
THE UNPREDICTABILITY OF SOIL FERTILITY ACROSS 
SPACE AND TIME 

 
R. L. Hoskinson 

 
Idaho National Engineering and Environmental Laboratory 
Department of Energy 
Idaho Falls, Idaho 
 
D. Pokrajac and Z. Obradovic 
 
Center for Information Science and Technology 
Temple University 
Philadelphia, Pennsylvania 
 
A. Lazarevic 
 

      Army High Performance Computing Research Center 
      University of Minnesota 
      Minneapolis, Minnesota 
 
 

ABSTRACT 
 

One of the cornerstones of precision agriculture is the variable fertilization 
of a field based on the spatial variability of its soil fertility. Often the fertilizers 
are applied in the fall after harvest as the treatment in support of next spring’s 
planting. But these treatments imply knowledge of the changes in soil fertility 
across space and time. 

Our paper reports on our analyses of field data collected throughout the 
growing season over four years, from the same locations within a field. For 
several soil fertility and soil characterization parameters, comparison of their 
spatial variability between successive sampling times showed unexpected 
changes. 

In this paper we also discuss the prediction analyses we conducted. The 
predictions used historic field data from the early years as the model to predict the 
spatial variability in soil fertility parameters at a subsequent sampling time in later 
years. One analysis used one set of the spatially variable fall soil fertility and 
subsequent spring fertility to develop the model from which to learn. This model 
was then used with a later year’s fall data to predict the following spring’s 
spatially variable soil fertility. Our results strongly suggest that the changes in the 
spatial variability in soil fertility across a field from fall to the next spring are not 
predictable. This raises a question then on the validity and applicability of fall 
fertilization in preparation for the next growing season. 
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INTRODUCTION 
 

Spatial variability of soil characteristics across a farm field has been 
discussed for several years. At the 5th International Conference on Precision 
Agriculture and Other Resource Management, at least 20 presenters discussed soil 
spatial variability as part of the Natural Resources Variability section, and 7 
presenters discussed techniques to describe and manage this soil spatial variability 
by the use of Management Zones while 18 presenters discussed other means of 
Managing Variability in the soil (Robert el al., 2000). 

Additionally, the temporal variability in soil characteristics is becoming 
more studied. Hartsock et al. (2000) measured temporal changes in the spatial 
variability of soil electrical conductivity and Perez et al. (2000) related crop yields 
to stable soil characteristics. 

Our study examines changes in the spatial variability of soil fertility and 
characterization parameters over time and whether these changes are predictable. 
This temporal variability during the growing season seems to complicate the 
concept that variable rate application of fertilizer can be based only on the spatial 
variability of soil nutrients at a single point in time, such as just prior to planting. 
Additionally, we look at these temporal changes in the spatial variability of soil 
fertility across the winter season, from fall after harvest to spring, prior to 
fertilization and planting. 
 
 

MATERIALS AND METHODS 
 

The Research Field 
 

Soil samples were collected from a 72.4 ha field several times each growing 
season, in southeast Idaho from 1995 through 1998. Samples were collected from 
the same locations throughout the study, as determined by using differentially 
corrected global positioning system (DGPS) measurements and marker flags. 

Almost the all of field (Figure 1) is categorized Kucera, described as well-
drained, coarse silty loams, on top of unweathered bedrock (Grow, 1993). Along 
the north-central edge of the field there is a very small area (shown in rose) 
categorized Kucera-Sarilda silt loams, also described as well-drained, coarse silty-
loam loams on top of unweathered bedrock. The southeast corner of the field 
(shown in orange) is Robinlee-Marystown silt loams, described as well-drained, 
fine silty loams to silty clay-loams on top of unweathered bedrock. 

The samples were collected based on about a 3.5 ha grid, at the point 
locations shown in Figure 1. Two center pivots (shown by circular wheel lines) 
irrigated the study field during the growing seasons in all years. 
 
 
 



 
 

Figure 1.  Study field, showing soil types, sampling locations, and irrigation 
pivots. 
 

Soil Sampling 
 

Samples were collected with a soil probe from the top 30.5 cm of topsoil. At 
each location, approximately 10 cores were collected from within about one meter 
of the point, and were composited in a pail. From the composite, about 0.5 kg was 
placed in a sampling bag and submitted for analysis at a certified laboratory. 

Samples were collected during the growing seasons from 1995 through 1998 
(Table 1). 
 
Table 1.  Soil sampling dates during growing seasons 1995 through 1998. 
 
1995 1996 1997 1998 
Potatoes Wheat Barley Potatoes 
May 71 April 231 June 4 April 301 
July7 July 13 July 18 July 23 
August 12 August 15 September 16 August 20 
September 15 September 22  September 22 

1 samples collected prior to fertilization 
 

Prediction Methodology 
 
Prediction was performed using Spatial-temporal auto-regression on uniform grid 
(STUG) (Pokrajac et al, 2002, in press). In the STUG model, for a temporal data 
layer corresponding to a specific time instant tτ, the value of the random process 
at each spatial location (on a uniform rectangular grid determined by sampling 
distances ∆ in both spatial directions) depends on samples from the same location 
and points from its spatial neighborhood taken in the recent history of p previous 
temporal layers that correspond to sampling instants (t-p)τ,…, (t-1)τ. We specify  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  Response dependence on neighboring samples in a recent history for a 
spatial-temporal model on a uniform grid with spatial and temporal orders p=2, 
L=3 (STUG (2,3)). 
 
the spatial neighborhood of a sampling location as a 2L∆×2L∆ square centered at 
the location (Figure 2) 

By definition, the value of a STUG (p,L) process ( )nmft ,  on spatial location 
(m∆,n∆) at time instant tτ is (Pokrajac et al, 2002, in press) 
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where the error term ( )nma tSTUG ,,  is defined as: 
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Here, ( )nmat ,  are spatially and temporary uncorrelated zero-mean Gaussian 

random “shocks” with variance σ2
a. Due to particular nature of our data, we 

applied STUG models with p=1 to predict an attribute value for the Spring of year 
Nt+1 based on data from Fall of year Nt. Model parameters ( )lkj ,φ̂  are estimated 
using the Yule-Walker method (Pokrajac et al, 2002, in press) and the forecasting 
is performed as: 
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To evaluate localized prediction performance, we computed point-wise 

relative errors as: 
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where 2ˆ fσ  is the estimated process variance, computed as 
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The overall forecasting is evaluated through the coefficient of determination 

2R̂ , estimated as a function of averaged point-wise relative errors 
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Here the larger scores correspond to the more accurate prediction with 1 
corresponding to a perfect and 0 to a simple mean predictor. Observe that 
considered prediction models do not contain an intercept, so R2 can be negative 
(Davidson and MacKinnon, 1993). 
 

The Prediction Dataset 
 

The application of data predictability methodologies was evaluated using 
software described in (Pokrajac et al, 2002a, in press). The data set consisted of 
ten soil attributes (concentrations of boron (B), copper (Cu), iron (Fe), potassium 
(K), manganese (Mn), nitrogen (N), sulfur (S) and zinc (Zn), as well as soil 
salinity (sa) and cation exchange capacity (CEC)). For the predictions, a 
consistent and complete subset of the soil sample data was used, which was 
contained within a rectangular area. The dataset was used to derive a uniform 
spatial grid of 10.66×10.66m2 covering a total area of 60.04 ha of the field. Data 
from all four years were included. For each attribute we considered two spatial-
temporal processes, corresponding to the samples in Spring and in the Fall. For all 
attributes, an individual temporal data layer corresponded to data collected in a 
specified year and season and consisted of 84 × 65 examples. 

Prior to the application of the methods to a particular attribute, the mean 
values were estimated for each temporal layer and subtracted from corresponding 
sample values, to obtain data that satisfy the zero-mean property of the proposed 
STUG model. Observe that a similar normalization procedure has been applied by 



Wikle and Cressie (1999). This was followed by estimation of spatial and 
temporal statistics of the normalized data. 
 

Graphical Representations 
 

All of the following maps of the spatial variation in selected nutrients were 
created using Inverse Distance Weighted interpolation. The maps are provided to 
help show the reader the spatial and temporal changes discussed. We recognize 
that the maps display interpolated values among the sampling points, and other 
researchers have discussed their opinions of different interpolation and kriging 
methods and sampling frequencies. Our purpose of showing the maps is to clarify 
our discussions. We leave any debates regarding the best soil sampling methods 
and sampling frequency, and the best interpolation algorithms for others and only 
discuss the measured changes that occurred at the sample points. 
 

RESULTS 
 

Spatial Changes in Soil Characteristics during the Growing Season 
 

All of the soil parameters demonstrated changes in their spatial variability 
over time during a growing season. In almost all cases, differing areas of the field 
displayed increases in the concentration of certain nutrients during summer, 
although no additional nutrients had been applied after initial fertilization. 

Figure 3 shows the changes in soil nitrate spatial variability from May 7, 
1995 through September 22, 1996. 
 
 

 
 

Figure 3.  Changes in soil nitrate spatial variability over two years. 
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 Figure 4 shows the changes in soil pH and Cation Exchange Capacity 
(CEC) through summer 1997.  
 
 

 

 
 

Figure 4.  Changes in the spatial variability of soil pH and CEC during Summer 
1997. 

 
Spatial Changes in Fertility between the Growing Seasons 

 
Changes in the spatial variability in soil fertility also were observed across 

seasons, from fall after harvest to the next spring prior to fertilization. The chart in 
Figure 5 shows the soil nitrate levels at the sampling points on September 16, 
1997 and April 30, 1998. At every sample point the soil nitrate level decreased 
from between 4 to 17 ppm. The highest point in September 1997 was 19 ppm, but 
in April 1998 it was the lowest at 2 ppm. 

Changes in the soil potassium levels at the sampling locations are shown in 
Figure 6. The soil potassium level increased at 12 locations and decreased at 8 
locations. 
 

The Unpredictability of Soil Fertility 
 

The parameters of estimated spatial variograms (Chilès and Delfiner, 1999) 
expressed significant non-stationarity in the observed period of four years, which 
prevented the application of geostatistical prediction methods (Posa, 1995). 
Computed temporal autocorrelations of the same-season samples collected at the 
same spatial location in different years, indicated that the autocorrelation for some 
attributes (Fe and K) have a tendency to increase with the value of the temporal 
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Figure 5.  Soil nitrate levels in September 1997 and April 1998 at each sampling 
point. 

 
 
Figure 6.  Changes in soil potassium between September 1997 and April 1998 at 
each sampling point. 
 
lag. However, in spite of significant values of temporal correlations, we were not 
able to obtain satisfactory prediction results using non-spatial methods due to a 
small number of available temporal layers (insufficient temporal history) and non-
stationarity of the data. 

For each attribute, STUG models were trained to model attributes in Spring 
1996 based on attribute values in Fall 1995. Models were tested for prediction of 
Spring 1998 data based on Fall 1997 data. (Since data for Spring 1997 prior to 
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fertilization were not available, we could not evaluate the prediction of Spring 
1997 data based on Fall 1996). Prediction accuracy was evaluated through the 
estimated coefficient of determination 2R̂ . To directly compare the influence of 
the order selection, we chose to evaluate STUG models with various values of 
spatial and temporal orders, instead of performing model identification and to 
present the results of the best considered models. 

Overall prediction accuracy was not satisfactory. At best, we obtained only 
minimally useful predictions ( %10ˆ 2 >R ) for only Fe, K and sa (Table 2). 
However, point-wise relative errors ( )nm,ε  were not homogeneous across the 
field. In spite of small overall accuracy, it appears some attributes can still be well 
predicted on particular regions of the field. As shown in Figure 7, relative errors 
for B are less than 0.3 on 57% percent of the field although the global prediction 
on the field is not useful. Similar results were obtained for other considered 
attributes. 
 
Table 2.  Overall prediction accuracy 2R̂  and the optimal value of parameter L of 
the applied STUG model for prediction of Spring 1998 attributes. 
 

Attribute 2R̂  L 
Fe  11% 1 
K  41% 0 
sa  13% 2 

 
 

CONCLUSIONS 
 

The changes in the spatial variability of soil nutrient concentrations and soil 
characterization parameters during and between four growing seasons that have 
been shown are only a few of the many reflected in the full dataset. These changes 
result from many biotic and abiotic factors, such as changing environmental 
conditions, the soil microbial community, chemical and physical interactions, and 
effects of irrigation. Another factor may also be the plants' abilities to adapt to 
these complex changes and to adjust or omit physiological pathways in their 
metabolic processes. 

Predictive methodologies based on historic data were sometimes useful on 
regions of the field, but at a field-scale the prediction accuracy was not 
satisfactory as a usable tool. 
 All the factors combine to make the spatially variable soil fertility 
unpredictable on a site-specific basis at a future point in time. This 
unpredictability of site-specific soil nutrients from one Fall to the next Spring 
strongly suggests that Fall fertilization in preparation for Spring planting is less 
than optimal. 
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Figure 7.  Spatial regions of the field where the localized relative prediction error 

( )nm,ε  was not larger than 0.3 for each predicted attribute, and the size of the 
regions in percents relative to the size of the whole field. 
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