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Summary

Objective: The objective of this paper is to classify 3D medical images by analyzing
spatial distributions to model and characterize the arrangement of the regions of
interest (ROIs) in 3D space.
Methods and material: Two methods are proposed for facilitating such classification.
The first method uses measures of similarity, such as the Mahalanobis distance and the
Kullback—Leibler (KL) divergence, to compute the difference between spatial prob-
ability distributions of ROIs in an image of a new subject and each of the considered
classes represented by historical data (e.g., normal versus disease class). A new
subject is predicted to belong to the class corresponding to the most similar dataset.
The second method employs the maximum likelihood (ML) principle to predict the
class that most likely produced the dataset of the new subject.
Results: The proposed methods have been experimentally evaluated on three data-
sets: synthetic data (mixtures of Gaussian distributions), realistic lesion-deficit data
(generated by a simulator conforming to a clinical study), and functional MRI
activation data obtained from a study designed to explore neuroanatomical correlates
of semantic processing in Alzheimer’s disease (AD).
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1. Introduction

Current advances in medical image acquisition tech-
niques have made available enormous amounts of
remarkable high-resolution three-dimensional (3D)
image data. In particular, the wide availability of
non-invasive methods for capturing structural (e.g.,
magnetic resonance imaging (MRI), computed tomo-
graphy (CT)) and functional/physiological (e.g.,
positron emission tomography (PET), functional
MRI (fMRI)) information that complement clinical
assessment, have opened new horizons towards a
deeper understanding of the human body and its
functionality. In addition to the continuous devel-
opment of improved imaging techniques, greater
computer capabilities and improvements in analysis
techniques are leading to the creation of large
repositories of medical image data. The work pre-
sented in this paper addresses problems related to
the classification of 3D medical images.

Although significant research has been done in
content-based image retrieval and classification for
general types of images (see [1,2] for comparative
surveys), progress in this type of analysis for medical
images has been very slow. Global signatures [3—5]
that are usually employed in the content-based
image retrieval and classification do not work well
in the medical imaging domain where the regions of
interest (ROIs) occupy a small portion of the image.
In this case, usually a distinction between important
and unimportant features or amongmultiple objects
in an image has to be made. We propose to over-
come these problems by performing analysis focus-
ing on the ROIs and their spatial distribution.
Characterization of an image based only on regions
that are of interest to an expert seems to be more
meaningful in applications dealing with medical
decision making [6—8]. The 3D images or volumes
we consider here consist of region data that can be
defined as sets of (often connected) voxels (volume
elements) in three-dimensional space that form 3D
structures (or objects). We actually focus on 3D
binary volumes, where information is provided only
with respect to whether a particular voxel is part of
a certain ROI or not (voxel values 2 {0, 1}). This
assumption is often made in medical image analysis
applications, since it simplifies the processing with-
out being very restrictive. Examples of binary ROIs in
medical images are lesions, tumors, areas of brain
activity, etc.

In this study, we are given a set of 3D medical
image data and an assignment of these images to a
number of classes based on certain non-spatial
attributes (e.g., normal versus disease states).
The objective is to derive a classification scheme
that will correctly assign a new 3D image to a
particular class (e.g., normal or disease) according
to spatial information only. A specific example of
this task from the brain imaging domain is the
following: Given an MR image of the brain of a
new subject that contains lesions, determine
whether it belongs to a group of subjects who did
or did not develop a particular disorder (e.g., atten-
tion-deficit hyperactivity disorder (ADHD) after
closed head injury).

We suggest two approaches for automatic classi-
fication of ROIs and quantitative measurement of
their levels of similarity. Unlike existing techniques
where ROIs are considered individually (see Section
2 for an overview), we propose methods that classify
ROIs based on their global spatial arrangement tak-
ing into account the co-existence of multiple ROIs.
The methods presented here are based on measures
of similarity between 3D spatial probability distri-
butions. In particular, we suggest applying distance
based techniques and maximum likelihood (ML) cri-
teria to facilitate the classification of 3D ROI dis-
tributions. One of the main advantages of these
approaches is that they can be applied directly on
the 3D space preserving the spatial locality of the
ROIs. Hence, we avoid the loss of information and
complexity encountered in approaches originally
developed for 2D slices (applied to pixels instead
of voxels) that are repeated for each slice of a 3D
volume.

We perform an evaluation of the proposed clas-
sification framework based on synthetic and realis-
tic datasets. The realistic datasets conform to MRI
studies and have been used in lesion-deficit ana-
lyses. In addition, we include experiments on clin-
ical data to demonstrate the applicability of the
proposed methodology in real-world problems. The
clinical data are obtained from a study [9] on Alz-
heimer’s disease (AD), consisting of fMRI contrast
Conclusion: Performed experiments demonstrated that the approaches based on the
KL divergence and the ML method provide superior accuracy compared to the
Mahalanobis distance. The later technique could still be a method of choice when
the distributions differ significantly, since it is faster and less complex. The obtained
classification accuracy with errors smaller than 1% supports that useful diagnosis
assistance could be achieved assuming sufficiently informative historic data and
sufficient information on the new subject.
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activation maps and other associated clinical assess-
ment. Part of the motivation for this work comes
from the analysis performed as part of the Human
Brain Project [10] and other initiatives, for the
purpose of meta-analysis of data pooled from multi-
ple studies and the detection of relationships
between human brain structures and brain functions
(i.e., human brain mapping).

The rest of the paper is organized as follows. In
Section 2, background and related work in the area
of classification of ROIs in medical images is sum-
marized. This is followed by a description of the
performed preprocessing and the proposed metho-
dology based on the ML and distributional distances
in Section 3. Experimental results are presented in
Section 4. Discussion of the methods and the experi-
mental results are presented in Section 5 while
conclusions and future directions are presented in
Section 6.
2. Background and related work

Necessary pre-processing steps, prior to any analysis
of region data in medical images, are the segmenta-
tion and registration procedures. Image segmenta-
tion is required to delineate the particular regions
(that are of interest) ensuring that image data are
labeled consistently across samples. It can be per-
formed manually, automatically, or semi-automati-
cally. Extensive image segmentation work has been
done in the medical imaging domain. Proposed
methods can be divided into two broad groups:
methods that incorporate prior spatial information
and methods that incorporate solely signal-intensity
based methods (see [11—13] for a review). Image
registration deals with the existing morphological
variability among samples and is vital to ensure that
images are comparable across samples. The image
registration is performed to bring the sample’s
image data into register, i.e., spatial coincidence,
with a common spatial standard. The registration is
done using normalization to a particular template
and is necessary in order to determine whether two
samples have ROIs in the same location. The meth-
ods employed for image segmentation and registra-
tion are often domain specific. In the rest of this
study we assume that, prior to the analysis, the
region data have already been segmented and nor-
malized.

Applications of ROI classification in medical
images range from the detection of electromagnetic
field sources [14,15] to the analysis of fMRI activa-
tions [16—18]. For example, to select among texture
and morphological ROI features, genetic algorithms
were used and these were inputs to neural networks
trained to classify mass and normal breast tissue
[19]. Another example is the use of shape derived
ROI features, such as compactness, Fourier descrip-
tors, moments, and chord-length statistics to dis-
tinguish between circumscribed and speculated
tumors [20].

In the clinician-in-the-loop approach to content
based retrieval, after segmentation, the pathology
bearing ROIs are characterized by a set of attributes
(shape, texture, and other grey-level attributes) or
by perceptual categories that domain experts rely
upon for disease detection [21]. The challenges that
image retrieval engines are confronted with when
dealing with medical image collections are numer-
ous [22]. To overcome some of these problems, a
method was proposed that efficiently extracts a d-
dimensional feature vector using concentric hyper-
spheres (spheres in 3D or circles in 2D) radiating out
of the ROI’s center of mass [23]. This results in
obtaining a unique characterization signature for
each ROI that can be used for further analysis.

In functional brain imaging, ROIs are usually deli-
neated by using a thresholding approach. Voxels
having values above a certain threshold are found
and merged in order to construct informative acti-
vation regions. For example, in [24], analysis of
functional image data was done by paying attention
to their functional and spatial characteristics, such
as ROIs of high activity and their relative positions to
each other and to the rest of the image. A neural-
network classifier based on coarse ROI analyses was
used in [25] to classify normal versus abnormal PET
scans. A neural network was also employed to ana-
lyze and classify single photon emission computer-
ized tomography (SPECT) datasets from healthy and
patient subjects with AD [26].

Most of the previous approaches deal with ROIs
individually, without considering the distribution of
their spatial arrangement. Efforts that consider this
information include computing the divergence
between probability distributions based on the Kull-
back—Leibler (KL) approach [18]. In this case, a brain
activation map was constructed after the analysis of
fMRI signal. Also, the likelihood that particular voxels
exhibit significant changes between conditions has
been estimated, using statistical tests [27].

Methods such as the statistical parametric map-
ping [28—30] are of a great value in the analysis of
fMRI activations but they do not automatically clas-
sify or compare the activation ROIs. Data mining
methods have been recently applied to brain images
to discover associations between binary lesion ROIs
and deficits [31]. However, little work has been done
in brain image data classification.

In summary, previous work in classification of ROIs
in medical images mostly focuses on shape, texture
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and other attributes of ROIs. ROIs have been con-
sidered individually, i.e., not in connection with
other ROIs that may be present in the same image.
Moreover, the various statistical techniques that
have been applied to the analysis of medical images
mostly focus on detecting voxels that exhibit sig-
nificant changes between conditions, without actu-
ally performing classification based on the ROI
information. We seek to overcome these problems
by proposing a unified framework for 3D medical
image classification based on ROI analysis. We pro-
pose classifying ROIs in medical images utilizing the
properties of their 3D spatial distribution. We apply
statistical techniques based on distributional dis-
tances as well as on ML methods. These approaches
preserve the spatial locality of the voxels in the 3D
space, avoiding the loss of information encountered
in 2D per slice analysis of 3D image data. Also, by
focusing on ROI distributions, we avoid the multiple
comparison problem (which occurs when computing
a statistic for many pairwise tests) that voxel-based
statistical analysis introduces. Finally, by proposing
a unified classification framework we introduce
medical image analysis tools that can assist medical
decision making and diagnosis.
3. Methodology

Our goal is classification of 3D medical images based
on the analysis of ROIs’ spatial distribution. Classi-
fication in this case refers actually to the process of
characterizing the spatial arrangement of ROIs of a
new subject and comparing it to the distributions of
labeled historical data. An example is comparing the
3D image of a new subject to the ones of subjects in
the normal and in the diseased group. The two
approaches we consider are applicable directly on
the 3D domain (voxel-based). The first one utilizes
distributional metrics such as the Mahalanobis dis-
tance and the KL divergence. The second approach
employs maximum likelihood.

Formally, the ROI distribution classification task is
stated as follows. Let rxyz denote the value of a voxel
(volume element) of a 3Dmedical image. Avoxel has
a value rxyz = 1 if it belongs to a ROI (such voxels are
subsequently referred to as ‘‘ROI voxels’’) and rxyz =
0 otherwise. We consider voxels that belong to the
ROI by observing the distributions of the voxel coor-
dinates. Given two sets SX and SY that contain
coordinates of ROI voxels for N subjects that belong
to either one of two distinct classes (i.e., normal
and disease states), the task is to identify whether a
dataset Sz ¼ fz1; . . . ; znzg, that contains coordi-
nates of nz ROI voxels of a new subject, comes from
the same distribution pYas the set SYor the distribu-
tion pX of the set SX. Let nX and nY stand for the
numbers of ROI voxels in SX and SY, respectively.

Prior to applying distribution characterization
and classification algorithms, we perform segmen-
tation to delineate the ROIs and registration to a
standard spatial template to bring homologous
regions in spatial coincidence, i.e., we spatially
normalize the images to make them comparable
to each other. We propose using SPM99 [28] for this
purpose. The templates supplied by SPM99 conform
to the space defined by the ICBM, NIH P-20 project.
An approximation of this space is described by the
atlas of Talairach and Tournoux [32]. The basic
spatial registration technique employs resampling
of the image voxels, while minimizing the sum of
squares between the image and the chosen tem-
plate. This is performed with affine and quadratic
automated algorithms. In the rest of this study we
assume that, prior to the analysis, the region data
have already been segmented and normalized.

The proposed 3D image classification framework
employs statistical methods for classifying the 3D
spatial distributions of voxel-based ROIs. The steps
of the proposed methodology are the following:
(1) E
stimate the probability distribution of ROIs in
the 3D space for each labeled class of historical
data (e.g., control versus patient). For this
purpose we estimate the mean and covariance
matrix of data, or apply the expectation-max-
imization (EM) algorithm [27,29] and its variant,
the k-means algorithm [33].
(2) G
iven a 3D image belonging to an unknown
sample, characterize the corresponding distri-
bution of ROIs. For this process we apply either
distributional distance-based methods (such as
the Mahalanobis distance [27] and the KL
divergence [34]), or maximum likelihood
methods.
(3) C
lassify the new 3D image according to the
characterization of the ROI distribution. When
using distributional distance metrics assign the
label of the class being closer to the ROI dis-
tribution of the new sample. When using ML
methods assign the label of the class whose
distribution is most likely to have generated
the new sample.
Details of these steps are described in the rest of this
section.

3.1. Estimation of ROI distribution densities

In general, a probability density function of a ran-
dom variable can be estimated using parametric,
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non-parametric or semi-parametric techniques
[35]. In this study, we use semi-parametric techni-
ques [36,37] that can provide flexibility (by allowing
a very general class of functional forms for the
estimated probability density function) and control-
lable complexity of the chosen functional form to
avoid overfitting. We consider the use of the EM
algorithm and its variant, the k-means algorithm
[36,37], to estimate the distributions in form of
Gaussian mixtures (see Appendix A for the defini-
tion).

3.1.1. The EM approach
The EM approach presented in Fig. 1, computes
maximum likelihood estimates of mixture para-
meters [24,29]. The algorithm maintains probabil-
ities Pij that a data example zi belongs to the j-th
distributional component (j = 1, . . ., k). In each
iteration, the expectation (E) step is applied to
compute expected probabilities Pij based on the
values of the distribution parameters (prior prob-
abilities pj, component means mj and component
covariance matrices Sj) from the previous iteration.
The E step is followed by the maximization (M)
phase, where new values of the parameters are
computed to maximize the likelihood, based on
previous parameter values and estimated values
of Pij. The time complexity of the EM algorithm is
O(Lkn) where L is the number of iterations, n is the
number of ROI voxels in dataset S (where S can stand
for SX, SY or Sz) k is the number of distributional
components.
Figure 1 The outline o
3.1.2. The k-means approach
The k-means approach presented in Fig. 2, avoids
the costly computation of probabilities Pij in the E
step by assigning each data example zi to a Gaussian
component, whose mean mj is the closest to zi based
on the Euclidean distance (see Eq. (A.8) in Appendix
A for definition) [33]. This is equivalent to the
partitioning of a dataset S (containing the examples
zi) into k clusters. In the M phase of the k-means, the
means mj are recomputed by averaging the
examples assigned to each cluster. After the
convergence, the k-means algorithm minimizes
the average Euclidean distance ð1=nÞ

P
zi 2 Sminj

d2Eðzi;mjÞ between the vectors zi and the cluster
means closest to them (dE stands for the Euclidean
distance, n stands for nX, nY, nz). The computational
cost of k-means is O(Lkn) as well.

Both proposed methods require specifying the
number of mixture components k. In this paper,
we determine the number of mixture components
using the log-likelihood principle [38]. Other
advanced techniques exist for the selection of k,
(e.g., based on minimum-description length [39], I2
criterion function [40]); however, a more complete
study is outside the scope of this paper.

3.2. Classification with statistical distance
based metrics

Distance-based methods rely on an appropriately
defined distance measure between two distribu-
tions. In this study, the distances are computed
f the EM algorithm.
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Figure 2 The scheme of the k-means algorithm.
between a new dataset (subject) Sz and each of
datasets that correspond to considered classes (dis-
tributions) SX or SY in order to determine to which
existing distribution a new subject Sz is closer to.
Here, we consider the Mahalanobis distance [41],
and the KL divergence [39].

3.2.1. The Mahalanobis distance approach
We employ the Mahalanobis distance (see Appendix
A) to quantify the similarity between the new sub-
ject Sz and an existing dataset S (SX or SY). Given
datasets Sz and S, the Mahalanobis distance, dM,
between them is computed as:

dM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmSz � mSÞTS�1ðmSz � mSÞ

q
; (1)

where mSzand mS are mean vectors of the datasets Sz
and S, respectively, and S is the sample covariance
matrix [42]:

S ¼ ðnz � 1ÞSSz þ ðn� 1ÞSS

ðnz þ n� 2Þ ; (2)

with SSzand SS denoting estimated covariance
matrices of the datasets Sz and S, respectively,
and nz and n denoting the size of the datasets Sz
and S, respectively.

The computational time Timetotal of the Mahala-
nobis distance approach (as well as other methods
proposed in this paper) consists of learning time,
Timelearning necessary for distribution analysis and
query time Timequery, needed for classification of a
new dataset. The learning time Timelearning is
directly proportional to the time needed for com-
puting the covariance matrices of datasets, which is
in turn proportional to the sizes of the data sets SX
and SY. In general, the time complexity of the
Mahalanobis distance method also depends on the
number of dimensions, but in our case this number is
always three and does not significantly influence the
total computational time. Since the classification
involves estimation of covariance matrix SSz , the
query time Timequery is linearly proportional to the
size of the dataset Sz. Hence the computational
complexity of the method is:

Timetotal ¼ Timelearning þ Timequery

¼ OðnX þ nY Þ þ OðnzÞ:

3.2.2. The KL divergence approach
Let pz(x) and p(x) be probability densities corre-
sponding to the distributions intrinsic to the data-
sets Sz and S, respectively (hence, p(x) can be pX(x)
or pY(x)). Unlike the Mahalanobis distance, the KL
divergence dKL(p(x), q(x)) [43] is computed directly
between the estimated probability densities of the
distributions corresponding to the new subject Sz
and to the existing data distribution S (correspond-
ing to datasets SX or SY) as:

dKLðSz; SÞ ¼
Z
D

pzðxÞlog
pzðxÞ
pðxÞ dx: (3)

Since the datasets SX, SY and Sz obtained from
medical imaging or simulation contain coordinates
of discrete volumes—voxels, we use a discrete
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approximation to compute the KL divergence (Eq.
(3)) as

dKLðSz; SÞ 	
X

all voxels vi1 ;i2 ;i3

pzðxi1;i2;i3Þlog
pzðxi1;i2;i3Þ
pðxi1;i2;i3Þ

Dx:

(4)

here, pzðxi1;i2;i3Þ and pðxi1;i2;i3Þ are estimated prob-
ability densities of the involved distributions at the
voxel centers xi1;i2;i3 , and Dx is the product of
corresponding discretization intervals (see Appen-
dix A for more details). The learning time of the KL
divergence approach depends on the complexity of
the algorithm used to estimate distribution density
(see Section 3.2.1). When using L iterations of EM or
k-means (as proposed in this paper), the learning
time is Timelearning = O(Lk(nX + nY)). The query time,
when using Eq. (4) to compute the KL divergence, is
directly proportional to the number nz of ROI voxels
in the dataset Sz (resulting inO(Lknz) to estimate the
distribution pz(x)) and to the number B of total
voxels in the volume D (including voxels belonging
to ROIs). Hence, the total computational complexity
is:

Timetotal ¼ Timelearning þ Timequery

¼ OðLkðnX þ nY ÞÞ þ OðLknz þ BÞ: (5)

Similar to that in Section 3.1, here L is the
number of iterations for the distribution estimation
algorithm and k the number of predefined clusters.

3.3. Classification with maximum likelihood
(ML) methods

The ML methods are based on the computation of
the likelihood-probability that the particular data-
set is observed upon condition that a pre-deter-
mined hypothesis is satisfied [39]. The ML
methods result in the hypothesis that maximizes
this conditional probability. In the observed case
of distribution classification, the hypothesis states
that the new dataset belongs to one of the observed
distributions. Hence, given an observed dataset D
and a collection of hypotheses H = {h1, h2, . . ., hH},
ML chooses the hypothesis hML such that:

hML ¼ argmax
h2H

PðDjHÞ: (6)

The maximization of likelihood is equivalent to
the maximization of its logarithm–—a log-likelihood–
—such that:

hML ¼ argmax
h2H

log PðDjHÞ: (7)

Given a new dataset Sz and estimated probability
densities of the existing distributions pX(x) and
pY(x), we estimate a likelihood that a probability
distribution pz(x) of Sz is the same as one of the
existing distributions SX or SY. The new dataset Sz is
assigned the class label of the distribution that
maximizes the likelihood. More formally,

Sclassified ¼ argmax
S

PðSzjSÞ;

Sclassified 2fSX ; SYg:

We assume that the positions of ROI voxels,

observed as random variables through the coordi-
nates zi, are independent of each other such that
the following holds:

PðSzjSÞ ¼
Y

zi 2 Sz

PðzijSÞ: (8)

In this case, it is suitable to apply the maximum
log-likelihood criterion (7) which combined with Eq.
(8) leads to the following computationally more
convenient equation:

Sclassified ¼ argmax
S

X
zi 2 Sz

log PðzijSÞ: (9)

Similar as for the KL method, the learning time of
the ML approach depends on the complexity of the
algorithm used to estimate distribution density–—
O(Lk(nX + nY)) when EM (or k-means) is employed.
The query time is equal to the time to compute the
likelihood, which is linearly proportional to the size
of the dataset Sz (see Eq. (9)) but also to the number
of distributional components of SX and SY (that need
be evaluated to compute P(zijS)). Hence, the total
computational complexity in this case is:

Timetotal ¼ Timelearning þ Timequery

¼ OðLkðnX þ nY ÞÞ þ OðknzÞ: (10)

4. Results

The proposed classification framework was experi-
mentally evaluated on synthetic data (mixtures of
Gaussian distributions), on realistic brain lesion-
deficit data generated by a simulator [33] conform-
ing to a clinical study [44], and on real fMRI brain
activation distributions obtained from a study that
explores neuroanatomical correlates of semantic
processing in Alzheimer’s disease [45]. These data-
sets as well as the experimental results are
described below.

4.1. Experiments with synthetic data

Synthetic data used in our experiments contained
samples from two mixtures of nine normal
distributions (the data is available at http://denlab.
temple.edu/data_repository). We varied the

http://denlab.temple.edu/data_repository
http://denlab.temple.edu/data_repository


268 D. Pokrajac et al.
parameters (means andvariances) ofmixture compo-
nents, constructing different distributions SX and SY
(see Figs. 3 and 4). As described in our Section 3, we
initially estimated the class distributions (i.e., we
computed the distributions means and covariance
matrices for theMahalanobisapproachandestimated
the probability densities for the other proposed
Figure 3 Mixtures of distributions that differ in means of co
(a) distribution SX; (b) distribution SY; and (c) New examples
techniques). We randomly chose one of the distribu-
tions (SX or SY), generated a new 3D sample Sz accord-
ing to thechosendistribution, andpredicted theclass
ofthedatasetusingeachoftheproposedclassification
approaches. The classification errorwas estimatedas
the number of incorrectly predicted new samples
divided by the total number of the Sz samples
mponents with random shifts of the distributional means:
Sz consisting of 200 voxels drawn from the distribution SY.
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Figure 4 Two distributions mixtures that differ only in variance of the distribution components: (a) distribution SX and
(b) distribution SY.
generated from the same distribution. We repeated
the classification task 200 times. During these experi-
ments,we varied the number of examples in distribu-
tions SXand SYaswell as thenumberof voxelsnzof the
dataset Sz.

4.1.1. Gaussian mixtures with different means
In the first series of experiments, the distribution
components had the same variances but different
means for each class. As demonstrated in Fig. 3,
each of the nine component means of the
distribution SY (Fig. 3b) was shifted for a random
value as well as in a random direction with respect
to the means of the distribution SX components (Fig.
3a). The standard deviation of this shift was 63%
(corresponding to 40% variance) of each linear
dimension of the domain D (length, width, and
depth). The number of examples in distributions
SX and SY was varied from 1 to 50 (with 200 ROI
voxels per example), while the dataset Sz size nzwas
varied from 50 to 1000. Fig. 3c illustrates a dataset
Sz of the size nz = 200 that corresponds to the
distribution SY.

The prediction error of all considered classifica-
tion methods decreased with the size nz of the
dataset Sz and with the number N of examples in
distributions SX and SY. Since the class distributions
of experimental data were clearly distinguishable
(see Fig. 3a and b), the ML technique for estimating
Gaussian mixtures could provide very accurate
results (e.g., prediction error less than 1% when
mixtures of k = 9 distributions were estimated,
regardless of the algorithm used to estimate the
underlying distributions–—EM or less complex k-
means). Similarly, the technique employing the KL
divergence achieved almost perfect classification
for all considered sizes N and nz (the prediction
error was less than 2% for mixtures of nine distribu-
tions). The Mahalanobis distance method provided
smaller classification accuracy in comparison to
other methods (classification error between 1 and
10%).
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4.1.2. Gaussian mixtures with same means and
different variances
Another group of experiments on synthetic data
involved mixtures that had the same component
means but different component variances for each
class. Fig. 4 illustrates an example of such distribu-
tions SX and SY, where the component variances of SX
Figure 5 The prediction error when classifying new exam
variances using the proposed techniques. In ML and KL meth
variance of distribution components was 0.01 and 0.1. (a) Sz be
Sz belongs to distributions pY with the larger variance.
(Fig. 4a) were twice smaller than the component
variances of the second mixture SY (Fig. 4b). As we
can see, the smaller variance, the higher concen-
tration of samples around the component means
(and the smaller dispersion), but the distributions
were generally very similar. Therefore, in these
experiments, classification was typically more chal-
ples Sz from two distributions with different component
ods, mixtures of nine distributions were estimated. The
longs to distributions pX with the smaller variance and (b)
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lenging since the distributional components with the
smaller variances (corresponding to the probability
distribution pX) were often overshadowed by the
mixture components with the larger variances (cor-
responding to pY). We used k = 9 mixture compo-
nents for probability distribution estimation. All the
experimental results were obtained when standard
deviations of the distributions components of pX and
pY were 10 and 31% of the linear dimensions of the
domain D. These results are shown in Fig. 5.

Applying the Mahalanobis distance in this dataset
did not perform very well. The error in general was
very high when predicting the mixture with the
smaller variances, and significantly lower when pre-
dicting the one with the larger variances. This is
because with SX and SY having the same means, the
Mahalanobis distance (Eq. (1)), becomes predomi-
nantly dependent on the sample covariance matrix
S. Consequently, the method tends to predict the
example as belonging to the distribution with the
larger variance regardless of the actual class the
example belongs to and the accuracy did not
increase with the training set size N.
Figure 6 Distributions of (a) ‘‘Yes A
Similarly to the Mahalanobis distance techniques,
the methods based on the KL divergence were more
successful in predicting new examples Sz when they
belonged to the distributions pY with the larger
variances (prediction error less than 1%–—see Fig.
5). However, when predicting examples from the
distribution with the smaller variance the perfor-
mance was much better than that of the Mahalano-
bis (see Fig. 5). For larger sizes of the training sets
similar performance was achieved regardless of
whether k-means or EM was used for distribution
estimation.

The ML basedmethods that used the EM algorithm
for estimating the underlying Gaussian distributions
were capable of providing useful classification as
well. The prediction error dropped to less than 1%,
for sufficiently large sizes of the distributions SX and
SY. Similarly to the other techniques, the classifica-
tion task was particularly challenging when predict-
ing samples from the smaller variance distribution.
The prediction error varied from 50% to 2% for the
larger sizes of the training set N and the data sample
nz. However, when classifying examples belonging to
DHD’’ and (b) ‘‘No ADHD’’ classes.
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the distribution pY with the larger variances, the ML
methods were more successful; the prediction error
dropped to less than 1% for new samples with large
numbers of voxels.

4.2. Experiments with realistic data

We performed classification of realistic brain lesion
distributions (available at http://denlab.tem-
ple.edu/data_repository) that were generated
using a lesion-deficit simulator (LDS) [33] with the
spatial statistical model conforming to the Frontal
Lobe Injury in Childhood (FLIC) study [44]. In imple-
menting the LDS we used probability distributions to
model the number, size, and spatial distribution of
lesions, as well as registration error and structure—
function associations. From these parameters, the
simulator generates a complete dataset, including
spatial lesions and clinical variables. The LDS has
been successfully used in evaluation and scalability
testing of data mining techniques and to provide an
approximate number of subjects needed to discover
certain associations so that medical experiments
can be planned accordingly [33]. The segmentation
of ROIs in the FLIC study was performed manually by
a neuroradiologist using thresholding. A non-linear
method based on a 3D elastically deformable model
[46] was used to register the ROIs to the Tailarach
anatomical atlas [32]. After a normalization of
image data to a common coordinate system with
a resolution of 256� 256� 57 voxels, we applied the
classification methods proposed in Section 3 to
lesion-deficit analysis and magnetic resonance ima-
ging datasets. The samples (subjects in this case)
were classified into two classes according to subse-
quent development of ADHD after closed head
injury. Therefore, there were two distributions cor-
responding to subjects who developed ADHD (‘‘Yes
ADHD’’ class) and who did not develop ADHD (‘‘No
ADHD’’ class) (Fig. 6). Given a new subject with a set
of lesioned voxels, the goal was to determine the
more plausible class. The subjects contained a num-
ber of lesioned voxels that varied from 50 to 500,
although in the specific FLIC study [44,47] approxi-
mately 200 voxels of region data were present on
average per a 3D brain image (i.e., per subject).

The experimental design used here was similar to
that described in Section 4.1. We varied both the
size N of datasets for the classes and the number nz
of ROI voxels belonging to a new subject. For each
combination of these parameters, we performed
the experiments through a predetermined number
of repetition rounds (200 in our experiments). Each
round consisted of random drawing of a new subject
from one of the classes. The classification perfor-
mance was again measured by computing average
accuracy, as done in Section 4.1 for synthetic data.
In reported experimental results, the number of
mixture components k in the ML and the KL diver-
gence methods was 3.

The experimental results in this case showed that
Mahalanobis distance could provide more reliable
and more accurate classification for the ADHD data,
compared to the samples from synthetic distribu-
tions described in Section 4.1, as Fig. 7 demon-
strates. Classification with prediction error less
than 10% was possible both for the subjects who
did and who did not develop ADHD when sufficient
knowledge of the distributions corresponding to the
classes was available (sets SY, SX large enough). This
was apparent especially when 150 or more voxels of
region data were available for a new subject. The
prediction was perfect (<1% error) when the num-
ber of voxels of region data for a new subject was
larger than 1000. It is interesting to notice that the
classification accuracy was slightly better when
predicting subjects in the ‘‘Yes ADHD’’ class than
in the ‘‘No ADHD’’ class.

The method based on the KL divergence was
again more successful than the Mahalanobis dis-
tance in classification of new subjects (Fig. 7). When
the EM algorithm was used, the prediction error was
less than 2% for subjects with number of lesioned
voxels nz small as compared to the size N of training
datasets. Perfect classification was achieved for
sufficiently large number of lesioned voxels (<1%
prediction error). Interestingly, when k-means was
used to estimate distributions, the accuracy was
even better than when EM was used.

Finally, when applying the ML based methods on
realistic data, for all the combinations of the data-
sets size and the number of voxels of region data in a
new subject, the achieved prediction error was less
than 1% regardless of the algorithm employed for
estimating the underlying distributions (k-means or
EM) (Fig. 7). The difference in prediction capability
when employing k-means or EM was negligible.

4.3. Experiments with clinical data

To evaluate the applicability of the proposed
approach on clinical data, we experimented with
real fMRI activation datasets. The ROIs in this case
are brain areas that are being activated when a
certain task is performed. We analyze the spatial
arrangement of ROIs corresponding to high activa-
tion levels in 3D fMRI scans. These were obtained
from a study designed to explore neuroanatomical
correlates of semantic processing in Alzheimer’s
disease. More specifically, the dataset consists of
3D activation contrast maps of nine controls and
nine Alzheimer’s disease patients on a category-

http://denlab.temple.edu/data_repository
http://denlab.temple.edu/data_repository
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Figure 7 The prediction error when classifying new subjects from ADHD realistic data. (a) Subjects who belong to the
class ‘‘Yes ADHD’’ and (b) subjects who belong to the class ‘‘No ADHD’’.
exemplar word pair (the preprocessed dataset is
available at http://denlab.temple.edu/data_repo-
sitory). A contrast map is a 3D activation map that
measures the difference in activation observed in
two different states–—usually between rest and
activity while performing a certain task.

The task consisted of an auditory presentation of
word pairs (categories and possible exemplars)
requiring a semantic decision (match—mismatch)
[45]. Each subject was tested with the same timing
and word set with a blocked design. The word pairs
were presented in groups of four at 7.0 s intervals,
with each 28.0 s block of decision followed by a
10.5 s period of rest. Scans were conducted at 1.5 T
using a single shot, gradient echo, echo planar
functional scan sequence (TR = 3500 ms, TE =
40 ms, interleaved, FOV = 24 cm, slice thickness =
6 mm, NEX = 1, flip angle = 90) on a General Electric
Signa scanner with a multi-axial local gradient head
coil system (Medical Advances, Inc., Milwaukee,

http://denlab.temple.edu/data_repository
http://denlab.temple.edu/data_repository
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Figure 8 A sample slice of (a) a contrast map; (b) a
corresponding t-map; and (c) a binary image obtained
after thresholding.
WI). Scans consisted of 20—23 contiguous sagittal
slices in a 64 � 64 matrix with in-plane resolution of
3.75 mm2 (total slice acquisitions per run = 1920
scans) with anatomical reference images in the
same slice locations using a T1-weighted spin-echo
pulse sequence (TR = 450 ms; TE = 17 ms; inter-
leaved; matrix = 256 � 192; NEX = 1; the same FOV,
slice thickness, and locations as the functional
scans). All scans for each subject were acquired
in the same session.

4.3.1. Data preprocessing
Prior to the application of the proposed technique,
we applied preprocessing to bring homologous
regions into spatial coincidence through spatial nor-
malization. The spatial normalization of the scans to
a standard template brain using the anatomical
reference images was carried out in SPM99 [28],
resulting in resampling of the data to 2 mm3 iso-
tropic voxels. The resampled data were smoothed
with a Gaussian filter (FWHM 15 mm3). Each sub-
ject’s task-related activation was analyzed indivi-
dually versus the subject’s rest condition, resulting
in individual contrast maps giving a measurement of
fMRI signal change at each voxel. To reduce the
effect of noise and sensor fluctuations in the original
functional data we applied the following steps.
First, we removed the effect of the background
noise by subtracting the signal value measured
in representative background voxels from all
the voxels of the 3D volume. Second, we masked
the data using a binary mask extracted from
the T1 anatomical atlas used as the template
the data were spatially registered to. Only the
signal within the binary mask was included in
the analysis.

To segment ROIs that reflect the distribution of
highly activated regions we followed a procedure of
utilizing an activation cut-off threshold [9]. The
threshold was based on t-values measurement, indi-
cating each voxel’s significance of activation. For
this purpose we used the t-maps referring to the
contrast dataset (output of SPM99). The cut-off
value of t = 2.12 was used, which corresponds to
the p-value of 0.025 for one-tailed significance. The
result of this final step was to obtain the 3D binary
volumes used in our experiments, consisting of ROIs
that reflect highly significant activation regions.
Fig. 8 shows a sample slice of a contrast map along
with the corresponding t-map and the binary image
that is obtained after the thresholding. The aim of
applying the proposed distribution estimation tech-
niques to this dataset was to distinguish the spatial
arrangement of ROIs of healthy subjects compared
to that of Alzheimer’s. Distributions of peak activa-
tion obtained after thresholding of contrast maps
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Figure 9 Distributions of peak activation obtained after
thresholding of contrast maps for (a) controls and (b)
Alzheimer’s patients.

Table 1 Prediction errors from experiments on fMRI
data for maximum likelihood and Kullback—Leibler
divergence-based techniquesa

Classification error (%)

Controls Patients Average

Maximum likelihood
EM 22.96 32.96 27.96
k-means 22.96 17.04 20.00

Kullback—Leibler
EM 20.74 42.96 31.85
k-means 23.33 34.07 28.70

a For each technique, the errors on controls, patients and
the average error are given in percents.
for both controls and Alzheimer’s patients are shown
in Fig. 9.

4.3.2. Classification results
The leave-one-out approach was employed to eval-
uate out-of-sample classification performance
[39,41]. More specifically, the training set consisted
of patients and controls with indices 1, 2, 3, . . ., i �
1, i + 1, . . ., 9 and the method was tested on patient
and control with an index i, where i = 1, . . ., 9. Due to
the stochastic nature of the distribution estimation
techniques (EM, k-means) for each leave-one-out
loop we performed 30 repetitions, in order to obtain
statistically significant averaged classification mea-
sure. For EM and k-means algorithms, when
employed for distribution estimation, we used k =
3 clusters. Accuracy was evaluated on the average
over all repetitions for each sample and over all the
leave-one-out loops for the whole dataset.

All examined techniques, except the Mahalanobis
distance, provided useful prediction (accuracy bet-
ter than a random guess). The Mahalanobis distance
technique could not work presumably due to simi-
larity of distributional means (recall from Section
4.1 that in such cases this method does not work
well).

In Table 1 the estimated classification error for
each of the useful algorithms is shown for controls,
patients and averaged. Both ML and KL divergence
methods resulted in similar specificity (classification
errors when predicting controls in range 20—23.5%).
However, ML methods provided better selectivity
(smaller classification errors of patients). The ML
method based on k-means resulted with the smallest
error when classifying patients (17.04%) and the
best overall performance (the average classification
error (controls and patients) of 20.00%). The aver-
age classification error of other useful methods
varied within 27—32% range.
5. Discussion

Results presented in this study clearly demonstrate
the ability of the proposed methodology to provide
an efficient framework for the classification of 3D
medical images based on spatial distribution analy-
sis of ROIs. Experiments also showed that the accu-
racy of this classification scheme crucially depends
on the quality and availability of data and the
intrinsic complexity of underlying data generation
processes.

The classification methods examined in the study
varied from the Mahalanobis approach, based on
statistical distance and implicitly assuming the sin-
gle-component Gaussian distribution of data, to
more complex semi-parametric techniques based
on probabilistic divergence and maximization of
the likelihood that a new subject corresponds to
one of the two distributions learned from the train-
ing datasets. While the Mahalanobis distance was
capable of providing useful classification results
when the data distributions corresponding to the
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observed two classes (e.g., presence and absence of
ADHD) differed significantly, this technique is gen-
erally inferior in comparison to the other proposed
methods. However, the Mahalanobis approach could
still be a method of choice when the requirements
for the classification accuracy are not extremely
strict while the major emphasis is put on efficiency
and simplicity of the technique.

Methods based on the KL divergence and the ML
methods provided superior accuracy in comparison
to the Mahalanobis distance. This came with no
surprise since the former methods assume more
complex mixture models in contrast to one multi-
variate Gaussian, as in case of the applied Mahala-
nobis technique. Generally, the ML technique
performed better than the KL divergence (the
improvement in the case of mixtures with consider-
ably different distributional means was not signifi-
cant since both techniques were capable of
providing classification with the errors less than
2%). There are two plausible reasons for this. First,
the ML technique has more sound theoretical foun-
dation than KL. Second, while using ML, we would
need to estimate distribution parameters only on
the training sets. In contrast, in case of KL, a dis-
tribution should be estimated for datasets corre-
sponding to spatial arrangements of ROIs of each
new patient. The imprecision in these additional
distribution estimations could particularly play its
role when the number of ROI voxels corresponding to
a new subject is small, and this is exactly what
happened in our experiments.

Both ML and KL methods can be combined with
different techniques to estimate distributions. In
this study, we compared the EM algorithm with its
faster and less complex variant–—the k-means algo-
rithm. When the distributions differ significantly (as
in the case of Gaussian distributions with different
means, Section 4.1.1), both algorithms provide simi-
lar results and hence the application of the faster k-
means can be proposed. Interestingly, in the case of
examined realistic and clinical data, the k-means
provided even better accuracy than EM, probably
due to smaller complexity of the k-means compared
to EM. In contrast, when distinguishing distributions
with the same means but different variances of the
components, EM clearly outperformed k-means in
classifying the subjects coming from the distribution
with the larger variances. Such results can be easily
explained. Namely, unlike EM, k-means iteratively
estimate only means of the distributional compo-
nents and consider each voxel of the dataset to
belong exactly to one of the components. Such
assumption, although working well when the distri-
butional components are well separated, starts to
cause problems when the distributions overlap, and
this is precisely what occurs when the component
variances are larger.

Experimental results on realistic data suggest
that excellent classification accuracy with errors
smaller than 1% could be achieved assuming the
proper sizes of the training set and the large enough
amount of information regarding the new subject,
i.e., a well-identified spatial distribution of their
ROIs. However, although these results are very
encouraging, we would like to accentuate that
real-life clinical results may be less optimistic.
For instance, the minimal average classification
error on clinical Alzheimer’s disease we obtained
(using the ML technique with k-means) was 20%
while other useful methods discussed here (ML
approach with EM distribution estimation or KL
divergence) resulted in errors within 27—32% range
(see Table 1). Reasons for such difference of results
on realistic and on clinical data are the greater
heterogeneity of the real datasets and the small
number of subjects available that lead to a difficulty
in generalizing the patterns observed. In reality,
image imperfections, noise, registration, and seg-
mentation errors and other potential sources of data
corruption (that are related to the imaging technol-
ogy and methodology) as well as inter-subject varia-
bility (i.e., subjects belonging to different
populations, age and ethnicity groups, etc.), may
lead to significant heterogeneity, which could cause
problems to any learning technique, including those
covered in this study.

The size of the database of prelabeled cases plays
a significant role in the classification of a new sub-
ject. Our study has shown that, for all the consid-
ered techniques applied on synthetic and realistic
data, the classification accuracy increased with the
size of the training set–—the database used to learn
parameters of a classification algorithm. This is
intuitively expected, while our experiments quan-
tified it. In clinical data, the total number of avail-
able subjects was rather small (nine patients and
nine controls) but typical for an fMRI study and could
not be increased, which in part contributed to lower
accuracy, as compared to realistic data. The results
were indeed impressive given the small dataset, its
heterogeneity and difficulty in generalizing the pat-
terns observed.

For all useful techniques on synthetic and realis-
tic data (where the number of ROI voxels per sub-
ject–—the size of a new dataset–—could be varied in a
controlled way), the performance significantly
improved with the size of a new dataset that corre-
sponds to a subject to be classified. The computa-
tional time for all the proposed techniques can be
split into the ‘‘learning’’ time, necessary for dis-
tribution analysis and the ‘‘query’’ time, needed for
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classification of a new dataset. The learning time for
all proposed methods is a linear function of the size
of distributions, thus making them highly suitable
for large datasets. In general, the Mahalanobis dis-
tance approach provides the fastest distribution
learning, since it requires only estimation of mean
and covariance matrix per distribution and does not
perform computations for distribution estimation or
likelihood calculation. In contrast, the KL diver-
gence-based and ML methods require semi-para-
metric estimation of distributions, as well as
costly computation of exponential functions, in
the case when the EM algorithm is employed for
density estimation. Although KL divergence-based
method is generally more complex, for some special
cases it may still perform faster than the ML based
technique (e.g., KL with k-means distribution esti-
mation versus ML approach with EM distribution
estimation). Since the distribution analysis is typi-
cally performed in a batch mode, query time will
have major influence on the usability of the pro-
posed methods. The query time for all proposed
techniques is linearly proportional to the size of a
new dataset. In our experiments, for the examined
methods and sizes of the new dataset, the
query time was satisfactory small (less than 10 s
on a Pentium 4, 1.8 GHz computer with 256 MB
memory).
6. Conclusions and future work

In this paper, we propose a framework for the
classification of 3D medical images based on the
analysis of the spatial distribution of ROIs. In addi-
tion, the study provides a benchmark comparison of
distribution similarity-based approaches and max-
imum likelihood techniques. As illustrated from the
experimental results in this work, the proposed
methodology can assist medical image based diag-
nosis.

Although the individual methods proposed here
have been developed for other domains, to the best
of our knowledge they have not been applied to the
analysis and classification of medical images based
on their ROIs. Another contribution of this work is
the proposed integration of various statistical tech-
niques into the process for 3D spatial distribution
analysis and classification. Finally, since the pro-
posed methodology is voxel based and applied
directly to the 3D domain, it automatically takes
into account the spatial locality of the voxels in 3D
during the analysis. There is no need to analyze each
2D slice separately and combine results, as in case of
a 2D slice-based (pixel-based) technique. For this
reason, the proposed techniques can be more accu-
rate and faster than approaches originally designed
for 2D images that are later extended to 3D
images.

The methods discussed in this study analyze 3D
volumes as binary objects, i.e., only information
about a particular voxel being or not being part of a
certain region of interest is provided. This assump-
tion without being very restrictive simplifies the
analysis and is often made. In reality, due to the
uncertainty in delineating the boundaries of certain
ROIs (structures or abnormalities) in medical images
during segmentation, the regions usually have fuzzy
boundaries. Our results on Alzheimer’s disease fMRI
data [17,48] employing non-binary images to repre-
sent ROIs indicate that novel advanced classification
techniques might be necessary to further improve
classification with such ROI representations.

The realistic data used in this study originated
from MRI lesion-deficit studies of ADHD. In addition,
we presented classification results on Alzheimer’s
disease fMRI activation data. These experiments
illustrate the potential of our proposed methodol-
ogy to be actually applied effectively on real-world
medical imaging applications. The achieved results,
demonstrated through low classification errors, are
encouraging but at the same time emphasize the
needs for further research in various directions.
Hence, further experiments are necessary to eval-
uate the proposed techniques in more comprehen-
sive experimental studies on real-life medical
images related to different disorders and different
organs. Also, the part of the work in progress is the
application of the proposed methodology on other
classes of medical images, including positron emis-
sion tomography, computed tomography, Single
Photon Emission Computerized Tomography, etc.
Another important direction for further study is
the development and evaluation of advanced non-
parametric classification techniques, as applied on
medical imagery. Finally, work in progress includes
the application of the proposed methods on non-
binary images and in more comprehensive experi-
mental studies on real-life medical imaging applica-
tions.
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Appendix A. Mathematical and statistical
preliminaries

Let x ¼ ½x1; x2; . . . ; xd � be amultivariate random
variable, where xi, i = 1, . . ., d are continuous
variables that can choose any value from a d-dimen-
sional domain D. The probability P(x) that the vari-
able x belongs to a subdomain V�D is defined as:

P½x2V � ¼
Z
V

pðxÞ dx; (A.1)

where p(x) is a probability density function satisfy-
ing non-negativity (p(x) � 0) and normalization
(
R
D pðxÞ dx ¼ 1) constraints. The probability density

function p(x) uniquely determines a distribution of
the variable x. In addition, each distribution is
characterized by its histogram while parametric
distributions can also be specified by values of their
parameters [49].

Consider a uniform discretization of a multidi-
mensional domain D into equally sized smaller sub-
domains. In a general d-dimensional case, we
call these subdomains hyper-voxels. Thus, each
hyper-voxel vi1;i2;...;id represents a d-dimensional
hyper-rectangle ½i1Dx1; ði1 þ 1ÞDx1� � ½i2Dx2; ði2 þ
1ÞDx2� � . . .� ½idDxd ; ðid þ 1ÞDxd � where i1, . . ., id
are integers and Dx1, . . ., Dxd are discretization
intervals in each dimension. Bj, j = 1, . . ., d are
the numbers of hyper-voxels in each dimension,
such that ij = 0, . . ., Bj � 1. The total number of
hyper-voxels in the volume D is equal to
B ¼ B1B2 � � �Bd. For d = 3, the hyper-voxels reduce
to voxels, the three-dimensional volume elements.
Using Eq. (A.1) and the mean-value theorem [50], it
can be shown that there exists m such that
minx2 vi1 ;i2 ;...;id

pðxÞ � m � minx2 vi1 ;i2 ;...;id
pðxÞ, so

that the probability that a multivariate variable x
belongs to a hyper-voxel vi1;i2;...;id can be expressed
as:

P½x2 vi1;i2;...;id � ¼ mDx (A.2)

where

Dx ¼ Dx1Dx2 � � �Dxd ; (A.3)
is the product of discretization intervals. Assuming
small discretization intervals, the probability den-
sity has an approximately constant value p(x) for
x2 vi1;i2;...;id , such that Eq. (A.2) can be written as:

P½x2 vi1;i2;...;id � 	 pðxi1;i2;...;id ÞDx (A.4)

where

xi1;i2;...;id ¼ i1Dx1 þ
Dx1
2

; i2Dx2 þ
Dx2
2

;

�

. . . ; idDxd þ Dxd
2

	T
(A.5)

is the center of the hyper-voxel vi1;i2;...;id .
The Gaussian distribution for k-dimensional ran-

dom vector z is defined as:

fðzjm;SÞ ¼ 1

ð2pÞk=2detðSÞ1=2

exp � 1

2
ðz� mÞTS�1ðz� mÞ


 �
(A.6)

Multivariate data with Gaussian distribution tend to
cluster about the mean vector m, falling in an ellip-
soidal cloud whose principal axes are eigenvectors
of the covariance matrix S [39].

The Gaussian mixture has a probability density
function [42]:

pðzÞ ¼
Xk
j¼1

pjfðzjmj;SjÞ (A.7)

where pj is a prior probability and f(zjmj, Sj) is the
probability density of the j-th Gaussian component
specified by the mean mj and the covariance matrix
Sj.

The Euclidean distance between two multivari-
ate variables (vectors) depends on the sum of
squared differences of their components. There-
fore, given two vectors x and y, the Euclidean
distance between them is computed as

dEðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � yÞTðx � yÞ

q
: (A.8)

Observe that the Euclidean distance does not
incorporate any information about the distribution
of vectors x and y. Under the assumption of data
having Gaussian distribution, the distributional
information can be incorporated into distance cal-
culation by including a covariance matrix S into the
distance formula. This results in the Mahalanobis
distance [34], which is, for the two vectors x and y,
defined as

dM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � yÞTS�1ðx � yÞ

q
: (A.9)

The Mahalanobis distance is equal to the Eucli-
dean distance only when the covariance matrix S is
an identity matrix.
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