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Image Processing in Precision Agriculture
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Abstract--— A brief review of our signal and image processing
application in precision agriculture is presented. A method for
determining sampling frequency for agriculture data is
proposed, and some initial results based on data simulation and
image processing are reported.
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1. INTRODUCTION

In the past several years, increased attention has been
directed towards the environmental impacts of agriculture
(1,2]. A new way of farming called precision farming offers
the promise of improving farm profitability and increasing
environmental stewardship. Using technical advances such as
the Global Positioning System (GPS), precision farmers can
collect georeferenced yield, soil, and other important attribute
data. The goal is to use these data to make site-specific crop
production decisions where production practices are varied
throughout a field.

Recent developments in Knowledge Discovery in
Databases (KDD) techniques [3] may be extremely applicable
to precision farming. An important part of the KDD process is
data analysis and preprocessing. Namely, in agriculture we
deal with data collected with various levels of resolution and
accuracy. Therefore, it is important to optimize the sampling
frequency of attributes in order to obtain the optimal
cost/benefit balance, and also to minimize the influence of
data noise and errors on the learning process. In this paper, we
explore the possibility of using signal and image processing in
achieving these goals.

II. PRECISION AGRICULTURE

Formally, the task of agriculture management can be stated
as follows: Given a two-dimensional field F, and the set of
features f;, i=1,..,m+n, of which f,..., f, are controllable
(their concentration can be increased by application of
treatments Af;i20 i=/,..,m), determine treatment vector
AKS)={ Afr... Af,]" on points s=(x,y)eF, that maximize profit
defined as:

Profit(F) = [[[cAVield(s) - w™ Af(s)-w, s )
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where ¢ is the unit price of the crop, AYield(s) is the
increment of crop yield due to the treatments, w=|w,
wa...Wa]" is a vector of prices per unit of a particular
treatment, and w, is a fixed unit cost of agriculture
management.

In traditional agriculture, treatments are constant for the
whole field and are chosen according to the prior knowledge
of a practitioner and/or the analysis results of sparse soil
samples (typically only one aggregate soil analysis per field).
On the other side, the task of precision agriculture is to
achieve sife specific recommendation for treatments, on
disjoint regions B,cF, such that

Profit(F) = »_ Profit(B, ) @

BycF

and assuming that Profit(B,) in particular regions can be
optimized independently and there is no interaction among
treatrents in distinct regions.

Through the KDD process, the learning algorithm is
supplied with data sets F; from different fields in possibly
different geographic regions and years. Each data set consists
of features fi«(s;), i=1,m and yield data Yield(s;) sampled on
points s;€F;. The task of the learning algorithm is to estimate
from data the function:

Yield(s)= Yield(f,,.... . fme15- .- fnen) (3)

such that profit optimization can be performed on a given
field F. the inductive bias is that there is “enough similarity”
between observed fields F; and a given field F.

The basic problems of data acquisition and preprocessing
include:

e determination of sampling points, such that sampling
is economically acceptable while providing enough
information for successful yield prediction

e development of strategies to combat measurement
errors and errors due to sampling

For different types of agriculture data, resolution and
accuracy are given in Table 1.

TABLE 1
PROPERTIES OF DIFFERENT AGRICULTURE DATA TYPES
type of data resolution | accuracy
crop yield high low
topographic high medium /high
remote-sensing | medium medium
soil sampling low high
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Data containing crop yield information on field points are
collected through the procedure of harvested crop mass
measurement within a field {4], while the information about
location is determined by GPS {S]. The main causes of error
on yield data [6] are: variable width of crop entering combine
header, variable time lag, the location error of GPS and yield
sensor accuracy. To compensate for the effect of variable crop
width, the usage of potential mapping is suggested [6], which
is in fact 2D low pass filtering with non-rectangular windows
[7]. Time lag can be modeled using low-pass 1-D filter [8,9].
Finally, the influence of sensor accuracy is assessed in {10}].
An interesting property of sensor error is that its variance
decreases with lower resolution, which is exactly opposite to
behavior of fractal noise [11]. Although different sources of
noise are discussed in literature, the question of an optimal
filter to minimize the influence of noise on measured yield is
not addressed. Instead, 2-D median filters with different
window widths are applied [7).

Topographic data, such as slope, curvature of profile,
tangent and planar plane and aspect, are generated using data
obtained by GPS through a terrain analysis procedure, [12].
Topographic  attributes  influence the  hydrological
characteristics of field [13,14], hence their impact on
precision agriculture, The accuracy of topographic data is
determined by the accuracy of GPS and by the precision of
topographic analysis algorithms. Since high accuracy GPS
data are relatively non-expensive {15] and high quality
topographic analysis methods are available, the remaining
issue of GPS sampling resolution arises, and is discussed in
[16). ’

Remote-sensing data [17] are obtained by observation from
airplanes and satellites using photography or radiometric
sensors. The resolution of remote-sensing data depends on
sensor altitude and the quality of the instrumentation (lenses,
etc) and upper limits are imposed by atmospheric effects and
the influence of crop shadows [18). To compensate for
dynamic range and calibration problems, as well as to increase
particular image properties such as edges and contrast,
classical methods of image processing {7] are applied.

Soil sample data describe chemical and physical properties
of soil, such as the concentration of nutrients and soil type.
Often, a relatively small number of sample points are
collected due to the high cost of sampling and laboratory
analysis. Hence, the choice of an optimal sampling strategy is
crucial to achieve data applicable for KDD purposes [18].

A pumber of papers regarding sampling frequency of soil
tests have been published [19]. They are mainly based on
sampling of experimental fields at several different
frequencies and comparing the interpolation results obtained
by spatial data interpolation techniques {20] with true
samples. This approach has two disadvantages: namely, in
practice, it is possible to replicate only a few different
sampling frequencies, and the results obtained on one
experimental field are not generally comparable with results
on other fields. Different experiments with soil sampling
density varying from 10*¥10 to 200*200m have been
conducted [19], but no conclusive recommendation were
made.

Besides classical interpolation techniques, such as kriging
{21} inverse distance approximation [20], and spline {22], the
application of signal processing theory on interpolation is also
addressed in the literature, [23]. There, a 2-D spectral
representation of a feature is applied and the spectrum
coefficients are determined such that the sum of the
interpolation errors at sampling points, weighted by the sizes
of corresponding Voronoi polygons [24], is minimal
Although this method is applied to geostatistical data [25], it
appears that this has not been applied to agricultural soil
sampling data.

III. SIGNAL PROCESSING AND THE CHOICE OF AN
OPTIMAL SOIL SAMPLING STRATEGY

There are several similarities between agriculture data and
data originating from image processing;
e both images and agriculture data can be observed as
random 2-D signals
e  spatial correlation of image pixels is analogous to spatial
correlation of agricultural samples, where the correlation is
usually expressed by variograms {20}
e picture layers (R,G and B signals) can have some degree
of mutual correlation which is often the case with particular
agricultural feature layers

On the other side, soil data obtained in a controllable way
and with resolution high enough to enable successful
experimentation on sampling frequency are sparse due to the
high cost of collecting and analyzing soil samples. Therefore,
our research is based on a combination of image analysis and
data simulation and consists of the following phases:
e Simulate spatial data satisfying different
models a using spatial data simulator [26}; ‘

e For each of these models, estimate optimal sampling
frequency on simulated data, using standard techniques of
image analysis {7,27]; '

theoretic

IV. RESULTS

Currently, we are developing methods for the estimation of
an optimal sampling frequency, {28]. Here, we present results
from the data simulation phase.

Several simulated data sets were generated and analyzed
using methods and software described in [26,29). Each data
set consisted of 1681 simulated data samples taken from a
400*400m* field using a 10*10m’ uniform sampling grid.
Spatial  correlation was determined by  spherical
semivariograms [20], where range and relative nugget were
varied. )

For zero-nugget data, the semivariogram range effect
(R=50m and R=200m), on spatial correlation is shown in Fig.
1 where 1-D correlograms, assuming spatial isotropy [20] are
computed. We can see that the range of the spherical
variogram model determines the value of the spatial lag after
which points are practically uncorrelated and, as it is known in
the theory of random spatial signals, higher variogram range
means higher spatial correlation.
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The mﬂuencc of the relative nuggeton: sp
15 shown on Figure 2, for range | R=200m
‘means-a higher uncorrelated componem
w!m:h q8- reflected . as: lesser correiogmn \m]ues fo
smaller tban the ratige. : .

To_examine the relation between the spatial corrclalmn of a
feature and -the correlation- among features, we vancd the »
range-of our simulated data, generating 10 datasets with 1681 I o
samples for each range value. Then, means and standard - = "y s o
feviations -were. computed for the ‘correlation coefficients. &l W Baniunstiy
between.each of - 3~ s pairs of those datasets. Results, ot ! om0 ® >
shown - on - Table 2 suggest that the mean value of the a) Nugget=0.2 .

correlatxon coeiﬁcxents increases. with. the. range’ of the '
features. “This opens the question of feature independerice and
. -suggests application of co-krigging methods for interpolation
=[20]. In-this case it is interesting to cxamine whether it is oo
possible. 10 use a 3-dimensional Fourier transformation to !
represent correlated 2-D features [30,31,32,33,34]. !
Finally, we. simulated the influence of sensor error as a R M
miultiplicative -Gaussian noise with.a 15% 3-o interval and, '
- applied a 3*3 median filter to remove noise. Results, shown
.- onFig. 3, indicate that this method can help to suppress the Bty v > 4_5 - x -
- influence: “of. noise. Research on determining the possible ' : o
adverse effects of high frequency component suppression on &) Nugget=0.8

cmp yield'prediction is in progress. ) Fig. 2. Influence of relative nugget on; the :

. : correlogrmn.s of spatial data with R -»200m(lag
i prwentcd inunits of IOm)
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L8

Cands

"b) Range R=200m

“Fig. 1. 'Cbmziogfamq of simulated features
“with- different  variogram ranges (iag is
_.prc;cmed inunits of i()m) )

b) Filtered yield-using 3*3 median filter
I“xg - The influence of median filtering on
noise reducnon of simulated yield
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TABLE 2
MEANS AND STANDARD DEVIATIONS OF ABSOLUTE VALUES OF
CORRELATION COEFFICIENTS BETWEEN SIMULATED FEATURES WITH
SPECIFIED RANGE

range | Om SOm 100m | 200m | 300m
mean | 0.015 {0.040 {0.094 | 0.176 | 0.202
std 0.014 | 0.030 | 0.071 | 0.147 | 0.142

V. CONCLUSION

Precision agriculture is a multidisciplinary field, which
incorporates numerous science areas, such are agronomy,
computer science, statistics, economics, environmental
science, automatic control, telecommunications and
microelectronics. The purpose of this paper is to emphasize
the role that signal processing methods and approaches could
have in achieving the ultimate goal of precision agriculture,
and at the same time to introduce this emerging scientific
branch to a signal processing- and telecommunication
engineers’ community.
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