L ear ning Heter ogeneous Functions from Spar se and Non-Uniform Samples

Dragoljub Pokrajac and Zoran Obradovic
School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164-2752, USA
{dpokrgja, zoran} @eecs.wsu.edu

Abstract. A boosting-based method for centers placement in radial basis function networks (RBFN) is
proposed. Also, the influence of several methods for drawing random samples on the accuracy of RBFN
is examined. The new method is compared to trivial, linear and non-linear regressors including the
multilayer Perceptron and alternative RBFN learning algorithms and its advantages are demonstrated
for learning heterogeneous functions from spar se and non-uniform samples.

1. Introduction

Target functions for regression in real-life situations are often highly heterogeneous, while samples are
sparse and collected from a non-uniform distribution. For example, this is typically the case in spatial
domains like oceanography or precision agriculture where sampling resolution varies with locations
[Pennington and Volstad, 1991]. Obvioudly, prediction quality in such situations cannot be too high, but
there is still a need for constructing non-linear models that are better than trivia and linear predictors.
Although it was observed that learning in such environments is substantially different from learning when
high accuracy is achievable [Abu-Mostafa, 1995], it appears that non-linear regression for heterogeneous
functions from sparse and non-uniform samples has not been studied much by the neura networks
community.

Multilayer Perceptron networks [Haykin, 1999] tend to loose their generalization ability with
heterogeneous, sparsely sampled data. This is due to their neurons providing a global discrimination,
which results in models generalizing even in regions of feature space where there was no training data. In
contrast, radial-basis-function networks (RBFN) with Gaussian neurons [Poggio and Girosi, 1990]
provide loca approximations, and thus are potentially more suitable for estimating non-homogeneous
functions by avoiding improper generalization. However, learning agorithms for RBFN are, in general,
developed assuming that a fairly large data set is available for training [Carse and Fogarty, 1996; Chen,
1995; Cherkassky and Najafi, 1991; Fritzke, 1994; Orr at al, 1999; Saha, Christian and Tang, 1989].

To address learning heterogeneous functions from sparse and non-uniform samples, a new RBFN
method based on boosting regressors [Drucker, 1997] applied to radial basis centers is proposed in
Section 2. The agorithm accuracy as well as the influence of sampling techniques in boosting is
examined in Section 3.

2. Method

Boosting is a relatively new technique aimed to reducing modeling error by increasing a prediction
margin [Freund and Schapire, 1996; Schapire et a, 1998]. It is based on successive data re-sampling
according to the accuracy of previously generated models. Learning in boosting occurs in iterations. At
each iteration, an embedded learning model is trained on a data subset obtained according to adaptive
digtribution probabilities. Each trained model is evaluated on the entire training data, and distribution
probabilities are updated such that samples predicted with higher accuracy are less likely to be sampled at
the next iteration. This results in a sequence of models that gradually explore particular regions of a
function domain. The final model is obtained as a combination of all trained models weighted according
to their accuracy on the entire training data.

Although originally developed for classification, boosting was recently generalized to regression, and
successfully employed with regression trees and multilayer Perceptrons [Drucker, 1997; 1999]. In the
following sections, in addition to a direct approach to boost RBFN models by adapting data sampling
distribution probabilities, we propose its modification with boosting radial-basis function centers.

2.1 Boosting RBFN

The proposed boosting-based algorithm for RBFN centers placement, denoted as AdaBoostC, is shown in

Fig. 1. Similar as in AdaBoostR [Drucker, 1997], linear, quadratic and exponential loss functions are

considered. In Fig.1, loss L isdefined as |y -%:(x)/d in linear, | -%()°/d> in quadratic and

exp-|yi - $:(x}/d) in exponentia case (whered=maxy; - :(x;)) , whiley, and ¥, (x;) are atrue target value

corresponding to x; and its estimate using t-th predictor designed in a boosting sequence). However,

AdaBoostC differs from AdaBoostR in the following:

e in AdaBoostC, models are constructed on all training data, while in AdaBoostR samples are drawn
according to a probability distribution;

» aprobability distribution is applied to aradial basis centers assignment in AdaBoostC;

» the mean of trained models outputs (ssimple or weighted by log 1/f3) is aso considered for generating
the final model in AdaBoostC, in contrast to using only the weighted median in AdaBoostR,;

e severa methods for drawing training samples are considered in AdaBoostC (a roulette whed,
stochastic remainder with and without replacement, and deterministic sampling [Goldberg, 1989]).

Another way to apply AdaBoostR to boost RBFN is to perturb training data. As before, the four
drawing algorithms and the final model integration using mean-based heuristics from AdaBoostC are
viable possibilities.

2.2 Alternative RBFN training algorithms

To compare AdaBoostC and AdaBoostRBFN with other popular learning algorithms for RBFN, we
consider an initialization of RBFN center positions using self-organized maps (RBFN-SOM) [Kohonen,
1984] and regression trees (RBFN-RT) [Orr at al, 1999], as representatives of unsupervised and
supervised methods, respectively. Both agorithms are also used as embedded learners in
AdaBoostRBFN and these variants are caled AdaBoostSOM and AdaBoostRT. In addition, we
considered RandomC where RBFN centers are randomly chosen (without replacement) from the training
set [Lowe, 1989].

RBFN-SOM, AdaBoostSOM and RandomC require the number of centers N, and the radial-basis
function shape to be pre-specified. For simplicity, we worked with symmetric radial-basis functions (the
same prespecified radius r for all independent variables). For RBFN-RT and AdaBoostRT the number of
centers and radii are automatically determined. Our intention was to show potential advantages and
drawbacks of the considered algorithms, and therefore their parameters were not optimized.

2.3 Test data

Artificidly generated data were used in order to perform fully controllable experiments. Typical
regression benchmarks are fairly homogeneous slow changing functions, where RBFN can achieve high
accuracy using arelatively small training sample size [Friedman, 1991; Orr at a, 1999; Drucker, 1999].
Such data is inadequate for testing the capabilities of RBFN algorithms to learn heterogeneous, fast
changing functions. Therefore, our experiments were performed using data generated by

Y = sing; 7% cosb, 7y Q)

where i 0 {1,2,3,4} corresponds to the quadrant to which x=(x1,%;) 0[-1,1] belongs. Here, the function
shape is determined by the coefficients a, b. For a=...=a; and b;=...=b,;, equation (1) models
homogeneous periodic functions which are a generalization of a test function used in [Orr at al, 1999].
Opposite, by choosing distinct coefficient values in different quadrants, desired levels of function
heterogeneity can be modeled.

Training:
input:
- sequence of examples (x;,y;), i1=1,...,Ngain;
- the number of RBFN centers N;
- an agorithm RBF_LEARN for learning RBFN;
- maximal number of iterations T,
initialize probability distributions: Dy(i)=21/Nyin, for al i;
initialize t=1; Layg =0;
while average |0ss L,,4<0.5 and t<T
- randomly draw N, RBFN centers according to Dy;
- train model h;:x -y with RBF_LEARN using al (x;,y);
- calculate linear, quadratic or exponential loss L;;
- calculate weighted average 10ss La,g= 2 (Di(i)Li);
- set IBt:Lavg/ (1- Lavg);
-update D,,,(i)=D,(i)g"";
- normalize Dy1= D1/ Zyq to obtain a probability
distribution;

ret O e Ty i
ianut: trhaitr;d modellsht and thteco;e_ﬁ::cndiggf[,_t:tl,...al[l_—u HUGHONNIER BE R 1
or each test example, compute prediction ;. by integrating I . - . ‘

outputs y; of modelsh; as

EE
i
I
'
"

El

H
in @M Z Iog(l/,BJ) 1 Z Iog(l/,Bj)@ (weightedmedian)r
H 2 &

H ik = H

log{1/ B,)3; / z log(1/ B;) (weightedmean)or

ju

,_,
1,
iy

Mz
>

L oe

;r -
E

N
o
-

(L]
(IO Y

(simplemean)or

<1
I
moOoooomoLOoogd
I‘I—\ M=z

X
2

(b)
Figure 1. AdaBoostC — a boosting-based algorithm for RBFN Figure 2: Functions approximated in the
centers placement experiments with heterogeneous data

3. Reaults

For each experiment, the predicted function was specified by coefficients &, b, of equation (1) . Each
experiment was repeated 10 times using Ny4in training examples and 1000 test examples, randomly drawn
according to a specified data distribution. For AdaBoostC, AdaBoostRT and AdaBoostSOM, boosting is
performed with a pre-specified maximal number of T iterations. Predlctlon accuracy on test data is
measured using the coefficient of determination R? computed as R? —1——2 yi-vf1y,(v-vF [Devore,
1995] where y, and y; are the i-th predicted and true target value, respectlvely, andy isthe mean of al
y’s. RCisameasure of the explained variability of the target variable, where larger value is better with 1
corresponding to a perfect prediction and O to atrivial mean prediction. Finally, for each experiment, the
sample mean and standard deviation of R?values on all test examples are reported as mean(R?) + std(R).

3.1 Learning heter ogeneous function

The firgt experiment with a heterogeneous function was performed using equation (1) with
a;=a;=b;=b,=1, a,=az=hs=h,=4 to generate the data. This function is shown at Fig.2a. Both training and
test data were uniformly distributed within the function domain.

Given alarge training data set (N,.in =600) the multilayer Perceptron with 50 hidden neurons, trained
using the Levenberg-Marquart algorithm, had prediction accuracy R® = 0.91+0.05. Also, al RBFN
agorithms worked well resulting in test R? values within (0.79, 0.92) range. This was much better than
using alinear model [Devore, 1995], where the accuracy was comparable to atrivial mean predictor (R? =
0.00+0.02). However, when the training data size was decreased (Ny.in=100) the multilayer Perceptron,
RBFN-SOM and RBFN-RT were aso not able to provide prediction accuracy better than atrivial mean
predictor. When RBFN-RT was applied, the constructed RBFNs had a small number of centers and so
were unable to explain the test data. On the other hand, RBFN-SOM determined incorrect clusters due to
a small number of examples and therefore its generalization was poor. Due to a small sample size,
boosting these methods (AdaBoostRT and AdaBoostSOM) did not improve accuracy regardless of loss
type, an output integration method and a drawing algorithm. For 100 training examples, RandomC and an
optimized radius value r=0.3 was better than a trivial mean predictor when using less than 55 RBFN
centers. However, AdaBoostC results with the same r were clearly superior for all number of RBFN
centers (ranging from 5 to 100). The results shown in Fig.3 were obtained for linear loss, with the final
model generated by a mean-based integration technique and using the roulette wheel method of random
drawing. While AdaBoostC accuracy did not depend significantly on a drawing method, the results were
influenced by a loss type and the output integration method, as shown in Table 1. It was interesting to
observe that the weighted median method proposed in [Drucker, 1997] here provided the worst results.
The choice of maximal number of iterations T for AdaBoostC was not critical, since on average the
boosting process terminated due to achieving aloss value of 0.5 at about 9.5+1.2 iterations.

03 X21"""':'.’

o8l teu. L e
0.2 D
\ 0.6| S e e *
L .
0.1+ 1 ..

0.4
\/N/\ 1\ o
0.0 A\ .} 02r .
¥ \NVAS

R] y i
\ 0.2 .
02+ —=— AdaBoostC ‘\ o4, N
— o= RandomC 0.6 ‘.
03 e T:r\]/i;)mmea'l predictor /_‘\0 o
NC 7%1 ’70.8 -0.6 7064 -0.2 6 0.2 0‘.4. 6.6 '0‘.8X 1
1
Figure 3: Prediction accuracy of Figure 4: A non-uniform data distribution
AdaBoostC vs. RandomC trained on 100 used for experiments reported in Section
examles of a heterogeneous function 3.2
shown at Fig.2a
Loss\Integration method | Weighted median | Mean Weighted mean
Quadratic 0.14+0.07 0.15+0.09 | 0.21+0.09
Linear 0.17+£0.13 0.25+0.05 | 0.20+0.05
Exponential 0.17+ 0.06 0.21+0.06 | 0.22+0.10

Table 1: Prediction accuracy (R?) for AdaBoostC with Ny4,=100, T=10 boosting iterations, radius r=0.3 and
N.= 49 centers for afunction shown at Fig. 2a

The previous experiment was repeated for a faster-changing function generated using equation (1)
with a;=a,;=b;=b,=4, a,=a;=bs=b,=16 (shown at Fig. 2b) where for Ny;,=600 similar results were
obtained as for a small training set (N4»=100) in the previous experiment. AdaBoostC again achieved the
best R? of 0.13+0.01, while RandomC gave R? of 0.04+0.02 and other considered algorithms, including
the multilayer Perceptron and a linear model performed worse than a trivial mean predictor. Although a
larger training set was used in this experiment, its size was still inadequate to explain the more complex
function using the multilayer Perceptron and all considered RBFN methods except AdaBoostC.

3.2 Learning from a non-uniform data distribution

Next, experiments were performed on a non-uniform data distribution where the number of samplesin the
i-th quadrant was proportional to aiby;, (see Fig.4). For alarger amount of training data (Ny4,=600) the
multilayer Perceptron achieved prediction accuracy RF = 0.79+0.20 (the best results were obtained with 40
hidden neurons). Here, RBFN-RT and RBFN-SOM worked better than RandomC (with R of 0.63+0.17,
0.53+0.07, and 0.42+0.07, respectively). In this case, AdaBoostRT provided a minor improvement of
RBFN-RT (R of 0.65+0.06), AdaBoostSOM provided a major improvement of RBFN-SOM when using
deterministic sampling (R 0.68+0.08), while AdaBoostC improvement of RandomC was small but
significant (R? of 0.50+0.04). On the other side, it is important to observe that using the roul ette wheel
and the stochastic remainder with replacement, the accuracy was consistently worse than when using a
trivial mean predictor. To determine why this is the case, we traced an effective number of samples at the
t-th boosting iteration measured by gentropyDy) (where entropy(Dy)= Z -D; (i) 1og,D(i) is the distribution
entropy at the t-th boosting iteration), and by the number of unique examples used for training at the t-th
iteration. The results, shown in Fig.5, suggest that an accuracy drop can be explained by a drop in the
effective number of examples since the boosting models trained on a small number of examples, although
accurate on training, tend to have lower generalization abilities due to an overspecialization [Schapire at
al, 1998].

For Ny«n=100, the obtained results were similar to these reported in the previous section for a small
training set. With R? of 0.28+0.07 AdaBoostC outperformed other considered RBFN learning algorithms
(F\’2 of 0.17+0.10 was obtained for RandomC, -0.13+0.08 for RBFN-SOM, and -0.17+0.10 for RBFN-RT),
alinear model (R? of -0.03+0.02) and the multilayer Perceptron (R? of -0.09+0.06).

Entropy Unique Entropy Unique w0 Entropy w0 Unique

600 600 60
500 500 \

500 500y 500 500f
400| 400 400 400)
300 300 —

300 300 300 300

200 200 i 200 200 200) 200

100y 100 100 100} 100 100,

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 v 6 s 1 %2 4 6 s 1w
boosting iterations # boosting iterations # boosting iterations # boosting iterations # boosting iterations # boosting iterations

a) roulette wheel b)stochastic remainder c)deterministic sampling
with replacement
Figure5: Influence of different sample drawing methods on an effective number of training samples
during 10 repetitions of AdaBoostSOM

4. Conclusions

A new boosting-based method for RBFN centers placement is proposed. Its ability to improve prediction
accuracy for regression of heterogeneous functions learned from sparse training sets is demonstrated by

comparisons to the alternative RBFN learning algorithms, the multilayer Perceptron, alinear model and a
trivial mean predictor. Also, boosting directly applied to varying training data probability distributionsin
RBFN is shown to improve accuracy given a sufficiently large amount of data from a non-uniform
distribution and using an appropriate boosting drawing agorithm.

This study has not attempted to determine potential advantages of various heuristics for identifying an
appropriate number of radial basis centers and their parameters as these issues are addressed by our work
in progress. We are also currently investigating an extension of the proposed RBFN method to
classification.

References

Abu-Mostafa,Y., “Financial applications of learning from hints,” Advances in neural information
processing systems, Vol.7, 1995, pp. 411-418.

Carse,B.,T.Fogarty, “Fast evolutionary learning of minimal radial basis function neural networks using a
genetic algorithm,” in Lecture notes in computer science, Vol.1141, 1996, pp. 27-40.

Chen,S., “Nonlinear time series modeling and prediction using Gaussian RBF networks with enhanced
clustering and RLS learning,” Electronics letters,Vol.31,No.2, 1995, pp. 117-118.

Cherkassky,V.,H.L.Ngafi, “Constrained topological mapping for nonparametric regression anaysis,”
Neural networks, Vol.4, No.1, 1991, pp. 27-40.

Devore,J.L., Probability and statistics for engineering and sciences, Duxbury Press, 1995.

Drucker,H., "Improving regressors using boosting techniques," Proc. Fourteenth int’'l conf. on machine
learning, 1997, pp. 107-115.

Drucker,H., "Boosting using neural nets," in Combining artificial neural nets. ensemble and modular
learning, ed: A.J.C. Sharkey, Springer, 1999, pp. 51-77.

Freund,Y.,R.Schapire, "Experiments with a new boosting algorithm,” Proc. Thirteenth int'l conf. on
machine learning, 1996, pp. 148-156.

Friedman,J.H., "Multivariate adaptive regression spines," The annals of statistics, Vol.19, No.1, 1991, pp.
1-141.

Fritzke,B., "Fast learning with incrementa radial basis function networks," Neural processing letters,
Vol.1, No.1, 1994, pp. 2-5.

Goldberg,D.E., Genetic algorithms in search, optimization and machine learning, Addison-Wesley,
Reading, MA, 1989.

Hagan,M.,Menhg,M.B.: "Training feedforward networks with the Marquardt algorithm," |IEEE Trans. on
neural networks, Vol.5, 1994, pp. 989-993.

Haykin,S., Neural networks, a comprehensive foundation, Prentice-Hall 1999.

Kohonen,T., Self-organization and associative memory, Springer-V erlag, 1984.

Lowe,D., “ Adaptive radia-basis function nanlinearities, and the problem of generalisation”, Proc. First
IEE int’l. conf. artificial neural networks, 1989, pp.171-175.

Orr,M.,JHllam,K.Takezawa,A.Murray,S.Ninomiya,M.Oide, T.Leonard, "Combining regression trees and
radial basis function networks," submitted to the International journal of neural systems, 1999,
http://www.anc.ed.ac.uk/~mjo/papers/rt99.ps.gz.

Pennington,M.,Volstad,J.H., "Optimum size of sampling unit for estimating the density of marine
populations," Biometrics, Vol.47, 1991, pp. 717-723.

Poggio,T.,F.Girosi, "Networks for approximation and learning, " Proc. |[EEE, Vol.78, No.9, 1990, pp.
1481-1497.

Saha,A.,J.Christian,D.S.Tang, "Oriented non-radial basis functions for image coding and analysis,"
Advances in neural information processing systems, Vol.3, 1991, pp. 728-734.

Schapire,R.E.,Y .Freund,P.Bartlett, W.S.L e, "Boosting the margin: A new explanation for the
effectiveness of voting methods," The annals of statistics, Vol.26, No.5, 1998, pp. 1651-1686.

