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Abstract - A feed forward neural network (FFNN)
has been trained to discriminate between power trans-
former magnetizing inrush and fault currents. The train-
ing algorithm used was back-propagation, assuming ini-
tially a sigmoid transfer function for the network’s pro-
cessing units (“neurons”). Once the network was trained
the units’ transfer function was changed to hard limiters
with thresholds equal to the biases obtained for the sig-
moids during training. The off-line experimental results
presented in this paper show that a FFNN may be con-
sidered as an alternative method to make the discrimina-
tion between inrush and fault currents in a digital relay
implementation.
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1. INTRODUCTION

Any power transformer protective scheme has to
take into account the effect of magnetizing inrush cur-
rents, since this effect could cause miss-operation of the
relays[1]. The two classic methods used to avoid un-
desired tripping due to inrush currents are: 1) imple-
mentation of delays in the protective devices, and 2) re-
straining or blocking the relay operation according to the
harmonic content of the measured current. The first so-
lution has been used for primary overcurrent protection
and in differential schemes. However, this option is un-
desirable because of the potential danger of delaying the
tripping time during a real internal fault. The second so-
lution is based on the fact that the second harmonic com-
ponent of the inrush current is considerably larger than
in a typical fault current[2], and schemes based on the
detection of the second (sometimes the fifth) harmonic
were proposed and implemented in both analog and dig-
ital differential relays with good results [3,4,5,6,7].

In a recent paper [8] it was reported that, in certain
cases, harmonics are generated during internal faults in
transformers and therefore the detection of the second
and/or fifth harmonic is not a sufficient index to de-
termine if the measured overcurrent is an inrush or an
internal fault.
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In that paper, a method based on the use of one
of the primary phase voltages as the control signal is
proposed. There are also methods for transformer pro-
tection that are implicitly immune to magnetizing inrush
[9,10]; and some other effective ways for detecting inrush
have been proposed [11,12].

The method described in this paper detects inrush
current based on recognizing its wave shape, more pre-
cisely, in differentiating its wave shape from the fault
wave shapes. This discrimination can be done in dif-
ferent ways, one of the most common methods uses the
harmonic analysis of the signal, while others are based
on the use of neural networks. The work reported here
is a description of an experimental demonstration that a
feed forward neural network could be used as an alterna-
tive method to discriminate between inrush magnetizing
current and internal faults in power transformers. The
network and its training process were adapted to the goal
of implementing the algorithm in a digital protective re-
lay.

2. NETWORK CHARACTERISTICS
2.1. General

The general architecture of a feed forward neural
network is shown in Figure 1. The most important char-
acteristics of this network are: 1) processing units are
grouped by layers, and 2) the processor interconnect is
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Figure 1. General architecture of a FFNN.
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organized such that all inputs to a layer come exclu-
sively from outputs originating in some previous layer
(the specific FFNN used does not have connections skip-
ping layers). The basic equations that define the way this
FFNN computes its output given an input vector x are
presented in Appendix 1. The FFNN training process
consists of determining the weights W(™) and the units’
biasing b{™), in order to make the network respond in a
given way. The training method used in this work was
the well known back-propagation algorithm[13,14,15,16].
Appendix 2 gives a basic description of the training pro-

cess using back-propagation, and defines the training
matrices.

2.2. Input - Output

The FFNN implementation used is constrained in
part by the nature of the current classification problem
and also in part by existing digital relay system orga-
nization. Based on this, the following criteria can be
stated:

1) Digital relays base their operation on samples of
the measured quantity (current, in this case). The sam-
pling rate and the data window varies depending on the
application. For this particular case, since the NN must
recognize wave shapes, it seems to be logical to use a one
cycle length window.
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Figure 2. Simplified block diagram of a protective
relay using two possible implementations of the inrush
detection function.

it) As shown in Figure 2, the function of recognizing
inrush is accessory, i.e., it can be assumed that the digi-
tal relay has a different function to implement the power
transformer protection (for example, primary overcur-
rent or differential principle), inrush detection can be
used as permissive for the relay operation, or to restrain
the relay operation. Independently of the way this com-
bination is made, both functions (inrush detection and
protection) may use the same sampling rate. A sampling
rate of 12 samples per cycle (720 Hz), was chosen in view
of reported experience on different digital relay designs
[17].

ii1) The fact mentioned above bounds the problem
as one of designing a FFNN that, given a sequence of
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samples of the transformer current, it can distinguish
the two wave shapes. A good approach allows to have a
network capable of determining if the input current is or
is not an inrush, this means that the number of outputs
of the neural network (number of units in the output
layer) NN must be 1, necessary to indicate “true” and
“false,” or “0” and “I1”, as indicated in section 3.2. In
this case it was chosen that the network’s output be 0
when the applied current is an inrush, and 1, when it is
not an inrush.

2.3. Basic Architecture

A functional block representation of the scheme used
to achieve the goals stated in the former sections is shown
in Figure 3. This kind of network is sometimes called
time-delay neural network [16] and has been used re-
cently in another power system application [18]. Feed
forward networks have also been applied to the detection
of high impedance faults with remarkable results [19,20].
Notice that the scheme given in Figure 3 is equivalent to
the scheme of Figure 1, if the input z; is equal to the
E** sample of input z(t). In other words, the network
will receive the 12 samples of each window every sample
period, and must make a decision based on these 12 sam-
ples (i.e. one cycle), which implies the number of inputs
must be 12. The number of layers and the number of
units on each layer is determined by the heuristic pro-
cess described in section 4.1 (the only layer completely
defined at this point is the output layer).
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Figure 3. Time-delay network.

3. TRAINING STRATEGY
3.1. Training Examples

Given that the network has to distinguish between
two kind of signals, two sets of examples signals (cases)
were prepared for that purpose: the inrush cases and the
fault cases.

The inrush cases were measured in the laboratory
energizing at random a small power transformer of 50
VA, 120/240 V. The cases taken to train the network
were chosen such that they represented an acceptable
range of inrush current shapes (the six cases described
in [21] were considered) Those signals were stored in a
PC by means of a program developed at WSU [22]. The
sampling rate at which the inrush signal examples were
measured was originally 84 samples per 60 Hz cycle, and
then re-sampled (at a rate 7 times lower) to get the de-
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sired 12 samples/cycle. Figure 4 show some of the inrush
training signals.

The fault cases were generated by computer, some of
these using an electromagnetic transients program (23],
others by simple generation of fault-like signals (response
of an R-L circuit), and a third group of fault-like currents
infected with second, third and fifth harmonics.
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Figure 4. Four inrush training cases.

Two special cases grouped with the inrush cases
were the zero current (indicating the transformer is de-
energized) and the load current (a simple sinusoidal wave
with a magnitude equal to the transformer load current).

For each case, signals were sampled at 12 samples
per cycle (with a window length equal to one cycle) and
the total of samples was limited to have about 100 win-
dows (i.e. 1.67 seconds per case).

3.2. Data Windowing and Training Matrices

The training matrices were built in such a way that
the network was trained to produce a 0 output when the
presented signal was an inrush, a zero current or a full
load condition; and a I output for the other cases (the
authors do not insinuate the method can be used to do
all the protection function, since additional research will
be needed to prove it).

Vectors p; were built from the cases in the following
way (see Appendix 2 for the definition of these vectors).
Suppose the first of the cases’ signals is characterized by
the sequence:

i = [ig, 52, - iky - - - d112) (1)

this means, a sequence of 112 samples. The first vector
p1 elements corresponds to the first 12 samples of ¢, the
vector p; entries are the 12 samples from i, to i;3 and
so on, until completing the first 100 columns of exam-
ple matrix P defined in eqn. (A-11) and (A-13). The
same process was repeated for each cases’ signal until
having an example matrix of 936 columns (the number
of examples, n,). This matrix was built such that the
first 800 examples correspond to inrush examples (de-
sired output=0), and the other 336 examples correspond
to faults (desired output=1). Since the FFNN has only

one output, matrix D became a horizontal vector of 936
elements, the first 600 entries are 0’s and the other 336
are 1’s. In practice, a target tolerance of 0.1 was used,
meaning that the network was trained to produce a re-
sponse of 0.9 or greater to represent one class and 0.1 or
less to represent the other class. This is necessary be-
cause the nature of the nonlinear squashing function is
such that it can never assume the precise values of 0.0
or 1.0.

3.3. Training Process

Once the training matrices P and D were defined,
the back-propagation algorithm was applied to the prob-
lem. The MATLAB Neural Network Toolbox [24] was
used for such a purpose. Function TRAINBP was used
with sigmoid transfer functions and a learning rate vari-
able between 0.01 and 0.1. The admissible error (sum of
square errors in an epoch) was 0.1, for which it was nec--
essary to present the training matrices between 200 and
600,000 times, depending on the network size (number
of units) and the learning rate employed.

4. IMPROVING THE NETWORK
4.1. Network Testing and Pruning

As mentioned in section 2.2 it is desired that the net-
work be applied in a digital relay implementation. This
implies a compromise between speed and accuracy. As is
well known, the FFNN classification time (the required
time to produce an output given an input) depends on
the number of units in the network, so it is very im-
portant to have the lowest number of units but without
jeopardizing the quality of the classification. Figure 5
shows the architectures tested for this purpose.
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Figure 5. Tested architectures.



The training process was first tried in a 3-layer (2-
hidden), 124+2+1 FFNN as shown in Figure 5a. The
result was tested with another set of examples (different
than the set used for training) which gave successful re-
sults. To achieve the error limit with this network, only
about 200 epochs were necessary, which encouraged the
authors to try a smaller net. In fact, by a process of
pruning the network, the architectures shown in Figure
5 were trained and tested, until having inadmissible re-
sults for the 2-layer (1 hidden), 4+1 FFNN of Figure 5f.
By inadmissible results the authors mean it was practi-
cally impossible to reach the low error established as a
criterion to stop training.

4.2. Hard Limiter Units

Once the networks with sigmoid units were trained
and tested with good results (see Figure 6a), the units
transfer functions were changed to hard-limiters (see Ap-
pendix 1). This change increases the NN computation
speed considerably since it takes less computation time
to implement a hard limiter (unit step) than a sigmoid
(see equations (A-6) and (A-T)). In fact, a hard-limiter
is equivalent to an IF statement. The implicit risk in
this change is that in certain cases the approximation of
the sigmoid by a unit step could produce an inadmissible
error. With hard limiters, the output of one of the units
is obtained by comparing the unit’s input:

Ly
b= wia{™ (2)
k=1
with the unit’s bias b;.
5. RESULTS

Figures 6 and 7 show the results obtained after test-
ing the networks with non-malicious testing examples
(i.e. examples which are different from the ones used for
training, but have the same form).
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Figure 6. Results of testing a trained 6+2+1 FFNN:
a) Sigmoid units, inrush examples, b) HL units, inrush
examples, c) sigmoid units, fault examples, d) HL units,
fault examples.

Two testing matrices (similar to matrix P) were
formed: one with only inrush cases, containing exam-
ples of inrush currents different than the ones used for
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training, and the other with fault examples plus and an
artificially created inrush-like signal, at the end of the
matrix. This las set of examples can be considered ma-
licious, since the fault examples were mixed with a set
of examples obtained from a wave shape similar to the
inrush current, but created by means of a mathematical
equation.

Note from Figures 6 and 7 the network responds
in a very adequate way, performing the discrimination
function between inrush and fault currents correctly for
most cases. In fact, for the 6+2+1 network, the classi-
fication was 100% correct for the inrush examples and
97.1% correct for the fault plus inrush artificial exam-
ples. The percentage of correct classification for the 6+1
network was 99.6% for the inrush examples and 94.6%
for the fault plus inrush artificial examples. This per-
centages are measured by counting example by example
(every sample in time), so it does not mean the network
fails. The miss-operation of an eventual relay using the
algorithm, can be avoided by using an integrator imme-
diately after the relay output or, alternatively, after the
inrush detector. This scheme has been used in analog
and digital relays to insure correct operation.

Table 1 displays some of the important numbers re-
lated to the networks shown in Figure 5. Networks were
classified as having either good or poor performance (by
good performance the authors mean that the network
could be trained to achieve the error goals and responded
adequately to the test). Note from the table that the net-
work with good performance and the minimum number
of units was the 2-layer 6+1 network shown in Figure 5e.
This implies that, taking into account that the weights
and biases are fixed (can be previously loaded in the
system’s memory), a digital relay implementation (with
12 samples per cycle), would have to be capable of 78
scalar multiplications, 71 additions and 7 comparisons
(IF statements) in order to recognize the inrush current.
Therefore the relay should be able to execute all these
operations and the protective function in a twelfth of a
cycle, which is 1.4 msec. This is reasonable for modern
microprocessor based systems.
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Figure 7. Results of testing a trained 64+1 FFNN:
a) Sigmoid units, inrush examples, b) HL units, inrush
examples, c) sigmoid units, fault examples, d) HL units,
fault examples.
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TABLE 1

Net. [ of [# of |# of [# of [# of [Perfor-
# llayers junits mult. jaddit. [IF mance
13 124241 |170 |155 15 good
22 1241 156 143 13 good |
33 6+2+1 |86 77 9 good
413 44+2+1 |58 51 7 [poor
52 641 78 71 7 ood
6 2 441 52 47 5 ﬁoor

6. DISCUSSION
6.1. Quality of Generalization

Quality of generalization is a critical point in any
neural network application. In this case the question
that arises has to do with the example signals. Both
sets of inrush examples, the training and the testing ex-
amples, were measured for the same kind of transform-
ers. This could produce inconclusive results, since it is
impractical to train the network with inrush examples
measured on the specific transformer where the network
is going to be applied. However, as mentioned before,
the network responded well when an artificially created
inrush-like signal was presented to it, which experimen-
tally indicates that the NN generalizes based on the in-
rush current shape, more than on the transformer design.
As a preliminary effort the training does not need to be
so specific, but it would be a good procedure to use the
method proposed here in a relay to protect transform-
ers with similar characteristics to the transformer whose
inrush was used to train the network.

It should be noted that signal examples representing
the differential current obtained in the event of an exter-
nal fault when one of the current transformers saturates
were not used. This kind of examples can be included
with the “non-inrush” cases since there is no reason for
which the network can not be trained. The authors rec-
ognize that the current wave shape in this case is closer
to the inrush case.

No consideration was given to the effect due to ener-
gization of adjacent transformers, but there is no reason
to say that the network can not be trained to take into
account this effect. This, of course, implies an increase
on the examples set, and will affect the training time.
This issue and other practical details, like the possib-
lity of using variable sampling rate, are left for a mature
implementation of the algorithm.

6.2. Time Considerations

With the proposed method the necessary time to
detect the inrush current could be longer than the pro-
tection algorithm itself (for example in a digital differen-
tial relay which calculates the current’s magnitude based
on the full-cycle Fourier algorithm). This could be a
weak point of the NN method, but with the speed of
modern microprocessors, it is not a great problem. The
faster hardware allows the algorithms for digital relay
design focus more on the security aspect of the protec-
tion, rather than on minimizing the number of steps of
the algorithm. In an eventual practical application, the
operation time will be determined also by the hardware

employed (output circuits, and other components).
6.3. Physical Meaning of the Weights

One of the problems related to the design of sys-
tems based on experimentally trained neural networks is
the lack of physical meaning of the network parameters
(weights and biases). The NN studied here appears to
be a good example of it. The authors have tried to find a
relationship between the FFNN parameters and digital
filter coefficients given the similarity between eqn. (2)
and digital filter equations. The frequency responses of
digital filters with deference equation as eqn. (2) have
been (and continue being) studied but no pattern has
been found.

7. CONCLUSION

It has been shown experimentally that a feed for-
ward neural network can be used to discriminate be-
tween magnetizing inrush and fault currents in power
transformers. The neural network can be trained using
sigmoid units and then implemented with hard limiter
units in order to improve the computation speed of the
network.

The practical application of the proposed method is
dependent on the following:

1. The quality of generalization: inrush and fault
examples must be representative of the transformer and
system where the relay is going to be installed.

2. The speed of the microprocessor system used to
implement the relay.

Even though at present the possible application of
neural networks to achieve some protective relay func-
tions is a matter of research, this work exemplifies one
of those applications in which neural networks could be
considered. Future work will serve to clarify aspects re-
lated to the physical meaning of the weights and the
applicability of the method.
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APPENDIX 1

This appendix is mainly intended to serve as a guide
for the notation and terminology used in the paper. With
reference to Figure 1, the input to a given unit i, on layer
m is defined as [15,16):

R = [T

Lom A-1
k=1

where

K= oI (A=)



is the vector whose elements :cim) are the inputs to units
in layer m, i.e., the input vector to layer m,
W = (o) W )

thm

(A-3)

is the vector whose entries w;; represent the connection
weight from input z&m) to unit 7 on layer m, L,, is the
number of inputs to this layer, and the superscript T

denotes matrix or vector transposition.

(m)

The vectors w;"’ can be grouped in a single matrix
W™ | as follows:
[wi™
Wi
W = | [w™)T (4-9)
Wiy
The output of unit ¢ on layer m is defined as:

’Ul(m) = fi(hi — b,;) (A — 5)
where f(e) is a non-linear function, and b; is the unit
bias. Depending on the application, this function can
take different forms. In this work only two of this forms
are used, the sigmoid function, defined as:

1

flh=b) = TG (4 —6)

and the hard-limiter function (unit step, or Heaviside
function) ustep:

f(h —b) = Ugtep(h — b)

see Figure (A-1) for a graphic description of both func-
tions.

(4-7)
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Figure A-1. Sigmoid and hard limiter functions

plotted for b=>5
These equations can be grouped in a matrix equa-
tion as follows:

vi™) = f(W("‘)X("’-) — b(m)) (A—8)
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and

x(mH1) = y(m) (A-9)
where v{™) is the vector representing the outputs of layer
m units. In this paper x{1) = v{%) = x, is the network’s
input.

f(e) is a non-linear vector function, with elements
defined as in eqns. (A-6) and (A-7); and
b(m) = [b(1m) bgm)

™" (4 -10)

is a vector which contains layer m units’ biases.

Thus, an M-layer-n;-input FFNN has an output
equal to equation (A-8 ) evaluated at m = M, i.e. there
exists an output vector v{™) for each input vector x.

APPENDIX 2

Basically, back-propagation consists of the presenta-
tion of a set of examples p;, ( = 1,2,..., n.) and the de-
sired outputs d; . The weights and biases are updated for
each j, according to a rule (back-propagation[13,14,15,
16]) which is minimizes the square distance between the
predicted and the desired outputs. The set of examples
and desired outputs can be grouped in two matrices, P
and D (training matrices), as follows:

P=[p: p: Pr. ] (4-11)
D=[d; d, d,. (A - 12)
or, in expanded notation,
[ P11 P12 P13 Pin,
D21 D22 P23 Pan,
P=|. . . : (A-13)
LPr;1 Pni2 Pn.3 Pnin.
rdi di2 di3 din,
dz1  daz  dis dan,
D= R i . . (A —14)
Ldncl dn°2 dn,3 dn,,'n,

where n;, n, and n, are the number of inputs, outputs
and examples, respectively.
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Discussion

M.A.Rahman, B.Jeyasurya (Memorial University
of Newfoundland, St.John’s, NF, Canada): The
authors must be congratulated for presenting
the use of feed forward neural network to
discriminate between inrush and fault currents
in a transformer. We have a few comments and
qguestions on this paper.

1. The training examples for inrush were
obtained by energizing a transformer and the
examples for fault cases were obtained by
simulation. It is not clear whether the
training examples for fault had significant
harmonic components. A spectral analysis of
the fault signals would have been useful.

2. Did the authors consider obtaining the
training data for the fault cases on the
laboratory transformer by applying a fault,
with suitable back-up protection for the
transformer? It is likely that the converged
values of the weights and biases may be
different if all the training examples for
both the inrush and fault cases were obtained
from the test transformer.

3. As the authors have pointed out, the
computational requirements for the FFNN
implementation is very large even for a single
phase transformer. This is very significant
considering that it is possible to implement
the major protective functions for a three
phase transformer in a single digital signal
processing board [A]. Due to the wide range of
the weights, the proposed method will require
a Math coprocessor for accurate computations
within one sampling interval.

4. The proposed architecture of the FFNN
(Figure 5e ) requires a data window of half a
cycle. If the input to the network contains
some of fundamental signal samples and some of
faulted signal samples, as in the instant of
fault occurrence, or in the case of an inrush
followed by internal fault, can one depend on
the decision of the neural network?

We commend the authors for presenting one
of the first applications of artificial neural
networks for digital relays.
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L. G. Pérez, A. J. Flechsig, J. L. Meador, Z.
Obradovié (School of Electrical Engineering and Com-
puter Science, W. S. U., Pullman, WA): The authors
wish to thank the discussers for their interest in the pa-
per and for their valuable comments. These comments
will be raised in the same order as they were written in
the discussion.

1. The fault examples employed were based on com-
puter simulations. The instantaneous values of the fault
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examples were scaled properly to the per-unit base of the
transformer used to obtain the inrush examples. In some
cases, the fault examples were obtained as the response
of a simple R-L circuit contaminated purposely with up
to 40 % of second harmonic component. This was done
with the intention of training the network such that it
was capable of distinguishing between fault currents with
a high second harmonic component and inrush currents.

2. The discussers are correct when they say that
the resulting weights and biases could be different if the
fault training examples were obtained as they suggest.
We considered that possibility, however, we thought that
for this preliminary result the computer simulated fault
examples were sufficient to give us the security that the
method would work. We believe that in a practical im-
plementation the training must be done using a com-
bination of field measured and computer created fault
examples.

3. We agree with the discussers on this point. How-
ever, we anticipate that with the present developments
in hardware for DSP applications, the requirements of
speed and accuracy for complete transformer protection
can be achieved succesfully, including the inrush detec-
tion as suggested in the paper.

4. All architectures shown in Figure 5 were trained
and tested using a one-cycle data window and a sam-
ple rate of twelve samples per window. In that fig-
ure only the layers containing processing units (neurons)
are shown (the layer corresponding to the inputs is not
shown in Figure 5). Small unfilled circles represent pro-
cessing units, as indicated in Figure 1. In a more com-
plete representation, the network of Figure 5e looks like
the one shown in Figure C-1.
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Figure C-1. Detailed scheme of the network shown
in Figure 5e.
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