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Abstract - A feed forward neural network (FFNN) 
has been trained to discriminate between power trans- 
former magnetizing inrush and fault currents. The train- 
ing algorithm used was back-propagation, assuming ini- 
tially a sigmoid transfer function for the network’s pro- 
cessing units (“neurons”). Once the network was trained 
the units’ transfer function was changed to  hard limiters 
with thresholds equal to the biases obtained for the sig- 
moids during training. The off-line experimental results 
presented in this paper show that a FFNN may be con- 
sidered as an alternative method to make the discrimina- 
tion between inrush and fault currents in a digital relay 
implementation. 
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1. INTRODUCTION 

Any power transformer protective scheme has to 
take into account the effect of magnetizing inrush cur- 
rents, since this effect could cause miss-operation of the 
relays[l]. The two classic methods used to avoid un- 
desired tripping due to inrush currents are: 1) imple- 
mentation of delays in the protective devices, and 2) re- 
straining or blocking the relay operation according to  the 
harmonic content of the measured current. The first so- 
lution has been used for primary overcurrent protection 
and in differential schemes. However, this option is un- 
desirable because of the potential danger of delaying the 
tripping time during a real internal fault. The second so- 
lution is based on the fact that  the second harmonic com- 
ponent of the inrush current is considerably larger than 
in a typical fault current[2], and schemes based on the 
detection of the second (sometimes the fifth) harmonic 
were proposed and implemented in both analog and dig- 
ital differential relays with good results [3,4,5,6,7]. 

In a recent paper [8] it was reported that,  in certain 
cases, harmonics are generated during internal faults in 
transformers and therefore the detection of the second 
and/or fifth harmonic is not a sufficient index to  de- 
termine if the measured overcurrent is an  inrush or an 
internal fault. 
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In that paper, a method based on the use of one 
of the primary phase voltages as the control signal is 
proposed. There are also methods for transformer pro- 
tection that  are implicitly immune to magnetizing inrush 
[9,10]; and some other effective ways for detecting inrush 
have been proposed [11,12]. 

The method described in this paper detects inrush 
current based on recognizing its wave shape, more pre- 
cisely, in differentiating its wave shape from the fault 
wave shapes. This discrimination can be done in dif- 
ferent ways, one of the most common methods uses the 
harmonic analysis of the signal, while others are based 
on the use of neural networks. The work reported here 
is a description of an  experimental demonstration that a 
feed forward neural network could be used as an  alterna- 
tive method to  discriminate between inrush magnetizing 
current and internal faults in power transformers. The 
network and its training process were adapted to  the goal 
of implementing the algorithm in a digital protective re- 
lay. 

2. NETWORK CHARACTERISTICS 

2.1. General 

The general architecture of a feed forward neural 
network is shown in Figure 1. The most important char- 
acteristics of this network are: 1) processing units are 
grouped by layers, and 2) the processor interconnect is 
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Figure 1. General architecture of a FFNN. 
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samples of the transformer current, it can distinguish 
the two wave shapes. A good approach allows to have a 
network capable of determining if the input current is or 
is not an  inrush, this means that the number of outputs 
of the neural network (number of units in the output 
layer) NN must be 1, necessary to  indicate “true” and 
“false,” or “0” and “1”, as indicated in section 3.2. In 
this case it was chosen that the network’s output be 0 
when the applied current is an  inrush, and 1, when it is 
not an inrush. 

2.3. Basic  A r c h i t e c t u r e  

A functional block representation of the scheme used 
to achieve the goals stated in the former sections is shown 
in Figure 3. This kind of network is sometimes called 
time-delay neural network [16] and has been used re- 
cently in another power system application [18]. Feed 
forward networks have also been applied to the detection 
of high impedance faults with remarkable results [19,20]. 
Notice that the scheme given in Figure 3 is equivalent to 
the scheme of Figure 1, if the input xk is equal to  the 
I C t h  sample of input x ( t ) .  In other words, the network 
will receive the 12 samples of each window every sample 
period, and must make a decision based on these 12 sam- 
ples (i.e. one cycle), which implies the number of inputs 
must be 12. The number of layers and the number of 
units on each layer is determined by the heuristic pro- 
cess described in section 4.1 (the only layer completely 
defined a t  this point is the output layer). y-tt.*.. ...YT 
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organized such that all inputs to  a layer come exclu- 
sively from outputs originating in some previous layer 
(the specific FFNN used does not have connections skip- 
ping layers). The basic equations that define the way this 
FFNN computes its output given an  input vector x are 
presented in Appendix 1. The FFNN training process 
consists of determining the weights W(“) and the units’ 
biasing b(m), in order to  make the network respond in a 
given way. The training method used in this work was 
the well known back-propagation algorithm[l3,14,15,16]. 
Appendix 2 gives a basic description of the training pro- 
cess using back-propagation, and defines the training 
matrices. 

2.2. Input - O u t p u t  

The FFNN implementation used is constrained in 
part by the nature of the current classification problem 
and also in part by existing digital relay system orga- 
nization. Based on this, the following criteria can be 
stated: 

z) Digital relays base their operation on samples of 
the measured quantity (current, in this case). The sam- 
pling rate and the data  window varies depending on the 
application. For this particular case, since the NN must 
recognize wave shapes, it seems to  be logical to use a one 
cycle length window. 
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Figure 2. Simplified block diagram of a protective 
relay using two possible implementations of the inrush 
detection function. 

zz) As shown in Figure 2, the function of recognizing 
inrush is accessory, i.e., it can be assumed that the digi- 
tal relay has a different function to implement the power 
transformer protection (for example, primary overcur- 
rent or differential principle), inrush detection can be 
used as permissive for the relay operation, or to  restrain 
the relay operation. Independently of the way this com- 
bination is made, both functions (inrush detection and 
protection) may use the same sampling rate. A sampling 
rate of 12 samples per cycle (720 Hz), was chosen in view 
of reported experience on different digital relay designs 

iiz) The fact mentioned above bounds the problem 
as one of designing a FFNN that,  given a sequence of 
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Figure 3. Time-delay network. 

3. T R A I N I N G  S T R A T E G Y  
3.1. Training E x a m p l e s  

Given that the network has to distinguish between 
two kind of signals, two sets of examples signals (cases) 
were prepared for that  purpose: the inrush cases and the 
fault cases. 

The inrush cases were measured in the laboratory 
energizing at random a small power transformer of 50 
VA, 1201240 V. The cases taken to train the network 
were chosen such that they represented an acceptable 
range of inrush current shapes (the six cases described 
in [21] were considered) Those signals were stored in a 
PC by means of a program developed a t  WSU [22]. The 
sampling rate at which the inrush signal examples were 
measured was originally 84 samples per 60 Hz cycle, and 
then re-sampled (at a rate 7 times lower) to get the de- 
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sired 12 samples/cycle. Figure 4 show some of the inrush 
training signals. 

The fault cases were generated by computer, some of 
these using an electromagnetic transients program [23], 
others by simple generation of fault-like signals (response 
of an R-L circuit), and a third group of fault-like currents 
infected with second, third and fifth harmonics. 
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Figure 4. Four inrush training cases. 

Two special cases grouped with the inrush cases 
were the zero current (indicating the transformer is de- 
energized) and the load current (a simple sinusoidal wave 
with a magnitude equal to  the transformer load current). 

For each case, signals were sampled a t  12 samples 
per cycle (with a window length equal to  one cycle) and 
the total of samples was limited to have about 100 win- 
dows (i.e. 1.67 seconds per case). 

3.2. Data Windowing and Training Matrices 

The training matrices were built in such a way that 
the network was trained to  produce a 0 output when the 
presented signal was an inrush, a zero current or a full 
load condition; and a I output for the other cases (the 
authors do not insinuate the method can be used to do 
all the protection function, since additional research will 
be needed to prove it). 

Vectors pj were built from the cases in the following 
way (see Appendix 2 for the definition of these vectors). 
Suppose the first of the cases’ signals is characterized by 
the sequence: 

this means, a sequence of 112 samples. The first vector 
p 1  elements corresponds to  the first 12 samples of i, the 
vector p2 entries are the 12 samples from i 2  to  i13 and 
so on, until completing the first 100 columns of exam- 
ple matrix P defined in eqn. (A-11) and (A-13). The 
same process was repeated for each cases’ signal until 
having an example matrix of 936 columns (the number 
of examples, ne) .  This matrix was built such that the 
first 600 examples correspond to  inrush examples (de- 
sired output=O), and the other 336 examples correspond 
to  faults (desired output=l).  Since the FFNN has only 

one output, matrix D became a horizontal vector of 936 
elements, the first 600 entries are 0’s and the other 336 
are 1’s. In practice, a target tolerance of 0.1 was used, 
meaning that the network was trained to  produce a re- 
sponse of 0.9 or greater to represent one class and 0.1 or 
less to  represent the other class. This is necessary be- 
cause the nature of the nonlinear squashing function is 
such that i t  can never assume the precise values of 0.0 
or 1.0. 

3.3. Training Process 

Once the training matrices P and D were defined, 
the back-propagation algorithm was applied to the prob- 
lem. The MATLAB Neural Network Toolbox [24] was 
used for such a purpose. Function TRAINBP was used 
with sigmoid transfer functions and a learning rate vari- 
able between 0.01 and 0.1. The admissible error (sum of 
square errors in an  epoch) was 0.1, for which it was nec- 
essary to present the training matrices between 200 and 
600,000 times, depending on the network size (number 
of units) and the learning rate employed. 

4. IMPROVING THE NETWORK 

4.1. Network Testing and Pruning 

As mentioned in section 2.2 it is desired that the net- 
work be applied in a digital relay implementation. This 
implies a compromise between speed and accuracy. As is 
well known, the FFNN classification time (the required 
time to produce an output given an input) depends on 
the number of units in the network, so it is very im- 
portant to  have the lowest number of units but without 
jeopardizing the quality of the classification. Figure 5 
shows the architectures tested for this purpose. 
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Figure 5. Tested architectures. 
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The training process was first tried in a 3-layer (2- 
hidden), 12+2+1 FFNN as shown in Figure 5a. The 
result was tested with another set of examples (different 
than the set used for training) which gave successful re- 
sults. To achieve the error limit with this network, only 
about 200 epochs were necessary, which encouraged the 
authors to try a smaller net. In fact, by a process of 
pruning the network, the architectures shown in Figure 
5 were trained and tested, until having inadmissible re- 
sults for the 2-layer (1 hidden), 4+1 FFNN of Figure 5f. 
By inadmissible results the authors mean it was practi- 
cally impossible to reach the low error established as a 
criterion to stop training. 

4.2. Hard Limi t e r  U n i t s  
Once the networks with sigmoid units were trained 

and tested with good results (see Figure 6a), the units 
transfer functions were changed to hard-limiters (see Ap- 
pendix 1). This change increases the N N  computation 
speed considerably since it takes less computation time 
to implement a hard limiter (unit step) than a sigmoid 
(see equations (A-6) and (A-7)). In fact, a hard-limiter 
is equivalent to an I F  statement. The implicit risk in 
this change is that  in certain cases the approximation of 
the sigmoid by a unit step could produce an inadmissible 
error. With hard limiters, the output of one of the units 
is obtained by comparing the unit's input: 

k=l 

with the unit's bias b;. 

5.  RESULTS 
Figures 6 and 7 show the results obtained after test- 

ing the networks with non-malicious testing examples 
(i.e. examples which are different from the ones used for 
training, but have the same form). 
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Figure 6. Results of testing a trained 6+2+1 FFNN: 
a) Sigmoid units, inrush examples, b) HL units, inrush 
examples, c) sigmoid units, fault examples, d)  HL units, 
fault examples. 

Two testing matrices (similar to matrix P)  were 
formed: one with only inrush cases, containing exam- 
ples of inrush currents different than the ones used for 

training, and the other with fault examples plus and an 
artificially created inrush-like signal, at the end of the 
matrix. This las set of examples can be considered ma- 
licious, since the fault examples were mixed with a set 
of examples obtained from a wave shape similar to the 
inrush current, but created by means of a mathematical 
equation. 

Note from Figures 6 and 7 the network responds 
in a very adequate way, performing the discrimination 
function between inrush and fault currents correctly for 
most cases. In fact, for the 6+2+1 network, the classi- 
fication was 100% correct for the inrush examples and 
97.1% correct for the fault plus inrush artificial exam- 
ples. The percentage of correct classification for the 6+1 
network was 99.6% for the inrush examples and 94.6% 
for the fault plus inrush artificial examples. This per- 
centages are measured by counting example by example 
(every sample in time), so it does not mean the network 
fails. The miss-operation of an  eventual relay using the 
algorithm, can be avoided by using an integrator imme- 
diately after the relay output or, alternatively, after the 
inrush detector. This scheme has been used in analog 
and digital relays to insure correct operation. 

Table 1 displays some of the important numbers re- 
lated to the networks shown in Figure 5. Networks were 
classified as having either good or poor performance (by 
good performance the authors mean that the network 
could be trained to achieve the error goals and responded 
adequately to the test). Note from the table that the net- 
work with good performance and the minimum number 
of units was the 2-layer 6+1 network shown in Figure 5e. 
This implies that ,  taking into account that  the weights 
and biases are fixed (can be previously loaded in the 
system's memory), a digital relay implementation (with 
12 samples per cycle), would have to be capable of 78 
scalar multiplications, 71 additions and 7 comparisons 
(IF statements) in order to recognize the inrush current. 
Therefore the relay should be able to execute all these 
operations and the protective function in a twelfth of a 
cycle, which is 1.4 msec. This is reasonable for modern 
microprocessor based systems. 
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Figure 7. Results of testing a trained 6+1 FFMN: 
a) Sigmoid units, inrush examples, b) HL units, inrush 
examples, c) sigmoid units, fault examples, d) HL units, 
fault examples. 



Net. 
# 
1 3  
2 2  

# of # of # of # of # of Perfor- 
layers units mult. addit. IF mance 

12+2+1 170 155 15 good ' 
12+1 156 143 13 good 1 

6. DISCUSSION 

6.1. Quality of Generalization 

Quality of generalization is a critical point in any 
neural network application. In this case the question 
that arises has to do with the example signals. Both 
sets of inrush examples, the training and the testing ex- 
amples, were measured for the same kind of transform- 
ers. This could produce inconclusive results, since it is 
impractical to train the network with inrush examples 
measured on the specific transformer where the network 
is going to be applied. However, as mentioned before, 
the network responded well when an  artificially created 
inrush-like signal was presented to it, which experimen- 
tally indicates that  the N N  generalizes based on the in- 
rush current shape, more than on the transformer design. 
As a preliminary effort the training does not need to be 
so specific, but it would be a good procedure to use the 
method proposed here in a relay to  protect transform- 
ers with similar characteristics to  the transformer whose 
inrush was used to train the network. 

I t  should be noted that signal examples representing 
the differential current obtained in the event of an  exter- 
nal fault when one of the current transformers saturates 
were not used. This kind of examples can be included 
with the "non-inrush" cases since there is no reason for 
which the network can not be trained. The authors rec- 
ognize that the current wave shape in this case is closer 
to the inrush case. 

No consideration was given to the effect due to ener- 
gization of adjacent transformers, but there is no reason 
to say that the network can not be trained to take into 
account this effect. This, of course, implies an increase 
on the examples set, and will affect the training time. 
This issue and other practical details, like the possib- 
lity of using variable sampling rate, are left for a mature 
implementation of the algorithm. 

6.2. Time Considerations 

With the proposed method the necessary time to 
detect the inrush current could be longer than the pro- 
tection algorithm itself (for example in a digital differen- 
tial relay which calculates the current's magnitude based 
on the full-cycle Fourier algorithm). This could be a 
weak point of the NN method, but with the speed of 
modern microprocessors, it is not a great problem. The 
faster hardware allows the algorithms for digital relay 
design focus more on the security aspect of the protec- 
tion, rather than on minimizing the number of steps of 
the algorithm. In an eventual practical application, the 
operation time will be determined also by the hardware 
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4 3  
5 2  
6 2  

employed (output circuits, and other components). 
6.3. Physical Meaning of the Weights 

One of the problems related to the design of sys- 
tems based on experimentally trained neural networks is 
the lack of physical meaning of the network parameters 
(weights and biases). The NN studied here appears to 
be a good example of it. The authors have tried to  find a 
relationship between the FFNN parameters and digital 
filter coefficients given the similarity between eqn. (2) 
and digital filter equations. The frequency responses of 
digital filters with deference equation as eqn. (2) have 
been (and continue being) studied but no pattern has 
been found. 

6+2+1 86 77 9 good 
4+2+1 58 51 7 poor , 
6+1 78 71 7 good 
4+ 1 52 47 5 poor 

7. CONCLUSION 

It has been shown experimentally that a feed for- 
ward neural network can be used to discriminate be- 
tween magnetizing inrush and fault currents in power 
transformers. The neural network can be trained using 
sigmoid units and then implemented with hard limiter 
units in order to  improve the computation speed of the 
network. 

The practical application of the proposed method is 
dependent on the following: 

1. The quality of generalization: inrush and fault 
examples must be representative of the transformer and 
system where the relay is going to be installed. 

2. The speed of the microprocessor system used to 
implement the relay. 

Even though a t  present the possible application of 
neural networks to achieve some protective relay func- 
tions is a matter of research, this work exemplifies one 
of those applications in which neural networks could be 
considered. Future work will serve to  clarify aspects re- 
lated to the physical meaning of the weights and the 
applicability of the method. 
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APPENDIX 1 

This appendix is mainly intended to serve as a guide 
for the notation and terminology used in the paper. With 
reference to Figure 1, the input to a given unit i, on layer 
m is defined as [15,16]: 

k = l  

where 
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is the vector whose elements z(km) are the inputs to units 
in layer m, i.e., t h e  i n p u t  v e c t o r  t o  l a y e r  m, 

is the vector whose entries W;k represent the connection 
weight from input z(k") to unit i on layer m, L ,  is the 
number of inputs to this layer, and the superscript 
denotes matrix or vector transposition. 

The vectors w!") can be grouped in a single matrix 

The output of unit i on layer m is defined as: 

where f (0)  is a non-linear function, and bi is the unit 
bias. Depending on the application, this function can 
take different forms. In this work only two of this forms 
are used, the sigmoid function, defined as: 

and the hard-limiter function (unit step, or Heaviside 
function) u,tep: 

f(h - b)  = ustep(h - b)  ( A  - 7) 

see Figure (A-1) for a graphic description of both func- 
tions. 
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Figure A-1. Sigmoid and hard limiter functions 
plotted for b=5 

These equations can be grouped in a matrix equa- 
tion as follows: 

v(m) = f(W(")x(") - b(")) ( A  - 8) 

and 

where dm) is the vector re resenting the outputs of layer 
m units. In this paper x('7 = v(O) = x, is the network's 
input. 

f ( o )  is a non-linear vector function, with elements 
defined as in eqns. (A-6) and (A-7); and 

is a vector which contains layer m units' biases. 

Thus, an M-layer-ni-input FFNN has an output 
equal to equation (A-8 ) evaluated a t  m = M ,  i.e. there 
exists an  output vector v ( ~ )  for each input vector x. 

APPENDIX 2 

Basically, back-propagation consists of the presenta- 
tion of a set of examples p,, (3  = I , 2 ,  . . . , ne)  and the de- 
sired outputs d, . The weights and biases are updated for 
each j, according to a rule (back-propagation[l3,14,15, 
161) which is minimizes the square distance between the 
predicted and the desired outputs. The set of examples 
and desired outputs can be grouped in two matrices, P 
and D (training matrices), as follows: 

P = [ P I  PZ . . .  Pn.] 

D = [ d l  d2 . . .  dn,] 

or, in expanded notation, 

( A  - 11) 

( A  - 12) 

( A  - 13) 

( A  - 14) 

where n,, no and ne are the number of inputs, outputs 
and examples, respectively. 
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Discussion 

M.A.Rahman, B.Jayasurya (Memorial University 
of Newfoundland , St. John's , NF , Canada) : The 
authors must be congratulated for presenting 
the use of feed forward neural network to 
discriminate between inrush and fault currents 
in a transformer. We have a few comments and 
questions on this paper. 

1. The training examples for inrush were 
obtained by energizing a transformer and the 
examples for fault cases were obtained by 
simulation. It is not clear whether the 
training examples for fault had significant 
harmonic components. A spectral analysis of 
the fault signals would have been useful. 

2. Did the authors consider obtaining the 
training data for the fault cases on the 
laboratory transformer by applying a fault, 
with suitable back-up protection for the 
transformer? It is likely that the converged 
values of the weights and biases may be 
different if all the training examples for 
both the inrush and fault cases were obtained 
from the test transformer. 

3 .  As the authors have pointed out, the 
computational requirements for the FFNN 
implementation is very large even for a single 
phase transformer. This is very significant 
considering that it is possible to implement 
the major protective functions for a three 
phase transformer in a single digital signal 
processing board [A], Due to the wide range of 
the weights, the proposed method will require 
a Math coprocessor for accurate computations 
within one sampling interval. 

4 .  The proposed architecture of the FFNN 
(Figure 5e ) requires a data window of half a 
cycle. If the input to the network contains 
some of fundamental signal samples and some of 
faulted signal samples, as in the instant of 
fault occurrence, or in the case of an inrush 
followed by internal fault, can one depend on 
the decision of the neural network? 

We commend the authors for presenting one 
of the first applications of artificial neural 
networks for digital relays. 
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L. G .  PQrez, A. J. Flechsig, J .  L. Meador, 2. 
Obradovid (School of Electrical Engineering and Com- 
puter Science, W. S. U., Pullman, WA): The authors 
wish to  thank the discussers for their interest in the pa- 
per and for their valuable comments. These comments 
will be raised in the same order as they were written in 
the discussion. 

1. The fault examples employed were based on com- 
puter simulations. The instantaneous values of the fault 

examples were scaled properly to the per-unit base of the 
transformer used to obtain the inrush examples. In some 
cases, the fault examples were obtained as the response 
of a simple R-L circuit contaminated purposely with up 
to  40 % of second harmonic component. This was done 
with the intention of training the network such that  it 
was capable of distinguishing between fault currents with 
a high second harmonic component and inrush currents. 

2. The discussers are correct when they say that  
the resulting weights and biases could be different if the 
fault training examples were obtained as they suggest. 
We considered that possibility, however, we thought that  
for this preliminary result the computer simulated fault 
examples were sufficient to give us the security that  the 
method would work. We believe that in a practical im- 
plementation the training must be done using a com- 
bination of field measured and computer created fault 
examples. 

3. We agree with the discussers on this point. How- 
ever, we anticipate that  with the present developments 
in hardware for DSP applications, the requirements of 
speed and accuracy for complete transformer protection 
can be achieved succesfully, including the inrush detec- 
tion as suggested in the paper. 

4. All architectures shown in Figure 5 were trained 
and tested using a one-cycle data  window and a sam- 
ple rate of twelve samples per window. In that fig- 
ure only the layers containing processing units (neurons) 
are shown (the layer corresponding to the inputs is not 
shown in Figure 5). Small unfilled circles represent pro- 
cessing units, as indicated in Figure 1. In a more com- 
plete representation, the network of Figure 5e looks like 
the one shown in Figure C-1. 
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Figure C-1. Detailed scheme of the network shown 
in Figure 5e. 
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