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ABSTRACT

The influence of data parameters (sensor error, unexplained
variance, sampling density and data distribution) on spatial data
prediction quality is considered through the use of a spatial data
simulator. Performance of linear and non-linear regresson modes
(feedforward neural networks) is compared on simulated agricultural
data, but the results can be generalized to geological, oceanographic
and other spatial domains. For a highly non-linear response variable,
non-linear models are shown to perform better regardiess of
unexplained variance and sensor error, but linear models outperform
non-linear models when the sampling density of spatial data is not
sufficient to produce accurate interpolated values. In the presence of
non-homogenous data distributions, a significant prediction quality
improvement can be achieved by using specialized local modes
assuming that distributions are properly discovered.

INTRODUCTION

Precision agriculture combines agronomy, sensors, and geospatial
technologies to vary crop production practices within fields instead of
treating them as homogeneous units, in order to increase agricultural
profitability and environmental stewardship. One approach to
precison agriculture is yield prediction based on relevant features
(e.g. land topography, soil test analyses, in order to optimize field
treatments (eg. fertilizer, pesticide and irrigation rates). The
development of reliable prediction methods suitable for spatial
regression is crucial for such an approach. However, the data typically
available for spatial regresson exhibit many properties (e.g. variable
sampling density and data quality, field heterogeneity, missng
features and unexplained variance) that make thisa complex process.

Therefore, the determination of the influence of data quality and
the choice of prediction method on spatial regresson are important
goals among precision agriculture researchers. However, a limited
amount of appropriate data has prevented systematic experimentation
towards this goal. The reasons for this are twofold. Firg, it is
impossible to vary field and sensor parameters (statistical properties,
unexplained variance and sensor accuracy). Second, it is very
expensive to sample a large number of features at a high enough
resolution so that one can determine the influence of sampling density
on data quality.

To overcome these problems, we have developed a spatial data
simulator (Pokrajac et al. 2000) that can provide large quantities of
data with controlled satistical properties, yield influence and noise
levels so the effects of many scenarios on crop yield prediction and
production input optimization can be characterized. Usng data from
the smulator, exploratory work on a limited number of data sets has
shown that the choice of type and number of simulation models, as
well as feature selection has a significant impact on prediction results.
Also, follow-up analysis showed that the introduction of spatial
heterogeneity decreased the ability of regresson models to
successfully generalize on unknown test data.

In this paper, we perform systematic experiments on smulated
data to determine the influence of various parameters on yield
prediction accuracy. These parametersinclude: regresson mode type
and methods, the amount of unexplained variance and error in yield
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and feature measurement, sampling density and procedures and field
heterogeneity.

In addition, through the evaluation process of different types of
yield smulation models, we tried to determine if the yield smulation
processin the data simulator biased our analyses. Note that the results
obtained here are applicable to other areas where spatial data are
considered (e.g. geology, oceanography, and forestry).

METHODOLOGY
Experiment Outline

Agricultural fields were simulated usng method and software
described in (Pokrajac et al. 2000). Generated fields were divided into
two spatially digjoint equal size subfields. Each subfield in turn was
used for model training using the other subfield for modd testing and
the results were averaged. Linear regression was performed using
standard statistical approaches (Devore 1995). Non-linear modeling
was performed using back-propagation neural networks (NN) with 1
hidden layer having 4 neurons. Experiments were repeated 10 times
each. Prediction accuracy was measured using R? values. (R? is a
measure of the explained variability of the response variable. In the
case of useful prediction modelsit ranges from 0 to 1 where O results
from using a trivial mean predictor and 1 represents the ideal case of
no prediction error). A one-sided t-test was used to compare linear
and non-linear model results (Devore 1995).

Description of Gener ated Data Sets

To explore the influence of regresson methods, sampling
procedures, unexplained variance, and field heterogeneity, four
smulated data sets-fields with different statistical properties were
generated. Each field conssted of the spatial coordinates (latitude
and longitude), features simulating nitrogen (N), phosphorus (P),
potassium (K), terrain profile curvature and slope and smulated crop
yield. Features were generated as samples on a 10m*10m grid from
an approxi mately normal distribution.

Simulated Fields la and 1b were 800*1600m in size with
uncorrelated features whose influence on smulated yied was
modeled using both linear (Field 1a) and exponential plateau models
(Field 1b). For the linear plateau model s, the parameters for N, P and
K were based on fertilizer recommendation guides while parameters
for the rest of the features were based on expert knowledge. For the
exponential plateau models, parameters were derived from the linear
plateau parameters such that the exponential curves reached 95% of
their maximal values at the linear plateau thresholds. Means and
variances of the generated features were chosen so the resulting yield
was approximately normally distributed and that 50% of all samples
had nitrogen values above the plateau threshold. Spatial statistical
parameters and the correlation matrix for the smulated features were
egtimated from |daho and Washington potato and wheat fields. The
variance of the simulated yield (standard deviation divided by sample
mean) was smilar to that of real-world data.

Simulated Fiedld 2 was desgned to examine the influence of
interpolation error. The smulation parameters and the size were the
same as for Field 1a except variograms with zero nuggets were used
and, since the primary intention was to obtain data with controllable
spatial behavior, features were not de-correlated.

Simulated Fidd 3 of sze 1600*1600m was generated to explore
the influence of multiple models that were associated with distinct
feature values. The features of Field 3 were not de-correlated and had
the same statistics as for Field 2.Five feature clusters were identified
based on dope and profile curvature, and a separate linear plateau
smulation model was assigned to each cluster, using overlapping



cluster model assignment (Pokrajac et a. 2000). The yield generated
for each data point was a weighted combination of the yield generated
by the specific mode s (weights for a data point were proportional to
the number of neighboring points that belonged to the corresponding
clugters). Since the intention was to examine the influence of highly
non-homogeneous distributions, model parameters were chosen such
that in each cluster the influence of particular features on yield was
different.

RESULTS

Our resaults focus on invegtigating the combined influence of
feature and yield sensor noise, data sampling density, and data
digtribution heterogeneity on the prediction of crop yield.

The Influence of Unexplained Variance and Sensor Noise

The influence of sensor and measurements errors are inevitable
and usually in practice it is not possible to separate these forms of
variability from the actual variability of the response variable. Field
la and 1b data were used to determine how linear and non-linear
model s responded to these influences. Inaddition, the effects of using
particular neural network (NN) learning algorithms (Polak-Ribiere
conjugate-gradient, Quas-Newton, resilient backpropagation and
Levenberg-Marquardt  (LM), (Demuth and Bedle 1998)) were
examined. Since the LM algorithm consistently performed the best,
only results obtained with thisal gorithm are reported.

Prediction accuracy was measured in response to controlled
additions of white noise to the smulated yidd (Table 1). For all
levels of unexplained variance, the NN outperformed the linear model
with 99.99% significance. This was expected, snce smulation model
for yield was non-linear. Increasing the level of unexplained variance
decreased the performance of both NN and linear models. As the
unexplained variance was increased to 50%, the performance of the
linear models decreased by about 30% while the performance of the
NN decreased by about 45%. Observe that for the 30% and 50%
unexplained variance levels, the R? values for the NN approached the
theoretical maximums of 70% and 50%.

Although exponential plateau models are more natural, linear
plateau models offer greater computational smplicity and might be
preferred for smulation studies if their use over exponential models
did not prejudice conclusons. The results shown in Table 1 indicate
that there was no substantial difference between the two models.
Therefore, in further experiments, we used the linear plateau model.

accuracy for Field 1ais shown in Table 2. Comparison of these results
to the results shown in Tablel indicates that the typical values of
sensor error have little effect on yied prediction. There was no
significant drop in accuracy due to 5% sensor error. The same was
true when a 15% sensor error occurred with a 30% level of
unexplained variance. This suggests that reasonable levels of sensor
accuracy have little impact on overall prediction accuracy when the
percentage of unexplainable varianceis small. Again, neural networks
outperformed the linear model with 99.99% significance.

Different values of feature sensor error (5, 10, 15, and 20%) were
introduced into the Field 1ladata. The effectson yield prediction were
tested with linear and NN regresson models as in the previous
experiments. Resultsare shown in Table 3 where the average relative
loss of explained variance (the relative decrement of explained
Variance due to error, R2 IOS:(szilhouI error™ R2 with error)/ szilhoul error )
is given versus % of feature sensor error and % of unexplainable
variance.

The presence of 20% feature sensor error caused drops in
explained variance of 29% and 18% for the NN and linear mode,
respectively. This suggests that linear models are more resistant to
data acquisition errors. Similar results were obtained when feature
sensor error was consdered in conjunction with added unexplained
yield variance (experiment was performed for low and high error
levels). However, the results of t-tests verify that in the cases
examined in Table 3 the NN 4till outperformed the linear model with
high (99.9%) significance.

Featuresensor | Unexplainable | Average R (%)

error (%) variance (%) NN Linear model
5 0 3 3

10 0 15 10

15 0 23 16

20 0 29 18

5 20 8 5

20 20 29 19

Table 3: Average relative loss of explained variance on Fidd la test
data using neural networks and linear regresson models, when feature
sensor error isvaried

Sampling resolution Linear Neural networksR?
model R> | Mean | Sd
10m*10m (no interpolation) 0.52 0.92 <0.01
50m*50m 0.33 0.26 0.05
100m*100m 0.29 0.07 011
200m*200m 0.13 -0.07 0.09

Unexplained Plateau Linear Neural networks R?
variance (%) | model modd R?> | Mean Sd
None Linear 0.58 0.91 0.01
Exponential | 0.66 0.94 0.02
30% Linear 0.38 0.62 0.01
Exponential | 0.45 0.65 0.01
50 % Linear 0.29 0.45 0.01
Exponential | 0.32 0.46 0.01

Table 1: The influence of unexlained variance and simulation
model type on yield prediction for fields 1a and 1b by linear and
non-linear models

3-0 error of yield sensor Linear Neural neworksR?
(%) model > | Mean | Sid

5 0.58 091 0.01

10 0.56 0.89 0.01

15 0.55 0.88 <0.01

15 + 30% unexplained variance | 0.38 0.62 <0.01

Table 2: Theinfluence of yield sensor error on yield prediction for
Field 1aby linear and non-linear models.

The influence of yield sensor error was modeled as multiplicative
noise with aunit mean and a 3-0 interval equal to the specified sensor
eror. The effect of increasng yield sensor error on prediction

Table 4. Theinfluence of sampling density on prediction accuracy for
Field2

The Influence of Sampling Density

The sampling density and interpolation experiments were
performed on Field 2 data, with more closely controlled the feature
spatial  statistics. Data from the artificia fieddld were sampled at
different resolutions. These samples were then used to interpolate data
back to the original 10m*10m grid and the interpolated values were
used for yield prediction. This approach is a standard procedure for
combining low-resolution sampled data with higher resolution data
(smulated yield in our case) (Cressie 1993). Since we operated with
smulated data, we were able to show that as sampling resolution
decreased, interpolation error increased.

Using these interpolated data, the performance of non-linear and
linear prediction models was again compared (Table 4). While the
NN model outperformed the linear model when no interpolation was
performed, the introduction of interpolation error dramatically
decreased NN prediction accuracy. Using data interpolated from
samples collected on a 50m*50m grid, the linear model outperformed
the NN although the NN performed well on training data. When data
were sampled on a 100*100m grid and then interpolated, NN
regression was practically useless, with only 7% explained variance.
For the 200*200m sampling grid, the linear regresson model was till
able to explain 13% of the variance while the neural network



predictions were worse than just using the mean yield value of the
training set as the prediction (negative R?). Therefore, linear models
are recommended if sparse data must be interpolated prior to
regression.

To try to determine optimal sampling frequency, we constructed a
series of linear predictors usng a method that takes into account the
spatial correlation of the data (Judge at al. 1988). We varied the
sampling density and used the original samples instead of working
with interpolated values to compute regression coefficient t-statistic
confidence (Devore 1995) versus sampling distance. The maximal
confidence in the obtained coefficients showed a large drop around
d=50m suggesting that the optimal sampling density might be around
50m. This coincides with our results from the interpolated data, where
the linear model started to outperform the non-linear mode at the
50m sampling distance. Therefore, it appears posshble to determine
whether the sampling density for features is optimal or should be
increased by comparing linear and non-linear model behavior and by
computing linear model coefficient significance.

The Influence of I nterpolation

The expected interpolation error of spatialy interpolated data
increases as the distance to known data points, the sample points,
becomes greater. Thus, by taking only a subset of the interpolated
data that are near to the sample points one can control the level of
interpolation error in the data used for learning. To test the benefits
of such sub-sampling, interpolated data within a given radius of the
sampling points in Field 2 were used to develop yield prediction
models (Fig. 1). As this sub-sampling radius was increased, more
points were available for training but the average accuracy of the
training data decreased. As before, all pointsin a spatially digoint test
part of the field were used to test the models.

@ @ @. Sampling points

@ @ @ Interpolated values
Fig.l. Experiments with the
influence of interpolation on
prediction accuracy

Prediction error was measured as the circle radius was increased,
for both linear and NN regressors and for grid spacing of 50, 100 and
200m. For each radius, experiments were repeated 10 times and 2-
cross validation was performed. The impact of changing subsampling
radius was analyzed by ANOVA methods (Devore 1995). For the
NN, regardless of sampling densty, training error decreased as the
radius was increased. However, there was no significant
improvement in prediction accuracy except for the case of the
50*50m sampling grid where (with 99.99% significance) the benefit
from increasing the subsampling radius and thus usng more
interpolated data points was evident.

Similar experiments with linear models did show some
improvement from using a subset of the interpolated points when data
used for interpolation were sampled at 50 and 100m grid spacings.
Thus, the sel ection of an appropriate interpolation range might benefit
linear predictors more than nonlinear ones.

The Influence of Yield Heter ogeneity

One approach to yield prediction for heterogeneous fidds is to
discover regions of homogeneity and to build model's specific to these
regions. To test best case results, models were trained on points from
simpl e feature-space regions of the training part of Field 3, and tested
on corresponding points in the test subfield. When trained on these
regions, neural networks achieved average accuracy of R?=0.90 which
was an improvement compared to the accuracy of a single network
trained on all training data (R*=0.67). In both cases, neural networks
outperformed linear models with 99.9% significance (accuracy of
R?=0.85 and R?=0.37, respectively).

The results imply that proper detection of homogeneous regions
for model development (training) and for model application (testing),
using regresson modes that recognize distinct data distributions
(Lazarevic et al. 1999), can result in better accuracy than the use of

single global models. Note that due to heterogeneity average
explained variance by the global model was 20 to 30% less then that
observed inthe Field 1aand Field 1b experiments (Table 1).

It is important to emphasize that if regions of homogeneity are
wrongly detected when applying region specific models, results can
be worse than those from using a single global modd. To
demongtrate this, we trained local models on each of the distinct data
digtributionsin the training subset of Field 3 and applied these modds
to the entire test set instead of applying them to points from the data
digribution matching their training data. The maximum global
accuracy of these local models was only R?=0.16 and in most cases,
the global accuracy of the local models was worse than what could be
obtained by smply using the mean value of all the training data as the
global prediction.

DISCUSSION

In this paper, usng simulated data, we consdered the
appropriateness of linear and non-linear model's (feed-forward neural
networks) and the effect of key data parameters on crop yield
prediction for precison agriculture management. For highly non-
linear relationships between features and simulated yield, non-linear
models outperformed linear models when data sampling was
appropriate.

Additions of unexplained variance resulted in sgnificant drops in
prediction accuracy. Additions of error to feature values also caused
drops in prediction accuracy although linear models seem to be more
resstant to thiskind of error.

The common practice of using interpolation procedures to estimate
observations at locations that are not physically sampled drastically
affected non-linear model performance. When the sampling density of
the features was low and there were large interpolation errors, linear
models outperformed non-linear models. Our results suggest that
there is no sgnificant benefit from using interpolated data over the
original feature values obtained by sampling, when non-linear models
are applied. Even though the interpolation process results in larger
data sets and alows the use of al of the response variable data
(collected at a high resolution), there was no benefit in terms of
prediction accuracy.

On the other hand, initial results for linear models show that they
can benefit from using interpolated data instead of just using sampled
data. These results coincide with those obtained on real-life
agricultural data and suggest that users must assess data sampling
density and the number of sampled points in sdlecting the best
modeling approach. Comparisons of linear and non-linear model
performance along with the statistical confidence of linear regression
coefficients appear to be useful for testing sampling grid optimality.

The detection of yield digtribution heterogeneity is another
important aspect in obtaining maximum prediction accuracy. Using a
global model when there are multiple yield generation functions leads
to markedly lower performance. By using appropriately specialized
local model's, one can achieve a significant improvement in prediction
quality if accurate methods for identifying the data distribution and
sdlecting the appropriate model are applied. Otherwise, performance
is poorer than when global modelsare used.
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