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Abstract---- A brief review of our signal and image processing 
application in precision agriculture i s  presented. A method for 
determining sampling frequency for agriculture data is 
proposed, and some initial results based on data simulation and 
image processing are reported. 
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I. INTRODUCTION 
In the past several years, increased attention has been 

directed towards the environmental impacts of agriculture 
[1,2]. A new way of farming called precision farming offers 
the promise of improving farm profitability and increasing 
environmental stewardship. Using technical advances such as 
the Global Positioning System (GPS), precision farmers can 
collect georeferenced yield, soil, and other important attribute 
data. The goal is to use these data to inake site-specific crop 
production decisions where production practices are varied 
throughout a field. 

Recent developments in Knowledge Discovery in 
Databases (KDD) techniques [3] may be extremely applicable 
to precision farming. An important part of the KDD process is 
data analysis and preprocessing. Namely, in agriculture we 
deal with data collected with various levels of resolution and 
accuracy. Therefore, it is important to optimize the sampling 
frequency of attributes in order to obtain the optiinal 
costhenefit balance, and also to minimize the influence of 
data noise and errors on the learning process. In t h i s  paper, we 
explore the possibility of using signal and image processing in 
achieving these goals. 

11. PRECISION AGRICULTURE 

Formally, the task of agriculture management can be stated 
as follows: Given a two-dimensional field F, and the set of 
features f; , i=l,  ..., jn+n, of which fi ,... , fm are controllable 
(their concentration can be increased by application of 
treatments A f ; a  i=1, __. ,m), determine treatment vector 
AJ(s)=[ Ah ... on points s=(x,y)~F, that maximize profit 
defined as: 
Profit(F)= JJ[cAYieZd(s)- WTAf(S)- W o k s  (1) 
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where c is the unit price of the crop, AYield(s) is the 
increment of crop yield due to the treatments, w=[wl 
w ~ . . . ~ , , , I ~  is a vector of prices per unit of a particular 
treatment, and wo is a fixed unit cost of agriculture 
management. 

In traditional agriculture, treatments are constant for the 
whole field and are chosen according to the prior knowledge 
of a practitioner and/or the analysis results of sparse soil 
samples (typically only one aggregate soil analysis per field). 
On the other side, the task of precision agriculture is to 
achieve site specific recommendation for treatments, on 
disjoint regions B k d ,  such that 

Profit(F) = CProfit(B,) (2) 
B , c F  

and assuming tlmt Projit(Bd in particular regions can be 
optimized independently and there is no interaction among 
treatments in distinct regions. 

Through the KDD process, the learning algorithm is 
supplied with data sets F/ from different fields in possibly 
different geographic regions and years. Each data set consists 
of features fi,(s,), i=l,m and yield data Yield[(s,) sampled on 
points S~EF, .  The task of the learning algorithm is to estimate 
from data the function: 

Yield(s)= Yield(fl,. . . ,fm,fm+l,. . . , fm+") (3) 

such that profit optimization can be performed on a given 
field F. the inductive bias is that there is "enough similarity" 
between observed fields Fl and a given field F. 

The basic problems of data acquisition and preprocessing 
include: 

determination of sampling points, such that sampling 
is economically acceptable while providing enough 
information for successful yield prediction 

0 development of strategies to combat measurement 
errors and errors due to sampling 

For different types of agriculture data, resolution and 
accuracy are given in Table 1. 

TABLE 1 
PROPERTIES OF DIFFERENT AGRICIJLLTIJRZ DATA TYPES 
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Data containing crop yield information on field points are 
collected through the procedure of harvested crop mass 
measurement within a field [4], while the information about 
location is determined by GPS [SI. The main causes of error 
on yield data [6] are: variable width of crop entering combine 
header, variable time lag, the location error of GPS and yield 
sensor accuracy. To compensate for the effect of variable crop 
width, the usage of potential mapping is suggested [SI, which 
is in fact 2D low pass filtering with non-rectangular windows 
[7]. Time lag can be modeled using low-pass l-D filter [S,9]. 
Finally, the influence of sensor accuracy is assessed in \lo]. 
An interesting property of sensor error is that its variance 
decreases with lower resolution, which is exactly opposite to 
behavior of fractal noise [ 111. Although different sources of 
noise are discussed in literature, the question of an optimal 
filter to minimize the influence of noise on measured yield is 
not addressed. Instead, 2-D median filters with different 
window widths are applied 171. 

Topographic data, such as slope, curvature of profile, 
tangent and planar plane and aspect, are generated using data 
obtained by GPS through a terrain analysis procedure, 1121. 
Topographic attributes influence the hydrological 
characteristics of field [13,14], hence their impact on 
precision agriculture. The accuracy of topographic data is 
determined by the accuracy of GPS and by the precision of 
topographc analysis algorithms. Since high accuracy GPS 
data are relatively non-expensive [15] and high quality 
topographic analysis methods are available, the remaining 
issue of GPS sampling resolution arises, and is discussed in 

Remote-sensing data [17j are obtained by observation from 
airplanes and satellites using photography or radiometric 
sensors. The resolution of remote-sensing data depends on 
sensor altitude and the quality of the instrumentation (lenses, 
etc) and upper limits are imposed by atmospheric effects and 
the influence of crop shadows 118). To compensate €or 
dynamic range and calibration problems, as well as to increase 
particular image properties such as edges and contrast, 
classical methods of image processing [7] are applied. 

Soil sample data describe chemical and physical properties 
of soil, such as the concentration of nutrients and soil type. 
Often, a relatively small number of sample points are 
collected due to the high cost of sampling and laboratory 
analysis. Hence, the choice of an optimal sampling strategy is 
crucial to achieve data applicable for KDD purposes [IS]. 

A number of papers regardmg sampling frequency of soil 
tests have been published [19]. They are mainly based on 
sampling of experimental fields at several dlfferent 
frequencies and comparing the interpolation results obtained 
by spatial data interpolation techniques [20] with true 
samples. This approach has two disadvantages: namely, in 
practice, it is possible to replicate only a few different 
sampling frequencies, and the results obtained on one 
experimental field are not generally compamble with results 
on other fields. Different experiments with soil sampling 
density varying from 10*10 to 200*200m have been 
conducted [ 191, but no conclusive recommendation were 
made. 

1161. 

Besides classical interpolation techniques, such as kriging 
[21] inverse distance approximation [20], and spline (221, the 
application of signal processing theory on interpolation is also 
addressed in the literature, [23]. There, a 2-D spectral 
representation of a feature is applied and the spectrum 
coefficients are determined such that the sum of the 
interpolation errors at sampling points, weighted by the sizes 
of corresponding Voronoi polygons [241, is minimal. 
Although this method is applied to geostatistical data [25], i t  
appears tliat ttus has not been applied to agncultural soil 
sampling data. 

111. SIGNAL PROCESSING AND THE CHOICE OF AN 

OPTIMAL SOIL SAMPLING STRATEGY 

There are several similarities between agnculture data and 
data originating from image processing: 
0 

random 2-D signals 
0 

correlation of agricultural samples, where the correlation is 
usually expressed by variograms [20) 
0 

of mutual correlation which is often the case with particular 
agricultural feature layers 

both images and agriculture data can be observed as 

spatial correlation of image pixels is analogous to spatial 

picture layers (R,G and B signals) can have some degree 

On the other side, soil data obtained in a controllable way 
and with resolution high enough to enable successful 
experimentation on sampling frequency are sparse due to the 
high cost of collecting and analyzing soil samples. Therefore, 
our research is based on a combination of image analysis and 
data simulation and consists of the following phases: 

Simulate spatial data satisfying Merent  theoretic 
models a using spatial data simulator [26); 

0 For each of these models, estimate optimal sampling . 

frequency on simulated data, using standard techniques of 
image analysis (7,271; 

Iv. RlXWLTS 

Currently, we are developing methods for h e  estimation of 
an optimal sampling frequency, [28]. Here, we present results 
frotn the data simulation phase. 

Several simulated data sets were generated and analyzed 
using methods and software described in [26,29]. Each data 
set consisted of 1681 simulated data samples taken from a 
400*400m2 field using a 10*10m2 uniform sampling grid. 
Spatial correlation was determined by spherical 
semivariograms [20], where range and relative nugget were 
varied. 

For zero-nugget data, the semivariogram range effect 
(R=50m and R=200m), on spatial correlation is shown in Fig. 
1 where 1-D correlograms, assuming spatial isotropy [20] are 
computed. We can see that the range of the spherical 
variogram model determines the value of the spatial lag after 
which points are practically uncorrelated and, as it is known in 
the theory of random spatial signals, higher variogram range 
means higher spatial correlation. 
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TABLE 2 
MEANS AND STANDARD DEVIATIONS OF ABSOLUTE VALUES OF 

CORRELATION COEFFICIENTS BETWEEN SIMULATED FEATURES WITH 
SPECIFIED RANGE 

mean 
std 

1 range I Om I 50m I lOOm I 200m I 300m I 
0.015 0.040 10.094 0.176 0.202 
0.014 0.030 I 0.071 0.147 0.142 

V. CONCLUSION 
Precision agriculture is a multidisciplinary field, which 

incorporates numerous science areas, such are agronomy, 
computer science, statistics, economics, environmental 
science, automatic control, telecommunications and 
microelectronics. The purpose of this paper is to emphasize 
the role that signal processing methods and approaches could 
have in achieving the ultimate goal of precision agriculture, 
and at the same time to introduce this emerging scientific 
branch to a signal processing and telecommunication 
engineers’ community. 
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