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ABSTRACT

     The influence of data parameters (sensor error, unexplained
variance, sampling density and data distribution) on spatial data
prediction quality is considered through the use of a spatial data
simulator. Performance of l inear and non-linear regression models
(feedforward neural networks) is compared on simulated agricultural
data, but the results can be generalized to geological, oceanographic
and other spatial domains. For a highly non-linear response variable,
non-linear models are shown to perform better regardless of
unexplained variance and sensor error, but linear models outperform
non-linear models when the sampling density of spatial data is not
sufficient to produce accurate interpolated values.  In the presence of
non-homogenous data distributions, a significant prediction quality
improvement can be achieved by using specialized local models
assuming that distributions are properly discovered.

INTRODUCTION

     Precision agriculture combines agronomy, sensors, and geospatial
technologies to vary crop production practices within fields instead of
treating them as homogeneous units, in order to increase agricultural
profitabili ty and environmental stewardship. One approach to
precision agriculture is yield prediction based on relevant features
(e.g. land topography, soil test analyses, in order to optimize field
treatments (e.g. fertil izer, pesticide and irrigation rates). The
development of reliable prediction methods suitable for spatial
regression is crucial for such an approach. However, the data typically
available for spatial regression exhibit many properties (e.g. variable
sampling density and data quality, field heterogeneity, missing
features and unexplained variance) that make this a complex process.
     Therefore, the determination of the influence of data quality and
the choice of prediction method on spatial regression are important
goals among precision agriculture researchers.  However, a limited
amount of appropriate data has prevented systematic experimentation
towards this goal.  The reasons for this are twofold. First, it is
impossible to vary field and sensor parameters (statistical properties,
unexplained variance and sensor accuracy). Second, it is very
expensive to sample a large number of features at a high enough
resolution so that one can determine the influence of sampling density
on data quality.
     To overcome these problems, we have developed a spatial data
simulator (Pokrajac et al. 2000) that can provide large quantities of
data with controlled statistical properties, yield influence and noise
levels so the effects of many scenarios on crop yield prediction and
production input optimization can be characterized. Using data from
the simulator, exploratory work on a l imited number of data sets has
shown that the choice of type and number of simulation models, as
well as feature selection has a significant impact on prediction results.
Also, follow-up analysis showed that the introduction of spatial
heterogeneity decreased the abil ity of regression models to
successfully generalize on unknown test data.
     In this paper, we perform systematic experiments on simulated
data to determine the influence of various parameters on yield
prediction accuracy. These parameters include: regression model type
and methods, the amount of unexplained variance and error in yield

and feature measurement, sampling density and procedures and field
heterogeneity.
     In addition, through the evaluation process of different types of
yield simulation models, we tried to determine if the yield simulation
process in the data simulator biased our analyses. Note that the results
obtained here are applicable to other areas where spatial data are
considered (e.g. geology, oceanography, and forestry).

METHODOLOGY

Experiment Outline

     Agricultural fields were simulated using method and software
described in (Pokrajac et al. 2000). Generated fields were divided into
two spatially disjoint equal size subfields.  Each subfield in turn was
used for model training using the other subfield for model testing and
the results were averaged.  Linear regression was performed using
standard statistical approaches (Devore 1995). Non-linear modeling
was performed using back-propagation neural networks (NN) with 1
hidden layer having 4 neurons. Experiments were repeated 10 times
each. Prediction accuracy was measured using R2 values. (R2 is a
measure of the explained variabili ty of the response variable. In the
case of useful prediction models it ranges from 0 to 1 where 0 results
from using a trivial mean predictor and 1 represents the ideal case of
no prediction error). A one-sided t-test was used to compare linear
and non-linear model results (Devore 1995).

Description of Generated Data Sets

     To explore the influence of regression methods, sampling
procedures, unexplained variance, and field heterogeneity, four
simulated data sets-fields with different statistical properties were
generated.  Each field consisted of the spatial coordinates (latitude
and longitude), features simulating nitrogen (N), phosphorus (P),
potassium (K), terrain profile curvature and slope and simulated crop
yield. Features were generated as samples on a 10m*10m grid from
an approximately normal distribution.
    Simulated Fields 1a and 1b were 800*1600m in size with
uncorrelated features whose influence on simulated yield was
modeled using both l inear (Field 1a) and exponential plateau models
(Field 1b). For the linear plateau models, the parameters for N, P and
K were based on fertilizer recommendation guides while parameters
for the rest of the features were based on expert knowledge. For the
exponential plateau models, parameters were derived from the linear
plateau parameters such that the exponential curves reached 95% of
their maximal values at the linear plateau thresholds. Means and
variances of the generated features were chosen so the resulting yield
was approximately normally distributed and that 50% of all samples
had nitrogen values above the plateau threshold. Spatial statistical
parameters and the correlation matrix for the simulated features were
estimated from Idaho and Washington potato and wheat fields.  The
variance of the simulated yield (standard deviation divided by sample
mean) was similar to that of real-world data.
     Simulated Field 2 was designed to examine the influence of
interpolation error. The simulation parameters and the size were the
same as for Field 1a except variograms with zero nuggets were used
and, since the primary intention was to obtain data with controllable
spatial behavior, features were not de-correlated.
     Simulated Field 3 of size 1600*1600m was generated to explore
the influence of multiple models that were associated with distinct
feature values. The features of Field 3 were not de-correlated and had
the same statistics as for Field 2.Five feature clusters were identified
based on slope and profile curvature, and a separate linear plateau
simulation model was assigned to each cluster, using overlapping
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cluster model assignment (Pokrajac et al. 2000). The yield generated
for each data point was a weighted combination of the yield generated
by the specific models (weights for a data point were proportional to
the number of neighboring points that belonged to the corresponding
clusters). Since the intention was to examine the influence of highly
non-homogeneous distributions, model parameters were chosen such
that in each cluster the influence of particular features on yield was
different.

RESULTS

     Our results focus on investigating the combined influence of
feature and yield sensor noise, data sampling density, and data
distribution heterogeneity on the prediction of crop yield.

The Influence of Unexplained Variance and Sensor Noise

     The influence of sensor and measurements errors are inevitable
and usually in practice it is not possible to separate these forms of
variability from the actual variabili ty of the response variable.  Field
1a and 1b data were used to determine how linear and non-linear
models responded to these influences.  In addition, the effects of using
particular neural network (NN) learning algorithms (Polak-Ribiere
conjugate-gradient, Quasi-Newton, resilient backpropagation and
Levenberg-Marquardt  (LM), (Demuth and Beale 1998)) were
examined.  Since the LM algorithm consistently performed the best,
only results obtained with this algorithm are reported.

     Prediction accuracy was measured in response to controlled
additions of white noise to the simulated yield  (Table 1). For all
levels of unexplained variance, the NN outperformed the l inear model
with 99.99% significance. This was expected, since simulation model
for yield was non-linear. Increasing the level of unexplained variance
decreased the performance of both NN and l inear models.  As the
unexplained variance was increased to 50%, the performance of the
linear models decreased by about 30% while the performance of the
NN decreased by about 45%.  Observe that for the 30% and 50%
unexplained variance levels, the R2 values for the NN approached the
theoretical maximums of 70% and 50%.

     Although exponential plateau models are more natural, linear
plateau models offer greater computational simplicity and might be
preferred for simulation studies if their use over exponential models
did not prejudice conclusions.  The results shown in Table 1 indicate
that there was no substantial difference between the two models.
Therefore, in further experiments, we used the linear plateau model.

Neural networks R2Unexplained
variance (%)

Plateau
model

Linear
model  R2

Mean Std
Linear 0.58 0.91 0.01None
Exponential 0.66 0.94 0.02
Linear 0.38 0.62 0.0130 %
Exponential 0.45 0.65 0.01
Linear 0.29 0.45 0.0150 %
Exponential 0.32 0.46 0.01

Table 1: The influence of unexlained variance and simulation
model  type on yield prediction for fields 1a and 1b by l inear and
non-linear models

Neural networks R23-σ error of yield sensor
        (%)

Linear
model R2 Mean Std

5 0.58 0.91 0.01
10 0.56 0.89 0.01
15 0.55 0.88 <0.01
15 + 30% unexplained variance 0.38 0.62 <0.01

Table 2: The influence of yield sensor error on yield prediction for
Field 1a by linear and non-linear models.

     The influence of yield sensor error was modeled as multiplicative
noise with a unit mean and a 3-σ interval equal to the specified sensor
error. The effect of increasing yield sensor error on prediction

accuracy for Field 1a is shown in Table 2. Comparison of these results
to the results shown in Table1 indicates that the typical values of
sensor error have little effect on yield prediction. There was no
significant drop in accuracy due to 5% sensor error.  The same was
true when a 15% sensor error occurred with a 30% level of
unexplained variance. This suggests that reasonable levels of sensor
accuracy have little impact on overall prediction accuracy when the
percentage of unexplainable variance is small. Again, neural networks
outperformed the linear model with 99.99% significance.

     Different values of feature sensor error (5, 10, 15, and 20%) were
introduced into the Field 1a data.  The effects on yield prediction were
tested with linear and NN regression models as in the previous
experiments.  Results are shown in Table 3 where the average relative
loss of explained variance (the relative decrement of explained
variance due to error, R2 loss=(R2

without error- R2
 with error)/ R2

without error )
is given versus % of feature sensor error and % of unexplainable
variance.
     The presence of 20% feature sensor error caused drops in
explained variance of 29% and 18% for the NN and linear model,
respectively.  This suggests that l inear models are more resistant to
data acquisition errors. Similar results were obtained when feature
sensor error was considered in conjunction with added unexplained
yield variance (experiment was performed for low and high error
levels). However, the results of t-tests verify that in the cases
examined in Table 3 the NN sti ll outperformed the linear model with
high (99.9%) significance.

Average R2
loss   (%)Feature sensor

error (%)
Unexplainable
variance (%) NN Linear model

5 0 3 3
10 0 15 10
15 0 23 16
20 0 29 18
5 20 8 5
20 20 29 19

Table 3: Average relative loss of explained variance on Field 1a test
data using neural networks and linear regression models, when feature
sensor error is varied

Neural networks R2Sampling resolution Linear
model R2 Mean Std

10m*10m    (no interpolation) 0.52 0.92 <0.01
50m*50m 0.33 0.26 0.05
100m*100m 0.29 0.07 0.11
200m*200m 0.13 -0.07 0.09

Table 4. The influence of sampling density on prediction accuracy for
Field 2

The Influence of Sampling Density

     The sampling density and interpolation experiments were
performed on Field 2 data, with more closely controlled the feature
spatial statistics. Data from the artificial field were sampled at
different resolutions. These samples were then used to interpolate data
back to the original 10m*10m grid and the interpolated values were
used for yield prediction.  This approach is a standard procedure for
combining low-resolution sampled data with higher resolution data
(simulated yield in our case) (Cressie 1993). Since we operated with
simulated data, we were able to show that as sampling resolution
decreased, interpolation error increased.
   Using these interpolated data, the performance of non-linear and
linear prediction models was again compared (Table 4).  While the
NN model outperformed the linear model when no interpolation was
performed, the introduction of interpolation error dramatically
decreased NN prediction accuracy. Using data interpolated from
samples collected on a 50m*50m grid, the l inear model outperformed
the NN although the NN performed well on training data.  When data
were sampled on a 100*100m grid and then interpolated, NN
regression was practically useless, with only 7% explained variance.
For the 200*200m sampling grid, the linear regression model was sti ll
able to explain 13% of the variance while the neural network



predictions were worse than just using the mean yield value of the
training set as the prediction (negative R2). Therefore, linear models
are recommended if sparse data must be interpolated prior to
regression.
     To try to determine optimal sampling frequency, we constructed a
series of linear predictors using a method that takes into account the
spatial correlation of the data (Judge at al. 1988). We varied the
sampling density and used the original samples instead of working
with interpolated values to compute regression coefficient t-statistic
confidence (Devore 1995) versus sampling distance. The maximal
confidence in the obtained coefficients showed a large drop around
d=50m suggesting that the optimal sampling density might be around
50m. This coincides with our results from the interpolated data, where
the l inear model started to outperform the non-linear model at the
50m sampling distance. Therefore, it appears possible to determine
whether the sampling density for features is optimal or should be
increased by comparing linear and non-linear model behavior and by
computing linear model coefficient significance.

The Influence of Interpolation

    The expected interpolation error of spatially interpolated data
increases as the distance to known data points, the sample points,
becomes greater.  Thus, by taking only a subset of the interpolated
data that are near to the sample points one can control the level of
interpolation error in the data used for learning.  To test the benefits
of such sub-sampling, interpolated data within a given radius of the
sampling points in Field 2 were used to develop yield prediction
models (Fig. 1).  As this sub-sampling radius was increased, more
points were available for training but the average accuracy of the
training data decreased. As before, all points in a spatially disjoint test
part of the field were used to test the models.

     Prediction error was measured as the circle radius was increased,
for both linear and NN regressors and for grid spacing of 50, 100 and
200m.  For each radius, experiments were repeated 10 times and 2-
cross validation was performed.  The impact of changing subsampling
radius was analyzed by ANOVA methods (Devore 1995). For the
NN, regardless of sampling density, training error decreased as the
radius was increased.  However, there was no significant
improvement in prediction accuracy except for the case of the
50*50m sampling grid where (with 99.99% significance) the benefit
from increasing the subsampling radius and thus using more
interpolated data points was evident.
     Similar experiments with linear models did show some
improvement from using a subset of the interpolated points when data
used for interpolation were sampled at 50 and 100m grid spacings.
Thus, the selection of an appropriate interpolation range might benefit
linear predictors more than nonlinear ones.

The Influence of Yield Heterogeneity

     One approach to yield prediction for heterogeneous fields is to
discover regions of homogeneity and to build models specific to these
regions. To test best case results, models were trained on points from
simple feature-space regions of the training part of Field 3, and tested
on corresponding points in the test subfield. When trained on these
regions, neural networks achieved average accuracy of R2=0.90 which
was an improvement compared to the accuracy of a single network
trained on all training data (R2=0.67). In both cases, neural networks
outperformed linear models with 99.9% significance  (accuracy of
R2=0.85 and R2=0.37, respectively).
     The results imply that proper detection of homogeneous regions
for model development (training) and for model application (testing),
using regression models that recognize distinct data distributions
(Lazarevic et al. 1999), can result in better accuracy than the use of

single global models. Note that due to heterogeneity average
explained variance by the global model was 20 to 30% less then that
observed in the Field 1a and Field 1b experiments (Table 1).
     It is important to emphasize that if regions of homogeneity are
wrongly detected when applying region specific models, results can
be worse than those from using a single global model.  To
demonstrate this, we trained local models on each of the distinct data
distributions in the training subset of Field 3 and applied these models
to the entire test set instead of applying them to points from the data
distribution matching their training data. The maximum global
accuracy of these local models was only R2=0.16 and in most cases,
the global accuracy of the local models was worse than what could be
obtained by simply using the mean value of all the training data as the
global prediction.

DISCUSSION

     In this paper, using simulated data, we considered the
appropriateness of linear and non-linear models (feed-forward neural
networks) and the effect of key data parameters on crop yield
prediction for precision agriculture management. For highly non-
linear relationships between features and simulated yield, non-linear
models outperformed linear models when data sampling was
appropriate.
     Additions of unexplained variance resulted in significant drops in
prediction accuracy. Additions of error to feature values also caused
drops in prediction accuracy although linear models seem to be more
resistant to this kind of error.
     The common practice of using interpolation procedures to estimate
observations at locations that are not physically sampled drastically
affected non-linear model performance. When the sampling density of
the features was low and there were large interpolation errors, linear
models outperformed non-linear models. Our results suggest that
there is no significant benefit from using interpolated data over the
original feature values obtained by sampling, when non-linear models
are applied. Even though the interpolation process results in larger
data sets and allows the use of all of the response variable data
(collected at a high resolution), there was no benefit in terms of
prediction accuracy.
     On the other hand, initial results for linear models show that they
can benefit from using interpolated data instead of just using sampled
data. These results coincide with those obtained on real-li fe
agricultural data and suggest that users must assess data sampling
density and the number of sampled points in selecting the best
modeling approach. Comparisons of linear and non-linear model
performance along with the statistical confidence of linear regression
coefficients appear to be useful for testing sampling grid optimality.
   The detection of yield distribution heterogeneity is another
important aspect in obtaining maximum prediction accuracy. Using a
global model when there are multiple yield generation functions leads
to markedly lower performance. By using appropriately specialized
local models, one can achieve a significant improvement in prediction
quality if accurate methods for identifying the data distribution and
selecting the appropriate model are applied. Otherwise, performance
is poorer than when global models are used.
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