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Abstract

A two-phased method for prediction in spatial-
temporal domains is proposed. After an ordinary
regression model is trained on spatial data, a
prediction is adjusted by incorporating auto-
regressive modeling of residuals in time. The
prediction accuracy of the proposed method is
evaluated on simulated agricultural data with a
significant improvement of accuracy for both
linear and non-linear regression models. The
obtained experimental results suggest that when
auto-regressive residual modeling is included,
computationally more efficient linear regression
models may predict almost as good as non-linear
ones.

1. Introduction

Prediction of a continuous response variable in spatial-
temporal domains, has recently drawn significant
attention in the data analysis community (Cressie &
Majure, 1997; Pace Kelly et al 1998). Spatial-temporal
regression models learned on systematically collected
values of driving attributes can contribute to a better
understanding of complex phenomena studied in
meteorology, oceanography, environmental science,
precision agriculture and other domains. However,
spatial-temporal modeling is often difficult due to various
factors, including:
− Small number of available time layers;
− Low spatial sampling resolution on a uniform spatial

grid and errors due to data interpolation;
− High influence of unobserved attributes;
− Non-stationarity in space and time;
− Non-linear dependence on driving attributes.

Typical spatial prediction methods have been developed
assuming non-uniform event-driven sampling, where the
objective is interpolation at different spatial positions (at
current time). In contrast, we focus on a uniform grid and
the prediction of unknown future response values.

Auto-regressive models use information from a spatial
and a temporal neighborhood to perform a prediction at a
specified location. Performance improvement as
compared to ordinary regression models is often possible
due to the postulated spatial and temporal correlation of
data. However, an interpolation error in real-life data can
introduce a false spatial similarity and therefore may have
a negative impact on accuracy of an auto-regression
model.

For non-linear phenomena, learning algorithms that
model a response variable as a non-linear function of
driving attributes may be superior to linear regressors.
However, due to the presence of noise in data, an
insufficient size of a training set, and an interpolation
error, linear models can outperform non-linear ones in
practice (Pokrajac, Obradovic & Fiez, 2000).

Finally, a majority of spatial-temporal learning algorithms
were developed for stationary or time-constant processes.
Data non-stationarity can significantly decrease the
prediction quality and the applicability of such prediction
models.

The purpose of this paper is to examine the effect of
including auto-regressive modeling of ordinary regression
residuals for learning on non-stationary spatial-temporal
data sampled on a uniform grid. The proposed method
combines linear or non-linear non-spatial and non-
temporal regression models learned on data collected at



particular time moments with spatial-temporal auto-
regression of residuals.

After the survey of related work presented in Section 2,
the proposed methods for spatial-temporal prediction is
described in Section 3, along with a technique for
experimental data generation. The obtained results are
reported in Section 4, followed by conclusions and
directions for future work discussed in Section 5.

2. Related Work

2.1 Spatial Auto-regression

In analysis of spatial data, numerous attempts are made to
explicitly include a spatial component into prediction
models. In models with spatially correlated residuals and
with auto-regressive disturbance (Pace & Gilley, 1998;
Florax & Folmer, 1992) modeling consists of two steps.
First, the response variable is treated as non-spatial and a
linear model is applied.  Then, the residuals of a linear
model on training data are assumed spatially correlated
and their dependence is modeled through a matrix W
using an auto-regressive approach.  The final model,
using the notation from Table 1, is:
Y= Xβ+W(Y-Xβ)+ ε                 (1)

A variation of this model, when the response is assumed
to be spatially-correlated, is proposed by (Burridge,
1981), where:
Y=Xβ+ρWY+ε                               (2)

In a mixed regressive-spatial cross-regressive model
(Florax & Folmer, 1992), the response linearly depends
on driving attributes not only from the current but also
from the neighboring points. This dependence is modeled
using a vector γ of cross-correlation coefficients:

Y=Xβ+WX*γ+ε                               (3)

Finally, the mixed regressive-spatial auto-regressive
model (Florax & Folmer, 1992) is a generalization of
models (2) and (3). This model assumes a spatially
correlated response also dependent on attributes of the
neighboring points:
 Y=Xβ+WX*γ+ρWY +ε (4)

Models (1)-(4) have the following  common properties:

− Models are used for interpolation of non-uniform
event-driven samples;

− A time-independent response variable is assumed;
− The response variable is assumed to be linearly

dependent on driving attributes.

2.2 Temporal and Spatial-Temporal Auto-Regression

2.2.1 MODELING TEMPORAL DATA

Temporal data can be modeled using a serial-correlation
model. The response variable is assumed to be a function
of driving attributes, while residuals are assumed serially
correlated, satisfying AR(1) model (Davidson &
McKinnon, 1993):
yt=xtβ+ut (5)
ut=ρut-1+εt

To estimate a serial-correlation model, one can perform
the following iterative procedure (Davidson &
McKinnon, 1993):

1. Set ρ=1
2. Perform linear regression by estimating model
     yt-ρyt-1=(xt-xt-1) β+εt

Spatial and spatial-temporal models:

n number of  patterns/data tuples
k number of explanatory variables/observed

attributes
Y n*1 column vector of observed response

variables on n patterns within the observed
spatial region.

X n*(k+1) matrix in which each row
corresponds to k observed attributes for a
pattern and an intercept

X* n*k matrix of observed driving attributes
without an intercept

β (k+1)*1 vector of regression parameters
x(β) non-linear function of matrix X with

parameters β
W sparse n*n matrix having zero diagonal

elements
γ k*1 column vector of cross-correlation

coefficients
ρ  autocorrelation coefficient
ε  n*1 vector of independent identically

distributed Gaussian disturbances
U n*1 vector of correlated residuals

Index t denotes response variable/driving attributes
at instant t for temporal models.

Non-spatial time models:
 xt,yt, ut observed attributes, response variable and
residual in time t, respectively.

Table 1. Notation for parameters and arguments of
regression models



3. Compute value of ρ in next iteration by estimating
the regression model
ut=ρ ut-1 +et

where  et is an auxiliary residual.
4. Repeat steps 2. and 3 until a pre-specified convergence

criterion is satisfied.

In this model, the stationarity of regression coefficients β
is implicitly assumed, which is equivalent to imposing a
modeling restriction βt=βt-1. Also, observe that the serial
correlation model does not consider a spatial component
of data. Therefore, a new class of spatial-temporal models
has recently been developed.

2.2.2 SPATIAL-TEMPORAL MODELING

Spatial-temporal prediction can be performed using a
generalization of the model with auto-regressive
disturbance (1). Here, the correlation matrix W represents
spatial-temporal correlation of residuals. This matrix is
estimated assuming that the second-order statistics of the
residuals satisfy theoretical spatial-temporal variograms
(Cressie & Majure, 1997). Modeling includes estimation
of linear regression coefficients β and computation of
residuals, as well as the estimation of spatial-temporal
variograms. When the model is estimated, the prediction
is performed as a sum of regressors Xβ and residuals
estimated using a spatial-temporal kriging.

Similar as the serial correlation model, this model implies
the stationarity of regression coefficients is time. Also, to
properly estimate spatial-temporal variograms, the
existence of a relatively high number of data time layers
is necessary. Recall that these are strong and often
unattainable requirements for a number of spatial-
temporal domains (e.g. in precision agriculture, due to a
recent adoption of a global positioning system-based
measurement technology, spatial data currently exists for
about the last 5 years).

Another approach for regression of spatial-temporal data,
proposed by (Pace at al, 1998), is a generalization of the
mixed regressive-spatial auto-regressive model (4). Here,
the correlation matrix is assumed to be a product of
matrices T and S, related to the time and the space
dependence, respectively. Each sample from training data
is assumed dependent on a fixed number of its spatial
neighbors (regardless the time) and a fixed number of its
time neighbors (that immediately precedes the observed
sample).

The main problem when applying this model is  a correct
estimation of T and S. In (Pace at al., 1998) the forms of
matrices T and S are postulated and the maximal number
of influential neighbors is pre-specified. The model is
developed for real-estate data, where each sample occurs

in a distinct time instant and the number of time neighbors
considered is small. In contrast, in the case of a uniform
grid there is a larger number of samples collected at each
time moment. Hence, the resulting matrix T is huge and
the application of this method can be prohibitively
laborious.

3. Methodology

3.1 The Proposed Method

We propose a combined regression-auto-regression
model, described by:

Yt=xt(βt)+Ut

Yt-1=xt-1(βt-1)+Ut-1 (6)
Ut=WUt-1

After non-spatial regression models xt(βt) and xt-1(βt-1) are
trained on data from time layers t-1 and t and residuals
Ut-1 and Ut are computed, the spatial autoregression of Ut

on Ut-1 is performed such that residuals corresponding to
neighbors of the same order are weighted with the same
coefficient. Here, two samples are called the l-th order
neighbors if maximal absolute difference of their spatial
coordinates is l∆, where ∆ is a sampling distance (see an
example at Figure 1). The maximal order L of neighbors
concerned is an input parameter of the algorithm. Also,
both linear and non-linear non-spatial regression models
xt(βt) can be applied.

Models are tested on data from time t+1 using driving
attributes collected in time t+1 and residuals computed
using the prediction and true response values at time t.

Observe that the proposed model exhibits certain
similarities with the first iteration of Cochrane-Orcutt
serial correlation algorithm. However, here regression
coefficients do not obey a restriction βt=βt-1, hence the
proposed procedure can be more suitable for non-
stationary processes.

           3rd  order neighborhood

           1st   order neighborhood
           2ne order neighborhood

          observed sample

Figure 1. Definition of a neighbor order for spatial data  with
an uniform grid



Similar to the spatial-temporal auto-regressive model
(Pace at al, 1998), in the proposed model the influence of
time and space neighbors is considered separately.
Further, in both models the maximum size of a spatial
neighborhood influence must be pre-specified. However,
in contrast to the spatial-temporal auto-regressive model,
the proposed model does not involve a spatial regression
on attributes. Also, in the proposed model, the maximal
time lag of considered residuals is one, which makes
prediction less time-complex and potentially more
resistant to data non-stationarity.

Unlike spatial auto-regression models, the proposed
model is aimed to the prediction of response values in
future. Compared to generalization of the model with
auto-regressive disturbance (Cressie & Majure, 1997), the
proposed model has more degrees of freedom and
therefore has a potentially higher explanatory power.

3.2 Generation of Experimental Data

To create data satisfying pre-specified spatial and
temporal statistical properties and to control the data
complexity and noise level, experiments were performed
on data generated using our spatial-temporal data
simulator (Pokrajac, Fiez & Obradovic, 2000).

The simulation process consisted of the following phases:
− Generation of driving attributes
− Generation of the response variable
− Simulation of sampling error, attribute sensor noise

and unexplained variance

3.2.1 SIMULATION OF DRIVING ATTRIBUTES

Driving attributes are generated through a multistep
process of grid determination, generation of spatially
correlated attributes and cluster generation  (Pokrajac,
Fiez & Obradovic, 2000).

After determining a sampling distance and dimensions of
a rectangular grid, for each attribute a specified number of
time layers is generated using kriging of a random seed
vector (Cressie, 1993). Using Cholesky decomposition, a
seed vector is generated to satisfy specified spatial and
temporal correlation (Pokrajac, Fiez & Obradovic, 2000;
Pokrajac, Obradovic, unpublished results).

 To generate the specified number of attribute clusters,
corresponding cluster “seeds”  are chosen and each data
point is “moved“ towards the nearest cluster seed. The
intensity of the shift is proportional to the distance to the
seed point and can be adjusted to control cluster
aggregation.  To avoid unnaturally clear separation
between clusters, “perturbation" noise with variance
proportional to that of the attributes may be introduced.

3.2.2 THE SIMULATION OF RESPONSE VARIABLE

For each attribute cluster and time layer, a distinct non-
linear mapping of driving attributes into the response
variable can be applied. The simulator supports several
non-linear functions including multiplicative and plateau
models, particularly suitable for agriculture applications.
A temporal component of a response variability is
simulated with AR(1) models (Davidson & McKinnon,
1993), independently assigned to each attribute cluster.
Consequently, a real-life situation where particular zones
of a considered spatial area behave differently in time can
be modeled.  The percent of the response variability due
to an AR(1) process is also user-controllable.

3.2.3 THE SIMULATION OF SAMPLING ERROR, SENSOR

NOISE AND UNEXPLAINED VARIANCE

Emulating the actual sampling process simulates the error
introduced through the interpolation of sampled values.
Data are sampled from the generated grids and used to
interpolate values at un-sampled locations using kriging
(Cressie 1993).

The effect of measurement error on driving attributes and
the response variable is modeled as multiplicative
Gaussian noise with a unit-mean and variance determined
by a specified measurement error.

Finally, unexplained variance in the response variable is
modeled by additive Gaussian zero-mean noise having a
variance determined by the specified percentage of
unexplained variance in resulting data.

4. Experiments

4.1 Properties of Experimental Data

Experiments were performed on simulated agricultural
data consisting of five time layers. Data contained
samples of 5 simulated driving attributes and the response
variable. Each time layer consisted of 6561 samples from
800*800m2 rectangular field, on the sampling distance
10m.

Five simulated attributes had a spatial correlation similar
to the following real-life agricultural variables: nitrogen
(N), phosphorus (P), potassium (K), water content (W)
and slope (S). Attributes W and S were assumed to be
constant in time, while the other attributes were modeled
as time-dependent. In the absence of real-life data
temporal statistics, percents of total variability due to the
temporal variance were varied in 10-80% range, while the
auto-correlation of successive time layers was chosen
according to an expert estimate (see Table 2).  After the



generation of correlated attributes, four clusters in the
space of topographic attributes W and S were formed.

Table 2: Spatial and temporal statistic parameters of simulated
driving attributes

Attribute name N P K W S
Range(m) 200 300 400 100 200Spatial

parameters Nugget(%) 0 0 0 0 0
% temporal
variability

80 20 10Temporal
parameters

Correlation 0.9 0.9 0.7

Attributes do
not change
over time

Crop yield, the response variable, was generated using
linear plateau models. For each cluster, the relative
influence of particular attributes on the simulated
response and a shape (slope and thresholds) of linear
plateau functions were varied according to an expert
knowledge. The mean and standard deviation of simulated
crop yield were similar to that of real-life data. Finally, an
unexplained variance in range of 5-35% and an attribute
sensor error in range 5-15% were introduced.

4.2 Evaluation of Method Accuracy

A linear regression was performed using the OLS method
(Devore 1995). A non-linear modeling was performed
using the sigmoidal perceptrons trained with the
Levenberg-Marquardt algorithm (Haykin, 1999), with 1
hidden layer having 4 neurons. Experiments with non-
linear models were repeated 10 times each.

The prediction accuracy was measured using the
coefficient of determination R2. R2 is a measure of the
explained response variability. In the case of useful
prediction models it ranges from 0 to 1, where 0 results
from using a trivial mean predictor and 1 represents the
ideal case of no prediction error. A one-sided t-test was
used to compare the accuracy of linear and non-linear
models (Devore 1995).

Results of the proposed method were compared to the
results of ordinary linear and non-linear regression
models. Five time layers were generated and since the
training of the proposed method required data from two
successive layers, trained models were tested on time
layers 3,4 and 5.

4.3 Results

The results of comparing the proposed and ordinary
regression methods are presented in Table 3, where the set
of attributes used for training a non-spatial model x(β) in
(6) is varied. The accuracy of the proposed method is
shown both for non-spatial (L=0) and the spatial auto-
regression with first-order neighbors (L=1). Further
increasing of L did not result with significant accuracy

Table 3: Comparison of the proposed method and ordinary
linear and non-linear regression

a) all driving attributes are used for model training.

Mean accuracy (R2)
Proposed
method

Regression
model

Time
layer Ordinary

regression
L=0 L=1

3 0.11 0.63 0.65
4 0.19 0.80 0.81

Linear

5 0.18 0.73 0.75
3 0.46** 0.64 0.70**
4 0.70** 0.83** 0.84

Non-linear

5 0.67** 0.83** 0.85**

b)  3 time-dependent features (N,P,K) were used for modeling

Mean accuracy (R2)
Proposed
method

Regression
model

Time
layer Ordinary

regression
L=0 L=1

3 0.13** 0.59** 0.59**
4 0.12 0.80** 0.82**

Linear

5 0.15 0.72 0.73
3 0.02 0.41 0.44
4 0.19** 0.77 0.79

Non-linear

5 0.20** 0.70 0.71

c) only spatial coordinates (x,y) were used for modeling

Mean accuracy (R2)
Proposed
method

Regression
model

Time
layer Ordinary

regression
L=0 L=1

3 -0.48 -0.06 -0.05
4 0.16 0.76 0.78

Linear

5 0.19 0.73** 0.74*
3 -0.63 -0.05 -0.03**
4 -0.00  0.77 0.79**

Non-linear

5 0.01  0.71 0.72

improvements, and so the corresponding results are not
presented. Our hypothesis is that when the higher order
neighbors are considered (corresponding to larger L), the
auto-regression models become too complex and thus
gradually loose their generalization capabilities.

When models x(β) were trained on all driving attributes,
results suggest that the accuracy of both linear and non-
linear regression models can be significantly improved
using the proposed method, as shown in Table 3a. This is
particularly true for linear models (e.g. for time layer 4,
R2 has  an improvement of 61%). Observe that in this case
non-linear models steadily outperformed linear ones with



99% significance of a t-test (denoted by **  on Tables 3
and 4).

With models x(β) trained only on time-dependent
attributes (N,P,K), a significant improvement of accuracy
using the proposed method was again achieved (Table
3b). This is in accordance with a claim that using auto-
regressive models can improve prediction accuracy when
some driving attributes are missing from the model
(Colwell, Cannaday & Wu, 1983). Observe that in this
case linear models frequently outperformed the non-linear
ones when used within the proposed method.

Our hypothesis was that due to the spatial correlation of
driving attributes an introduction of any spatial
information into regression models could have a positive
impact on the prediction accuracy. To illustrate this, we
repeated previous experiments training regression models
x(β) on spatial coordinates x and y only. As expected, a
significant improvement of accuracy using the proposed
method was achieved again (Table 3c).

As can be seen from Table 3, the introduction of the first
neighbor residuals in prediction models resulted in a
rather small increase of modeling accuracy. Similar
results were obtained when attribute noise was added.
However, when the proposed method was applied on data
with a high unexplained variance (noise) in the response
variable, an improvement due to a spatial neighborhood
consideration (L=1) was significant (Table 4). An analog
behavior was evident for unobserved variance levels in
the range (5-35%)

 Table 4: Comparison of the proposed method and ordinary
linear and non-linear regression when 35% unexplained variance
added to the response variable and all driving attributes used for
model training

Mean accuracy (R2)
Proposed method

Regression
model

Time
layer Ordinary

regression L=0 L=1
3 -0.37 -0.17 -0.05
4 -0.01  0.32  0.45**

Linear

5  0.00  0.34  0.43
3 -0.28 -0.14** -0.05
4  0.11  0.34**  0.44

Non-linear

5  0.13  0.37**  0.44**

5. Conclusions and Further Research

In this paper, a spatial-temporal data prediction technique
based on the combination of non-spatial regression and
spatial-temporal auto-regression of residuals, is proposed.
Using simulated spatial-temporal data, the proposed
method was compared to the ordinary linear and non-

linear models.  Experimental results suggest that the
proposed method can significantly improve the prediction
accuracy of linear regression models. Also, an accuracy
improvement can be achieved when driving attributes are
missing and when attribute/response variable noise is
present.

The research in progress includes theoretical verifications
of the proposed method and the comparison with other
known spatial-temporal regression methods on simulated
and real-life data of various types.
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