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ABSTRACT

     A data simulator that can facili tate the development of improved
sampling and analysis procedures for spatial analysis is proposed. The
simulator, implemented in MATLAB, provides a graphical user
interface and allows users to generate data layers satisfying given
spatial properties and a response variable dependent upon user
specified functions. It has a modular structure and is capable of
modeling response function heterogeneity (both in spatial coordinates
and in driving attribute space) as well as unexplained variance, sensor
error, spatial data sampling and interpolation. As an illustration of the
potential uses of the simulator in precision agriculture, the effect of
sampling density and interpolation on neural network prediction of
crop yield was assessed.

INTRODUCTION

     The advent of global positioning systems and new sensors has
enabled the collection of large volumes of spatial data.  However, this
ability has given rise to many questions regarding both how to best
collect data and how to properly interpret and analyze the
information. The answers to these questions often cannot be proven
by theory, but must be inferred from multiple experiments. However,
the variability in data sets, data collection procedures, and analysis
approaches make it difficult to compare results from separate
experiments and wil l likely slow the discovery of optimal procedures.
     As spatial data have become more available, it has become easier
to test knowledge discovery procedures on multiple data sets allowing
the formation of more general statements. However, it is stil l not
possible to truly compare the results of separate studies unless the
same data or data from the same population are used.  One solution to
this is to evaluate procedures using standard widely available data
sets. Unfortunately, unlike in machine learning and knowledge
discovery in some other domains (Bay 1999), (Blake and Mertz
1998), standardized spatial data repositories do not exist.
     Another solution to the problem of data availabil ity is to use data
simulators.  Not only do they provide the abil ity to create unlimited
amounts of data, but sophisticated simulators can allow the user to
control the complexity of the data, add known amounts of noise, and
to generate response variables dependent upon simulated driving
attributes. To test regression procedures, a simulator must provide a
way to formulate a response variable based on a set of driving
attributes.  While mechanistic models (Corá et al. 1999) can simulate
response variables that reflect real world variabil ity, they can require
many input variables complicating the data generating process.  In
addition, the response of the model to a given input is hard coded in
the model.  On the other hand, a data simulator could simply use
deterministic mathematical functions to compute a response variable
for a given input by combining individual effects of multiple driving
attributes.
     Using an extension of the geostatistical simulation techniques of
(Desbrats 1996) and deterministic response functions, we have
developed a spatial data simulator that can generate spatial layers
satisfying given statistical properties and a response variable
dependent upon user--controlled equations.

Our intention is to provide a user-friendly yet powerful way to
simulate different aspects of data generation, acquisition and
processing.   The simulator can be used to explore in a controllable
way the effects of sampling density, sensor error, presence or absence
of particular driving attributes, and layer heterogeneity on sampling
procedures, data acquisition systems, and KDD algorithms (Pokrajac
at al. 2000). Furthermore, by using this simulator, it is possible to
examine the behavior of different machine learning algorithms and to
determine their robustness and potential effectiveness with complex
spatial data.  Also, due to the modular structure of the simulator, it is
possible to gradually increase the complexity of generated data to
simulate prospective emerging aspects of technology and practice.
The following sections discuss the method of data generation, the
software implementation, and finally give an example of using
simulated data for investigating interpolation effects on neural
network yield prediction in precision agriculture.

METHOD

     The data simulation process consists of two steps: driving attribute
generation and response variable simulation.

Generation of Driving Attributes

     Driving attributes are generated through a multistep process of 1)
grid determination, 2) generation of independent attributes, 3)
attribute correlation and cluster generation and 4) attribute
verification.

Spatial Grid Determination
     The first step in the driving attribute generation process is to
specify the shape of the simulated layer and the grid spacing on which
data wil l be generated.  Non-rectangular layers can be obtained by
masking a rectangular layer with other shapes.  Symbolically, denote
with S the set of spatial points si =(xi, yi) i  =1,…,n  on which a
response variable and attributes are to be generated.

Generation of Independent Attributes
     Each driving attribute fj (s) is considered as a random function of
vectors si.  Driving attributes can be generated to have Gaussian or
arbitrary distributions (Devore 1995).  The attribute simulation
procedure is similar to (Desbrats 1996). Attribute values are
established such that the spatial statistic properties of the simulated
attribute are described by the chosen theoretic isotropic
semivariogram γ.(h), specified by type (exponential or spherical) and
parameters (nugget, c0, sil l, ce, and range as) (Cressie 1993).
     The first step in generating f.(s) is to generate an attribute f* (s)
satisfying the normalized semivariogram γ* .(h):

                                                                                                            (1)

Generation of f*  (s) takes two steps: first, a set of seed points S’  ⊂ S
is selected and for each seed point, an attribute value is simulated to
satisfy the theoretical semivariogram γ* .(h).  Second, attribute values
for the remaining points in S are obtained from the values of S’  by
spatial interpolation.  Assuming the second-order stationarity is
satisfied (Cressie 1993), attribute values at the seed points are a
sample of a n’  dimensional random vector with zero mean and a
covariance matrix

                  (2)

where hi,j is a distance between two distinct seed points.
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     Once attribute values are established for the seed points, attribute
values for the rest of the data grid are determined through spatial
interpolation using ordinary kriging (Cressie 1993).  To incorporate
the uncertainty of the kriged attribute values into the data layers, the
interpolated value at each point in the data grid is substituted with a
sample from a Gaussian variable having mean and variance equal to
that predicted by kriging (Desbrats 1996).  I f the simulated driving
attribute is not Gaussian, but instead has an arbitrary distribution,
attribute values can be obtained using the distribution transformation
approach (Desbrats 1996).
     Finally, the data are transformed from f* .(s) to the driving attribute
f (s) with required mean µ, sill ce and nugget c0:

                   (3)

where N(µ,ce) is a Gaussian variable having mean µ and variance ce.

Attribute Correlation and Cluster Generation
      All driving attributes are simulated independently, but due to
spatial correlation, they may be correlated to each other. In order to
obtain attributes with a given correlation matrix CV (which can be
estimated as the sample covariance matrix of real-world data),
attributes are de-correlated using eigenvalue projection (Dudal at al.
1999) and Cholesky transformation of CV (Flury 1997).
     The last phase of driving attribute simulation is the formation of
clusters in attribute space. Using a subset Φ of the simulated driving
attributes, a set of  “cluster seeds” , consisting of M points in Φ is
chosen.  Then, each point in the simulated data set is moved towards
the nearest cluster seed. The intensity of the shift is proportional to the
distance to the seed point and can be adjusted to control cluster
aggregation.  To avoid unnaturally clear separation between clusters,
“perturbation" noise with variance proportional to that of the
attributes in Φ is added to the clustered values.  Finally, the driving
attributes in Φ are renormalized to have specified means and
variances.  Since the clusters are used to assign multiple models
during the simulation process of a response variable (see next
section), a cluster label ci is maintained for each point si in the
simulated data grid.

Attribute Verification.
     The final step in the attribute generation process is to verify that
simulated driving attributes match user-specified spatial properties by
calculating estimated semivariograms and fitting model
semivariograms.
     To compute estimated semivariograms, the relevant distance range
is divided into equally spaced lags and for each lag, all  pairs of points
whose distances are within the lag are used to calculate an average
squared difference of function values using the method of moments or
robust estimation (Cressie 1993).
     To fit a theoretic semivariogram model with the estimated
semivariogram, the parameters ce,c0,as  must be determined.  This can
be done by visual assessment, or by simple or weighted least squares
(Cressie 1985).

Simulation of a Response Variable

     Response variable g (.) is generated from the driving attribute data
using linear and loglinear models that are common in statistical
literature, as well as plateau models, common in agriculture. In linear
models, g (.) is the weighted sum of the driving attribute values fj(si).
When a loglinear model is applied, the logarithm of the response
variable is computed as the weighted sum of the logarithms of the
attribute values.
     In plateau models, response variable g (.) is generated proportional
to the product of the plateau functions  hj (.) for each driving attribute
used to generate the response variable:

                                                                                                            (4)

where G is the coefficient of proportionality.
Plateau functions can be l inear:

         
                  (5)

or exponential:

                          
                                    (6)

In these formulas, T1,j, T2,j and T3,j  determine the slope and range of
the plateau models while Hj determines the floor of the particular
attribute’ s influence on response variable.  The effect of Hj is
quantified by calculating the influence strength modj defined as modj

=(1-Hj ) / (1+Hj ).  Modj has a maximum value of 1 when driving
attribute j has its maximum influence on the response variable.
Oppositely, if modj =0, the response variable does not depend on the
driving attribute j, by which we can introduce attribute irrelevancy.
     Model coefficients can be determined from actual data or taken
from sources of expert knowledge such as fertilizer recommendation
guides for applications in agriculture.

Modeling of Heterogeneity
     To simulate situations where the influence of driving attributes to
the response variable varies over space, or varies due to differences in
driving attribute values, the response variable can be modeled such
that the value of the response variable at grid point si is the weighted
sum of values generated by M models gm (.):

                                    (7)

Different models can be assigned to different spatial areas or to
different driving attribute clusters.  The use of spatial position for
model assignment can simulate conditions where variables that
contribute to the response variable determination are missing from the
data set.
     We use the term “ hard”  generation if only one of M models
contributes to the response variable at each point si, and the term
“smooth”  generation when multiple models contribute to the value of
the response variable.  Smooth generation allows gradual transitions
from one model to another.
     The determination of wm,j to vary models with spatial location is as
follows.  For each point si=(xi,yi ) in S, generate Gaussian variable v
with zero mean and unit variance.  For each (xi,yi ), compute v’ as the
average of all values v for the points in the rectangle bounded by
points xi ±∆x, yi±∆x  where ∆x  is a user-defined parameter.  Generate
v*  by discretizing the value of v’ over S into M equal bins.  Compute
coefficients for “hard”  response variable generation such that:

(8)

To compute coefficients for “ smooth”  response variable generation,
one should average values of whard,m,i for all points in rectangle xi ±
∆xsoft, yi ± ∆ysoft (∆xsoft, ∆ysoft are adjustable parameters).
     To vary models due to differences in driving attribute values,
assign class label ci to each point si and generate coefficients whard,m,i

such that whard,m,i = 1 if c i =m and 0 otherwise.  The smooth coefficient
for point si is generated by averaging whard,m,i  for all points in a
specified neighborhood around point si in attribute subspace Φ.
Observe that the existence of spatial indexes in subspace Φ can
dramatically improve the performance of this algorithm.

Modeling Unexplained Variance, Sensor Error, Sampling and
Interpolation
     Unexplained variance in the response variable is modeled by
adding Gaussian noise with zero mean and variance such that the ratio
of explainable response variability (determined by driving attribute
values and response functions) to the total response variability is
equal to a user specified value.  The effect of measurement error on
driving attributes and the response variable is modeled as
multiplicative Gaussian noise.
     Finally, the introduction of error through the interpolation of
sampled values is simulated by emulating the actual sampling
process.  Data are sampled from the generated data grids and used to
interpolate values at unsampled locations using inverse-distance or
kriging interpolation (Cressie 1993).
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IMPLEMENTATION

     The spatial data simulator has been implemented in MATLAB (by
The MathWorks, Inc.). The software can work in three modes: i)
simulation of driving attributes, ii) simulation of response variable,
and iii) simulation of unexplained variance and sensor error and the
simulation of sampling and interpolation.
     In the driving attribute simulation mode, the user is presented with
a number of parameter input screens.  Grid and semivariogram
estimation parameters include layer shape, grid step size, number and
positions of seed points, number of points, minimal and maximal lag
and bin width for semivariogram estimation (Fig. 1).  Driving
attribute parameters include the number of driving attributes to be
simulated, driving attribute means and variances, and the parameters
of their model semivariograms. Also, the user can load parameters
from existing fi les in addition to keyboard entry.

     Once the parameters have been entered, the program proceeds
through an interactive simulation process of attributes.  The user is
presented with the estimated and model semivariogram and
normalized histogram for a driving attribute (Fig. 2).  The user can
then accept the driving attribute and continue with the next one, or re-
generate the current driving attribute if unsatisfied with the generated
statistics.  After all the driving attributes are generated, the user is
prompted for the number of clusters and their seeds.  The user
interactively controls the clustering process (Fig. 3) by changing the

coefficient of proportionality for aggregation and the variance of the
attribute “ perturbation" noise.

In the response variable simulation mode, the user selects the driving
attributes upon which the response variable wil l depend, the number
and the type of models to apply (linear, loglinear or plateau).  I f the
user selects more than one model, they must also choose how to
assign the different models; models can be assigned to regions in
coordinate (x and y) or in attribute space.  Next, in an interactive
process, the user sets parameters for each model and controls their
influence on the simulated response variable. An example of this
process for a linear plateau model is shown in Fig. 4.   For each model
m=1,…,M, and for each driving attribute j=1,…,F, (e.g. nitrogen,
potassium…), the user enters parameters T1,m,,j, T2 m,,j, T3,m,j (denoted
by T1, T2 and T3 on the screen capture) and modl,j = (1-Hm,j)/ (1+Hm,j)
(denoted with mod on screen) describing the shape of gm,j which is
plotted along with the normalized histogram of the driving attribute.
By varying G the user can also specify a “ ceiling” , the maximum
allowed value of the response variable.
     By inspecting mean, median, standard deviation, minimum and
maximum values, the number of outl iers (values on which the
response variable is not defined or is less than zero), and the
normalized histogram for the response variable, the user can tune
model parameters to obtain a simulated response matching desired
requirements. In the postprocessing mode, unexplained variance and
sensor error are added to the response and driving attribute values. To
simulate sampling, data points are selected from a complete data grid
at a user specified spacing and used to interpolate a new data grid.

Figure 1: Input screen for grid and variogram estimation Parameters

Figure 2: Screen for the interactive driving attribute generation
process showing the current parameters of the simulated driving
attribute.

Figure 4: Software screen for tuning plateau model parameters.
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     When the data simulation process is complete, the simulated
driving attributes and response, as well as the simulation parameters
are saved in a file specified by the user. Due to the interactive nature
of the software, typical data simulation sessions last 20 minutes to 1
hour.  Intermediate results are saved during the simulation process in
case program execution is interrupted before the process is complete.
     The computational complexity of the data simulation process
establishes the practical limits for grid point, seed point, driving
attribute, and model numbers.  The program has been successfully
tested for up to n=15000 grid points, n’=400 seed points, F=10
driving attributes and M=5 models. Since complexity is l inear in F,M
and n, the critical issue in program execution is the choice of n’ , since
generation of seed points and kriging requires time proportional to the
cube of n’ . Due to the difficulties of generating driving attributes
satisfying specified semivariograms with a small number of points n’ ,
a reasonable compromise for the value of n’  is necessary.

EXPERIMENTS WITH SIMULATED DATA

     Using simulated data, many important spatial data issues in
precision agriculture, such as the influence of data parameters (sensor
error, unexplained variance, data distribution and heterogeneity) and
the type and parameters of regression models on prediction accuracy,
can be explored (Pokrajac at al 2000). Here, we will illustrate the
application of data generated using the simulator to investigate the
interpolation error influence on yield prediction.
     We simulated two fields with five driving attributes representing
soil and landscape characteristics. Spatial statistic parameters of the
driving attributes roughly corresponded to those obtained from a real-
world data set (Hess and Hoskinson 1996).  Specifically, ranges for
the soil fertil ity driving attributes were all set to 200m.  All driving
attributes were approximately normally distributed. 256 seed points
were used to generate the driving attributes, and the semivariograms
were estimated using the robust method and approximated using
weighted least squares.  All data were generated on a 10*10m2 grid
and the size of each field was 800m*800m.  Yield was simulated
using a linear plateau homogeneous model, whose parameters were
set using ferti lizer recommendation guides (Brown 1982) and expert
knowledge.
     The soil fertili ty driving attributes were sampled at different
densities and then interpolated back to a 10*10m2 grid.  Interpolation
accuracy was assessed using coefficient of determination R2  (Devore
1995).  A feed-forward neural network (Haykin 1999) was used to
predict yield as the response to all five driving attributes.  Yield
prediction accuracy was also measured using a R2 obtained by 2-cross
validation  (considering each part of a data partition pair both as a
training and a test set), and averaging 10 experiment repetitions for
each pair of training and test set.

When trained on non-interpolated data, the neural network was able to
explain 86% of the yield variability in testing fields.  However,

interpolation errors, even those that occurred when the soil driving
attributes were sampled at a spacing equal to ¼ of their geostatistical
range (50*50m2), seriously decreased yield prediction accuracy (Fig.
5). These results indicate that unless data are sampled at very high
densities relative to their geostatistical properties, one should not
attempt to build highly accurate regression model using interpolated
data. Observe also that yield prediction accuracy and interpolation
accuracy were highly linearly related (correlation coefficient r= 0.99).
This dependence could lead to new methods to predict the accuracy of
yield prediction based on the estimation of interpolation accuracy and
conversely, to determine the necessary sampling density for obtaining
a desired level of yield prediction accuracy.

CONCLUSIONS

     A data simulator that can serve as a tool for the development of
improved sampling and prediction procedures for spatial data analysis
is proposed. Unlike “ real”  data, using the simulator provides the
ability to control data properties such as the spatial characteristics and
the amount of noise.  Furthermore, prediction accuracy can be easily
assessed because the true answer (the value of a driving attribute or
the response variable) is known at every location.  For the simulation
of data issues that cannot be currently handled, the modular nature of
the simulator will allow new appropriate functions to be easily
appended.
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