximizes 
the data likelihood.  

Instead of estimating the h(x) directly, the SVDD 
method uses artificially generated outliers [19] along with 
the positive examples to construct a hyperspherical 
decision boundary of minimal possible volume that 
separates the positive class examples from others. To 
construct more flexible decision boundaries, kernel 
functions are introduced to map the data into a higher 
dimensional space. For SVDD experiments we used the 
data description toolbox (dd_tools) from 
http://ida.first.gmd.de/~davidt/. 

The contrast classifier was implemented as an 
ensemble of feed-forward neural networks. Each network 
had 10 hidden and 1 output sigmoid neurons. The number 
of component neural networks was determined 
empirically. To train a single network, a balanced dataset 
was formed from N examples taken randomly with 
replacement from the labeled data and another N from the 
unlabeled data. As discussed in Section 2.4, we used 
contrast classifier output cc(x) instead of contrast(x) for 
classification. 

Two sets of waveform data were generated: N (<< 
150,000) labeled examples from class 1 and 150,000 

unlabeled examples, 50,000 from each of the 3 classes. To 
examine the effect of labeled data size and irrelevant 
attributes, experiments were performed under four 
scenarios: 1) N = 200, 2) N = 200 noisy, 3) N = 2000, 4) 
N = 2000 noisy. Here “noisy” refers to the noisy version 

of waveform data with 20 irrelevant attributes. The 
accuracy of one-class classification was measured as the 
true positive rate when the false positive rate was 20%. 
For CC and KDE, the desired false positive rate was 
obtained by selecting appropriate thresholds. For SVDD, 
it was obtained from the ROC curve generated by the 
dd_tools software. 

In Figure 1 we show that the accuracy of contrast 
classifiers improved with the number of component 
neural networks but then saturated at around 20. 
Therefore, in the remaining experiments in Section 3 we 
used an ensemble of 20 neural networks as the contrast 
classifier. Table 1 compares the accuracies of the three 
methods. In all four scenarios, contrast classifier was 
superior to the other two methods showing that unlabeled 
data could greatly improve the accuracy of one-class 
classification. It is worth noting that the performance of 
the KDE method degraded as irrelevant attributes were 
introduced, while CC and SVDD appeared to be robust to 
noise. 
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Figure 1. The effect of the number of component 
neural networks on accuracy for N = 2000 noisy 
scenario 

3.2. Classification with unbiased data 

As shown in Section 2.1, if labeled data is unbiased, 
class-specific contrast classifiers could be used to 
construct a MAP classifier. In this section, we compare it 
with a standard 3-class neural network classifier, which is 
an ensemble of 20 3-output neural networks each trained 
on a bootstrap replicated sample of the labeled data. The 3 
class-specific contrast classifiers were trained with a 
balanced set consisting of labeled examples from a given 
class and unlabeled examples. For this experiment, a total 
of 1500 labeled examples and 150,000 unlabeled 
examples were generated with different class proportions. 

In Table 2 we report their accuracies obtained in 
experiments with 3 different class proportions. The 
overall accuracy was calculated as average of individual 



class accuracies weighted by class proportions.  It is 
evident that the contrast classifier approach achieved 
accuracy comparable to the best multi-class classifiers 
when labeled data is unbiased. As will be seen in the next 
subsection, the true strength of contrast classifiers 
becomes apparent when labeled data is biased. 

Table 1. Comparison of three methods in one-class 
classification 

Dataset Method Accuracy (%) 

CC 94.9 
KDE 63.8 N = 200 

SVDD 67.7 
CC 92.7 

KDE 54.3 N = 200 noisy 
SVDD 68.6 

CC 96.1 
KDE 65.2 N = 2000 

SVDD 68.1 
CC 95.1 

KDE 56.9 N = 2000 noisy 
SVDD 65.3 

CC - contrast classifier, KDE - kernel density estimation, SVDD - support 
vector data description 

Table 2. Comparison of a MAP based on class-specific 
contrast classifier and a standard 3-class neural network 
in classification with unbiased labeled data 

Class 
Proportion 

Method 
Class 1 

(%) 
Class 2 

(%) 
Class 3 

(%) 
Overall 

(%) 
CC 81.9 88.1 88.4 86.1 

1:1:1 
NN 80.9 87.1 89.4 85.8 
CC 54.9 94.4 94.2 90.4 

1:4.5:4.5 
NN 65.2 91.1 94.7 90.1 
CC 62.9 75.0 99.5 93.4 

1:1:8 
NN 69.7 78.6 98.5 93.6 

CC - the MAP classifier based on 3 class-specific contrast classifiers 
NN - an ensemble of 20 neural network with 3 outputs 
 

3.3. Classification with biased data 

We consider a biased data scenario where examples 
from class 3 are completely missing from the labeled data. 
In such a case, the desired classifier should have high 
classification accuracy on examples from classes 1 and 2, 
while it should be able to recognize class 3 examples as 
underrepresented in labeled data and thus refuse to predict 
on them. We examined the performances of contrast 
classifier (CC) and kernel density estimation (KDE) 
approaches on this challenging problem.  

For the CC approach, two contrast classifiers specific 
for classes 1 and 2 were constructed and combined to 
detect underrepresented examples as described in Section 
2.5. For the KDE approach, the class-conditional densities 
h(x|c=1) and h(x|c=2) were estimated from the labeled 
data. If h(x|c=j) < θj

p for both j=1, 2, x was characterized 
as an outlier and classification was not provided. The 
thresholds θj

p were determined such that p% of class j 
examples satisfy h(x|c=j) < θj

p. Otherwise, classification 
was provided using the Bayes rule: if h(x|c=1) > h(x|c=2), 

x was labeled with class 1 and vice versa.  
We generated labeled data with N examples from 

classes 1 and 2. The unlabeled data consisted of 50,000 
examples for each of the 3 classes. Two experiments were 
performed: (a) N = 500 with 20 noisy attributes, (b) N = 
5000 without noisy attributes. For a range of choices of 
parameter p with both CC and KDE approaches we 
measured (1) classification accuracy of classes 1 and 2, 
(2) prediction coverage of classes 1 and 2, and (3) 
prediction coverage of class 3. An ideal predictor should 
have a 100% accuracy and 100% coverage of classes 1 
and 2, but 0% coverage of class 3. 
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(a) N = 500 noisy 
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(b) N = 5000 

Figure 2. ROC and AC curves for classification with 
biased data  

In Figure 2 we report the performance of both 
approaches as: (1) ROC curve - class 3 coverage vs. class 
1+2 coverage (2) AC curve - accuracy vs. class 1+2 
coverage. Clearly, CC achieves both better accuracy and 
lower class 3 coverage than KDE for a whole range of 



class 1+2 coverage. As in Figure 2(b), while retaining 
95% coverage on classes 1+2, CC approach reduced class 
3 coverage to about 20% vs. 70% by KDE, thus was more 
effective in detecting outliers. An interesting result is that 
slight increase in accuracy was achieved with decrease in 
class 1+2 coverage in both scenarios with both models. 
Consistent with results reported in Section 3.1, contrast 
classifiers proved to be very robust to noisy attributes and 
small labeled data size. These results show that unlabeled 
data can be extremely useful in classification of biased 
labeled samples and should be an integral part of learning 
process whenever available. 
 

4. Bioinformatics application: analysis of 
protein disorder 

Disordered proteins are characterized by long regions 
of amino acids that do not have a stable three-dimensional 
conformation under normal physiological conditions. 
Recent results indicate that, despite the traditional view, 
disordered proteins are common in nature and are 
responsible for a spectrum of important biological 
functions [7]. However, due to the historical overlooking 
of this property, the knowledge about protein disorder is 
scattered across literature and described with non-unified 
terminology. Important data mining challenges include 
allowing cost-effective extraction of knowledge about 
protein disorder from literature, as well as assisting in 
better understanding available information about protein 
disorder. In this section we illustrate that contrast 
classifiers are appropriate tools for addressing these 
challenges. 

 
4.1. Ranking of PubMed articles 

In a search for biological papers describing properties 
of uncharacterized disordered proteins, we started from a 
set of 178 articles describing properties of 90 known 
disordered proteins collected through intensive literature 
search by several experts [7]. By querying PubMed 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubM
ed), an open access web-based archive of biomedical 
literature, with names of the 90 disordered proteins, we 
found that 67 of these proteins had more than 100 
PubMed citations, 35 had more than 1,000 citations, and 
12 had more than 10,000 citations. Out of the 178 articles 
only 13% (28%) were returned as the top 5 (10) PubMed 
retrievals. Our goal was to improve this fraction by 
ranking the abstracts retrieved by PubMed based on their 
relevance to properties of disordered proteins extracted 
automatically from the relevant articles. 

In this one-class classification scenario, the labeled 
(positive) set P contained 166 abstracts stored at PubMed, 
while the unlabeled set contained 18,499 abstracts from 
PubMed obtained by querying with the 90 disordered 

protein names. After removing infrequent and stop words, 
remaining words were preprocessed into terms by 
eliminating suffixes using Porter stemmer [13]. 
Frequencies of terms were computed over C and P sets 
and terms were ranked based on the difference in their 
frequency in C and P. The most discriminative K terms, 
called keywords, were used to represent each PubMed 
abstract as a vector of TF-IDF weights [16] calculated as 
a ratio between the term frequency and the inverse 
document frequency. Following the approach outlined in 
Section 2.2, we then trained the contrast classifier as a 
linear SVM to rank the unlabeled abstracts based on its 
output.  

Using the top 200 keywords (K = 200), significant 
improvement was achieved in ranking as compared to 
PubMed default output: the fraction of citations ranked in 
the top 5 (top 10) was increased from 13% (28%) to 50% 
(71%). These results suggest that labor involved in 
finding relevant literature can be reduced many times 
through the proposed re-rankings by contrast. We note 
that while the illustrated use of unlabeled data in text 
mining is not novel, the value of our work is in describing 
this approach through the statistically appealing 
framework of contrast classifiers. 
 
4.2. Contrast classifiers for study of protein 

disorder 

Here the problem was to discover and understand 
proteins that are underrepresented in a labeled database of 
known ordered and disordered proteins. By using contrast 
classifiers we showed that the outlying proteins are 
numerous and have specific properties that may provide a 
novel insight into structural and functional properties of 
proteins. 
 
4.2.1. Contrast classifiers for ordered and disordered 
proteins prediction. The labeled dataset we used 
consisted of 152 proteins containing disordered regions 
longer than 30 consecutive residues and 290 completely 
ordered proteins [21]. Every pair of the labeled sequences 
had less than 30% sequence identity. The unlabeled data 
was constructed from the October 2001 release 40 of 
SWISS-PROT database [3] containing 101,602 proteins. 
The ProtoMap database [23] was used to group these 
proteins into 17,676 clusters based on their sequence 
similarities [21]. One representative protein was then 
selected from each cluster, resulting in an unlabeled 
dataset of 17,676 proteins.  

In our previous work it was found that order/disorder 
properties of a given sequence position could be predicted 
fairly accurately based on sequence properties within a 
symmetric input window centered on that position. Our 
currently best disorder predictor VL3 [11], an ensemble 
of 10 neural networks, uses 20 window-based attributes 



including 18 relative frequencies of 18 out of the 20 
amino acids within an input window of length 41, the 
flexibility index averaged over the window, and the K2-
entropy. Its overall accuracy is 83.9%, with 76.3%/91.4% 
accuracy on disorder/order class.  

In a more recent study [21] two class-specific 
autoassociator neural networks were constructed to detect 
underrepresented proteins. The two resulting models were 
effective in discovering important classes of under-
represented proteins. However, the overall accuracy of a 
disorder predictor based on the two models was only 
69.8%, more than 10% worse than that of VL3, indicating 
that more accurate outlier detection is possible. 

In this study, we built two class-specific contrast 
classifiers ccdisorder and ccorder as ensembles of 50 neural 
networks using the same attributes as VL3. A MAP 
disordered predictor was then constructed according to 
equation (5) where both priors were set to 0.5. Its overall 
accuracy was 84.0%, with 75.6%/92.3% on disorder/order 
class, which were practically identical to those of VL3. 
This result suggests the effectiveness of contrast 
classifiers in the selection and analysis of 
underrepresented proteins. 
 
4.2.2. Application of contrast classifiers to selection 
and analysis of underrepresented proteins. We first 
filtered the 17,676 unlabeled proteins by applying one 
round of blastp algorithm [1] with E-value threshold 1 to 
remove proteins similar to the labeled proteins. Then we 
retained only those with lengths between 200 and 500 
amino acids, which resulted in the SWISS set with 6,964 
proteins. 

After applying the two contrast classifiers on a protein 
of length L, two L-dimensional vectors of position-by-
position predictions are obtained. To allow detection of 
proteins that are overall the most different from the 
labeled ordered and disordered proteins, we summarized 
each protein with cc_avgorder and cc_avgdisorder, 
representing the average predictions of the contrast 
classifiers. Similar to the approach described in Section 
2.5, we determined thresholds θorder

 p and θdisorder
 p, such 

that p% of SWISS proteins satisfy cc_avgorder > θorder
p and 

cc_avgdisorder > θdisorder
p, respectively. In Figure 3 we show 

the proportions of selected outliers from SWISS set and 
the labeled proteins for different p. As could be seen, the 
proportion of outliers in SWISS set is significantly higher 
than the labeled proteins for a whole range of choices for 
p. This shows that a significant portion of proteins from 
SWISS-PROT have properties different from the known 
ordered and disordered proteins. 

Using p = 50 we selected 1,259 outliers from SWISS 
proteins and denoted this set as OutAvg. To properly 
evaluate OutAvg proteins, we constructed two additional 
datasets: OrdHom with 539 SWISS-PROT homologues of 
290 ordered proteins, and DisHom with 356 SWISS-PROT 

homologues of 152 disordered proteins. Similar to our 
previous approach [21], for each dataset we calculated the 
frequencies of 840 keywords listed in SWISS-PROT that 
summarize the structural and functional properties of a 
given protein. Table 3 shows a summary for the 3 most 
interesting keywords selected according to their 
frequencies, which correspond to a large family of 
membrane proteins known to have specific structural and 
functional characteristics. It can be seen that they are 
highly underrepresented among our labeled ordered and 
disordered proteins as compared to SWISS, while they are 
very common in the identified set of outliers OutAvg. 
Thus, it is likely that most of the bias in our labeled data 
comes from membrane proteins. It is the matter of further 
research to determine the full significance of these and 
other detected underrepresented functional groups and 
their impact on our study of protein disorder. 
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Figure 3. The proportion of selected outliers from 
SWISS set, disordered and ordered proteins for 
different p. 

Table 3. Comparison of frequencies of the 3 most 
interesting keywords associated with proteins in 4 
datasets. 

Keyword SWISS OrdHom DisHom OutAvg 

Inner Membrane 2.1 2.2 2.1 6.5 

Membrane 21.1 13.4 13.2 57.6 

Transmembrane 17.7 9.3 8.9 55.7 

 
5. Conclusions 
 

We proposed a framework for exploiting large amount 
of available unlabeled data in order to improve accuracies 
of various predictive data mining tasks such as one-class 
classification, outlier detection, and learning with biased 
data. 

As the crucial part of our approach, the contrast 



classifiers are trained to characterize the contrast or 
difference between the possibly biased labeled data and 
unlabeled data. Performance of contrast classifiers was 
similar to standard classifiers when labeled sample is 
unbiased. However, the true strength of contrast classifier 
comes from its ability to effectively detect outlying 
examples with statistical properties contrasting those of 
labeled data. While the extensive experiments on 
synthetic data provided a useful characterization of the 
proposed framework compared to a range of standard 
alternatives, the two successful applications in biology 
domain showed that contrast classifiers could be very 
useful in solving important practical problems.  

The conclusion is that unlabeled data, if available in 
large amount should be considered as an integral part of 
data mining process and, therefore, should not be ignored. 
The results indicate that the appropriate use of unlabeled 
data could be greatly beneficial to improvement of 
predictive data mining quality. 
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