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Abstract. A novel method is proposed for forecasting spatial-temporal data with a short observa-
tion history sampled on a uniform grid. The method is based on spatial-temporal autoregressive
modeling where the predictions of the response at the subsequent temporal layer are obtained
using the response values from a recent history in a spatial neighborhood of each sampling point.
Several modeling aspects such as covariance structure and sampling, as well as identification,
model estimation and forecasting issues, are discussed. Extensive experimental evaluation is per-
formed on synthetic and real-life data. The proposed forecasting models were shown capable of
providing a near optimal prediction accuracy on simulated stationary spatial-temporal data in the
presence of additive noise and a correlated model error. Results on a spatial-temporal agricultural
dataset indicate that the proposed methods can provide useful prediction on complex real-life data
with a short observation history.
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1. Introduction

Emerging interest in spatial-temporal machine learning and data-mining (Roddick et
al., 2001) is a consequence of advances in data acquisition, retrieval, and knowledge
discovery technology along with an increased demand for applications in areas such
as remote sensing (Kafatos, 1999), precision agriculture (Robert, 1999), and medical
imagery (Megalooikonomou et al., 2000). Given historic spatial observations, in spatial-
temporal prediction the goal is to find techniques to predict future values of certain
attributes or the response (Cressie and Majure, 1997; Pokrajac and Obradovic, 2001a).
However, due to specific properties of spatial-temporal datasets, numerous other issues
involving prediction techniques arise.
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In addition to data domains characterized by long observation history (e.g. daily
values of meteorological and oceanographic data exist for a hundred years or more,
Jones et al., 1986), spatial-temporal prediction should often be performed on datasets
that contain a relatively small number of temporal layers, as is usually the case in
precision agriculture and medical imagery. In these domains, in addition to forecasting
future attribute values, spatial-temporal prediction can be applied for data compression.
Namely, it may be possible to predict certain attribute values based on their historical
values and to store the attribute values only on locations where predicted and true
values significantly differ (Pokrajac et al., 2002, in press). Similarly, instead of taking
samples at each location and at each time instance, it might be possible to reduce
spatial and/or temporal sampling resolution, and to approximate missing sample values
by suitable interpolation/extrapolation of available data. To properly address these and
other emerging problems, it is necessary to establish appropriate methods for attribute
prediction on spatial-temporal data based on the exploitation of attribute correlation in
space and time. Due to the strong presence of spatial correlation in data, conventional
time-series models (Box et al., 1994) cannot provide desirable accuracy for spatial-
temporal prediction. As alternatives, methods founded on geostatistical and state-space
approaches are emerging.

Following geostatistical approach (Chilés and Delfiner, 1999), the spatial-temporal
prediction can be performed through kriging — an estimation procedure based on a gener-
alized least squares algorithm where an estimated attribute value is a linear combination
of available attribute values. Originally, kriging was successfully applied for spatial in-
terpolation (Denman and Freeland, 1985; Whelan et al., 1996; Kerry and Hawick, 1998).
Recently, there have been numerous efforts to apply the principles of kriging to spatial-
temporal domains. The effects of temporal and spatial correlation on attributes can be
considered separately (Carrat and Valleron, 1992; Posa, 1995; Campling et al., 2001),
but this method lacks firm theoretical foundation (Rouhani and Myers, 1990). An al-
ternative is the spatial-temporal kriging where spatial and temporal dependences are
modeled simultaneously (Chiles and Delfiner, 1999; Olea, 1999). The crucial problem
here is estimation of valid spatial-temporal attribute statistics when disparity exists in
the number of available spatial samples and the length of temporal history (Rouhani
and Myers, 1990; Buxton and Pate, 1999). In addition, with a large number of spatial
samples, kriging may become computationally prohibitive (Kerry and Hawick, 1998)
and, when the number of temporal layers is small, can result in ill-conditioned linear
systems (Rouhani and Myers, 1990). Hence, spatial-temporal kriging and its variants
(Addink and Stein, 1999) are not applicable for forecasting in domains with a large
amount of spatial samples but a comparatively short observation history.

Modeling based on the state space paradigm (Harvey, 1989; Brown and Hwang,
1993) is a powerful way of implementing a probabilistic framework to spatial-temporal
processes, particularly applicable for domains such as meteorology, where data incre-
mentally arrives at the prediction system. In space-time Kalman filtering (Wikle and
Cressie, 1999), the observed variable consists of a spatial-temporal process and a spa-
tially non-correlated measurement error. The spatial-temporal component is considered
dependent on its values at the immediate previous time instance where the involved
model coefficients vary in space. Attribute value at the consecutive time instance is
predicted using a complicated recursive procedure for computing the optimal current
estimate of the state vector based on available historical information (Harvey, 1989).
Similar models have been applied by Stroud et al. (1999) for interpolation on meteoro-
logical and oceanographic data. The application of the state-space approach combined
with stochastic simulations is demonstrated by Wikle et al. (2001) for parameter opti-
mization in models with a complex structure (~10° parameters!) on data with a long
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temporal history. A further interesting approach is to combine the Kalman filtering and
geostatistical modeling (Huang and Cressie, 1996; Mardia et al., 1998).

These and other techniques based on the state-space models are applicable for both
uniform and non-uniform grids. They have an advantage over batch prediction models
(such as those based on the ordinary least squares principle, Neter et al., 1985), as-
suming the availability of proper prior knowledge about the modeled process as well
as a large number of temporal layers, so that the recursive nature of the models can be
fully exploited (Brown and Hwang, 1993; Haykin, 1996). However, in applications of
specific interest to us (precision agriculture and medical imaging), statistical parame-
ters of the state-space model (correlation matrices of random shocks and measurement
errors) are seldom known. In addition, Kalman filter misadjustment (consequence of
poor correlation matrix initialization) can hardly be compensated due to a small num-
ber of temporal layers and the transient state of the filter will actually be longer than
the available temporal span of the data. Hence, state-space models applied for predic-
tion on spatial-temporal data with a short observation history are not likely to provide
satisfactory results.

Alternative methods to geostatistical and state-space approaches involve predic-
tion using spatial-temporal autoregressive models and its derivative spatial-temporal
auto-regressive models on a uniform grid (STUG), initially introduced by Bennett
(1979) without a proper theoretical underpinning. A special case of STUG, with a non-
symmetric neighborhood structure (response at a spatial point dependent on response
values only from a few pre-specified neighboring locations) was proposed by Kokaram
and Godsill (1996). Similar to state-space models proposed by Wikle and Cressie (1999),
STUG models assume spatial-temporal dependence in a uniform grid through a con-
volution (Smirnov, 1999) of filter coefficients and the response values at previous time
instances. However, the STUG model considers only a discrete filtering process and
filter parameters are constant in space. In addition, the model does not assume the
existence of the prior knowledge about process correlations. Compared to geostatisti-
cal models that are essentially based on the moving average principle (Lindkvist and
Lindqvist, 1997), shorter temporal history may be sufficient for a proper estimation of
STUG - an autoregressive model that in contrast has a higher but still moderate number
of parameters.

In this paper, we introduce a spatial-temporal autoregressive modeling on
a uniform grid for phenomena with a short temporal history but a large number of
spatial samples per temporal instance. In contrast to previous variants of STUG models,
here an attribute depends on its values from all neighboring locations on rectangular
lattices within a pre-specified distance. Moreover, unlike ad hoc attempts considered in
prior studies (Bennett, 1979; Kokaram and Godsill, 1996), here we provide a compre-
hensive theoretical foundation of the STUG model. In addition to the model verification
by experiments on real-life data (from the precision agriculture domain), here, by using
synthetic datasets, we extensively discuss the influence of various data characteristics
(e.g. random shocks correlation, the presence of measurement errors) on forecasting
accuracy.

In Section 2, a theoretical foundation is provided for spatial-temporal auto-
regressive models on a uniform grid, including identification, coefficient esti-
mation, and forecasting for different sampling techniques. In Section 3, results of an
extensive experimental model evaluation for prediction on synthetic spatial-temporal
data are presented. This is followed by reporting results on real-life agricultural data
with a short observation history in Section 4 and a discussion in Section 5.
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2. Methodology

In this section, we provide theoretical foundations for the STUG model based on sta-
tistical and image-processing techniques. Following the Box—Jenkins framework (Box
et al., 1994), for three different spatial-temporal sampling strategies we discuss model
identification, parameter estimation, and forecasting future response values. Deriva-
tions, including a multidimensional generalization and stationarity criteria, are provided
in Pokrajac and Obradovic (2001b).

2.1. Model Specification

We define the STUG model on a uniform two-dimensional rectangular grid determined
by sampling distances A in both spatial directions. Samples are taken at time instances
kt where 7 is a time sampling interval and k € {1,2,...}. For a temporal data layer
corresponding to a specific time instance ¢ - T, the value of the random process f;(m, n)
at each spatial location (mA, nA), where m, n are integers, depends on samples taken
in recent history from the same location and its spatial neighborhood. The history corre-
sponds to p previous temporal layers sampled at time instances (t — p)t, ..., (t — 1)7.
We specify the spatial neighborhood as a 2LA x 2L A square bounded by locations
(mE£ L)A, (n£ L)A). Parameters p and L will be referred to as temporal and spatial
orders of a STUG (p, L) model (for p = 2 and L = 3, STUG (2,3) model is illustrated
in Fig. 1).
Symbolically, we express the value of a STUG (p, L) process f;(m, n) as

14 L L
fimomy =" 3" 3" fijm—k,n—1) -9k, D) +asruG (m,n) (1)

j=lk=—LIl=—L

Here, astug,:(m, n) is referred to as the error term and is defined as

L L
astuc.m.n) =Y Y am—k.n—1)- ok, 1) )
k=—LI=—L
where a;(m, n) are spatially and temporary uncorrelated zero-mean Gaussian random
‘shocks’ with variance o2. Due to this assumption, STUG processes have zero means.
In Egs (1) and (2), ¢;(k, ) denote model coefficients that can be represented as

following coefficients matrices ®;, j =0, ..., p:
o, = 3)
¢;(L,—=L) ... ¢;(L,L)

Stationarity of a STUG process (spatial and temporal invariance of a distribution (Harvey,
1981; Box et al., 1994)) is determined by particular values of the model coefficients
¢ (k, ). Stationarity criteria can be derived from the theory of three-dimensional recur-
sive filters (Smirnov, 1999).

Covariance structure. Formulas for variance o2 of a STUG process f and the variance
Gazsr Ve of a model error asry G, (m, n) can be oétained using the theory of multidimen-

sional filtering. For two sets of samples from a stationary STUG process f, separated by
m and n sampling intervals in spatial directions and by a temporal shift of k sampling in-
tervals 7, auto-covariance coefficients ¢ r i (m, n) defined in Bennett (1979) are related
to each other through a Yule—Walker system defined in Pokrajac and Obradovic (2001b).
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Fig. 1. Response dependence on neighboring samples in a recent history for a spatial-temporal model on a
uniform grid with spatial and temporal orders p = 2, L = 3 (STUG(2, 3)).

In addition, autocorrelations prFr x(m, n) are defined as quotients of auto-covariance
coefficients crr x(m, n) and the variance O’sz (Bennett, 1979).

2.2. Identification

To determine the temporal order p and the spatial order L of a STUG process f,
autocorrelation and partial autocorrelation functions could be used as suggested by
Bennett (1979). This approach is based on non-spatial time-series identification (e.g.
Box et al., 1994) and requires a lot of time, advanced user skill, and cannot easily be
made automatic when employed on real-life data (Harvey, 1981). An alternative is to
apply model selection criteria based on summary statistics of residuals computed from
a fitted model (Wei, 1994).

Using the Akaike information criterion (AIC) (e.g. Shibata, 1989) identified spatial
and temporal orders of the observed process are chosen as ( p, L) pair that minimize
AIC(p, L) value, defined for a STUG (p, L) model as

AIC(p, L) = INlog2n(1 — R*) + pQL + 1)* )
where N is the total number of samples on which the model prediction and estimation
are performed, and

N o}
R2 — 1 _ astuG (5)

is the estimated coefficient of determination (Neter et al., 1985).

Since the AIC criterion can overestimate the order of autoregressive processes (Wei,
1994) and does not provide asymptotically the true model orders when the sample
size N approaches infinity (Rissanen, 1989), we also consider minimum-description
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length (MDL) criterion (Rissanen, 1989). Here, p and L are chosen to minimize the
M DL(p, L) value defined for a STUG model as

MDL(p,L) = Nlog(2n(1 — R?) + p(2L + 1)* log(N) (6)

Other residual-based selection criteria, such as the Bayesian Akaike infor-
mation criterion (Wei, 1994) and PHI criterion (Pukkila and Krishnaiah, 1988) can also
be adapted for identification of STUG models. The comparison of these and other selec-
tion methods (McQuarrie and Tsai, 1998; Ljung, 1999), as applied for spatial-temporal
process identification, will be the subject of a separate study.

2.3. Parameter Estimation

To estimate parameters of a STUG (p, L) model, we assume that samples are available
from up to N; successive temporal layers. Each temporal layer consists of Ny x N,
samples taken on a uniform A x A spatial grid that covers a spatial area of size (N, —
DA x (Ny — 1)A. However, the actual number of available examples and the choice
of estimation technique depend on the applied sampling strategy (Fig. 2).

In ordinary sampling, available data for model estimation consist of N, x Ny x N,
examples f;(m,n) wheret =1,...,N;;m=0,...,Ny —1;n=0,..., Ny — 1 (see
Fig. 2a). This sampling strategy is among the most common but it results in a high number
of examples that may be prohibitive in a real-world application. As an alternative that re-
duces the number of examples to a half, we suggest sampling schemes with temporal and
spatial interlacing. In temporal interlacing, instead of taking samples from all N; tem-
poral layers, even-index temporal layers are skipped (see Fig. 2b). However, in spatial
interlacing, the spatial sampling grid is at a twice-lower resolution in m and n directions
and adjacent temporal layers are complementary with samples taken at spatial-temporal
locations where the sum of indexes m, n, and ¢ has constant parity (see Fig. 2c). Observe
that the number of samples can also be reduced by an ordinary sampling with a smaller
spatial resolution. For a sampling interval 2A this is illustrated in Fig. 2(d). Ordinary
sampling with the reduced sampling resolution will not be discussed in the rest
of this study since in this case modeling is the same as with data ordinarily sampled on
a sampling interval A.

Model parameters are estimated only for non-boundary samples f;(m, n) where
all relevant neighbors (within a 2LA x 2LA square neighborhood and from up to
p temporal layers in the past) exist among available examples. Generally, parameter
estimation is possible only if the set of non-boundary samples is not empty, i.e. when
Ny, Ny > 2L and N; > p.

2.3.1. Ordinary Sampled Data

Model parameters on ordinary sampled data can be estimated using the Yule—Walker
method (Box et al., 1994) and least squares (LS) estimation (Neter et al., 1985).

In the Yule—Walker method, parameter values are obtained by estimating process
covariances cpr i (m, n) (by averaging products fi'_x(m’ —m,n’ —n) - fir(m’, n’) for
all values of m’, n’ and k’ where both corresponding samples are available) and solving
a system of Yule—Walker equations.

We consider two LS techniques to provide consistent estimation (Wei, 1994) of
STUG model parameters. The averaged LS estimates STUG model coefficients for
each non-boundary location and averages these location-wise estimates. In contrast, in
a non-averaged LS an estimate is computed directly from a single regression system.
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(a) ®) C) (D

Fig. 2. An illustration of various sampling techniques for spatial-temporal data on a uniform grid;
(a) Ordinary sampling (with no change in sampling resolution). (b) Sampling with temporal interlacing.
(c) Sampling with spatial interlacing. (d) Ordinary sampling with the reduced resolution.

The Yule—Walker estimation is doable on data with shorter observation history in
comparison to methods based on least-square estimation (the minimal number of tempo-
ral layers N; i, necessary to estimate the STUG model using the Yule-Walker, averaged
and non-averaged LS methods, is p + 1, p + L + 1)’p and p +
[QL+1)2p/((Ny—2L)- (Ny—2L))], respectively, (Pokrajac and Obradovic, 2001b)).
At the same time the Yule-Walker estimation is asglm6pt0tically faster
compared to averaged and non-averaged LS estimation with O (p*L® + pL?N, NyN;)

vs. O(p*LON Ny + p?L*N,NyN;) and O(p3L® + p>L*N N, N;) costs.
2.3.2. Temporal Interlacing

When estimated on data with temporal interlacing, model (1) on processes with temporal
order p = 1 can be represented as a constrained STUG (1, 2L) model:

2L 2L
fimomy=>"" " fiatm—k,n—1)-¢{k 1) +af (m,n) (7)
k=—2L[1=-2L
where
L L
pf.= > > k=K. 1=1)-$1(K.1) ®)
K=—Ll'=—L

L L
afmn)y= > > ¢ok ') -asru.—1(m —k.n = 1) + asruG.((m, n)
K=—LI'=—L

®

Non-linear parameter estimation of the model (7)—(9) using Gauss—Newton regression
is discussed in Pokrajac and Obradovic (2001b). Particularly, the variance of equivalent
model errors af(m, n) is shown to be larger than the variance of the original STUG
model error term asryg,:(m, n). Therefore, models estimated on data with temporal
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interlacing can have lower prediction accuracy as compared to the direct modeling using
Eq. (1) on ordinary sampled data.

2.3.3. Spatial Interlacing

When parameters are estimated on spatially interlaced data, only samples f;(m, n)
where the sum of spatial and temporal indices m, n and ¢ have a constant (even) parity
are available for model estimation. Hence the model (1) becomes

femony =Y "N fimjm—k,n—=1) - ¢k, 1) +a; (m, n) (10)
Jj=L..p
—L' <k, <L
—L' <k+l<L
Jj+k+1even

where a current sample value is considered as influenced by samples within a Manhat-
tan distance L'A from the sample position, and the error term a;(m, n) incorporates
unavailable samples. The model (10) can be easily estimated using a non-averaged
least-squares optimization. However, if model coefficients do not satisfy the condition

¢k, 1) =0, for j +k+1 odd (11)

the model estimated on spatially interlaced data using Eq. (10) may have prediction
accuracy significantly smaller than the accuracy obtained by the model (1) estimated on
ordinary sampled data.

2.4. Forecasting

For ordinary sampling and temporal interlacing, the forecasting on the subsequent tem-
poral layer N; 4 1 can be performed as

p L L

Frimmy =" %" 3 fyai—jm—kon—=1) -k, 1) (12)

j=lk=—LI=—L

on locations that satisfy m = L,..., Ny — L;n = L, ..., Ny — L. With spatially
interlaced samples, forecasting is performed as

Frsrmny =3 %" fyi—jlm —kon=1) - (k. 1) (13)
j=L..p
—L' <k, <L
—L'<k+i=L’
Jj+k+1even

on the non-boundary locations where the sum m + n + N; + 1 of indexes is even.
Analogous to non-spatial time-series (Box et al., 1994), the estimated prediction er-

ror 6025TU  and process variance &]% can be computed by averaging point-wise errors

(fN,H (m,n) — fn,+1(m, n))? and squared responses fy,+1(m, n)? through all loca-
tions at the time instance N; 4+ 1 where the forecasting is performed.

Forecasting accuracy of particular models on a specific dataset will be compared
using the coefficient of determination R? estimated as Eq. (5), where the larger scores
correspond to the more accurate prediction with 1 corresponding to a perfect and O to a
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trivial mean predictor. Considered prediction models do not contain an intercept, so R>
can be negative (Davidson and MacKinnon, 1993). In the experiments with synthetic data
(Section 3) when true values of model coefficients ¢;(k, [) are known, the coefficient

of determination will also be compared to its theoretical maximum thheormm ;- This
optimal value can be computed by using Eq. (5), where the estimated variances of a
STUG series and the estimated model error are replaced by their theoretical values

calculated as functions of known model coefficients ¢; (k, ).

3. Experimental Results on Simulated STUG Series

Here we present the main results of experiments with simulated STUG series (see
Pokrajac and Obradovic, 2002, for more detailed results).

3.1. Experiment Set-Up

Experimental data consisted of N; + 1 temporal layers, each with N, x N, spatial
points on a uniform grid. Models were estimated using data from the first N, temporal
data layers. Prediction accuracy was measured by the coefficient of determination (R?),
estimated using Eq. (5) on the N; + 1th temporal layer. Unless specified otherwise,
each experiment was repeated 10 times (each time on other simulated data that followed
the specifications) and the estimated mean and standard deviation of R? from these

repetitions were reported in the form mean(IA%2) + std(fi’z).

To explore properties of the proposed methods on data collected using ordinary
sampling and temporal and spatial interlacing, we simulated eight different STUG (p, L)
series. Using coefficient matrices @1, ®, shown in Table 1, we varied properties of
simulated spatial-temporal series. In addition, for each series, we independently varied
the matrix ®¢ that determines correlation properties of a STUG model error (Pokrajac
and Obradovic, 2001b). Unless otherwise specified, presented results were obtained for
spatially uncorrelated model errors, corresponding to

1, ifk=1=0

¢o(k, ) = { 0, otherwise e

The stationarity of simulated STUG series was verified using the stability crite-
ria (Pokrajac and Obradovic, 2001b). Simulated STUG series S1-S3 had spatial and
temporal orders both equal to one. Series S4 and S5 were representatives of STUG
(p = 1, L = 2) series. With the same values of non-zero coefficients in @1, the series
S4 and S5 had a different correlation structure, which influenced the prediction accuracy
achievable through the considered methods. The series S6 was an example of a STUG
(p = 1, L = 3) series with the coefficient matrix structure very similar to that of series
S4. Unlike series S1-S6, in series S7 and S8 the current response values depended on
the response from the two previous time layers (p =2, L = 1).

Initially, we compared three proposed methods —the Yule—Walker estimation, non-
averaged least-squares, and averaged least-squares estimators—on ordinary sampled
data. To determine the influence of the sample size on estimation quality, we gradually
increased the size of a spatial grid specified by Ny, N, for a series with a short time
history, and compared prediction accuracy using models obtained by the three proposed
methods. The accuracy was better and the standard deviation of accuracy in repeated
experiments was smaller with larger spatial grid sizes. Model accuracy did not change
significantly when N, N, were greater than 30 and became practically constant with
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Table 1. Coefficient matrices for simulated STUG series S1-S8

S5

s4

S3

S2

S1

0
0
15
0
0

15

—.13
—-.24
—.11

_21
4
23

.14

-.22
12

"l

S8

S7

S6

—o— oOOoOo

canc “S9°
: |
=T ococo
[
—
—
ISE=s
—e= I I
oo coco
—o— QoA
’ ’ | |
[
_ [
(=] ~
o
i

S oo

(=)

0
0
15
0

0
0
0
0
0
0

377



378 D. Pokrajac et al.

Ny = N, = 50. Therefore, the subsequent experiments were performed only on a
50 x 50 spatial grid.

The accuracy of spatial-temporal models estimated by the averaged LS was con-
sistently lower than the accuracy of non-averaged LS models that were estimated with
significantly fewer examples. Since the Yule—Walker estimation provided comparable
or better results than non-averaged LS with considerably smaller computational time
requirements (see Section 2.3.1), results of further experiments on ordinary sampled
data are shown only for the Yule-Walker method.

In the rest of this section each simulated series consisted of six temporal layers
(N; =5), corresponding to a typical temporal span of real-life spatial-temporal data in
agriculture (Hoskinson et al., 1999) (see also Section 4 of this paper).

3.2. Model Identification

Five identification experiments were repeated per series and the results were averaged.
Each experiment consisted of simulation of the specified series and subsequent ap-
plication of AIC (Eq. 4) and MDL (Eq. 6) criteria on simulated data. Both AIC and
MDL selection criteria provided the 100% correct model identification when series S4—
S6 were identified. Moreover, by the MDL criterion, series S2 and S3 were correctly
identified in all five experiments, while the AIC criterion provided correct identifica-
tion in 60% and 80% cases, respectively. Identification was difficult when correlations
|pFF k(m,n)| for |m|, |n| > 1 and time delay k = 1 were significant (e.g. on series S1
we achieved 20% correct identification using AIC and 40% with MDL criterion). Also,
when identifying STUG (p = 2, L = 1) series (57, S8) both selection criteria were
conservative in providing temporal order (p = 1) smaller than the actual.

Influence of additive measurement error. In real-world applications, spatial-
temporal data are frequently contaminated with noise, due to data acquisition or to the
nature of the observed series. To investigate identification of STUG (1, 1) models in the
presence of a measurement error, we repeated identification experi-
ments with a controlled amount of additive uncorrelated Gaussian noise (Papoulis,
1991), with variance ranging from 10% to 100% of the model variance o2.
Generally, the higher measurement error implied the less accurate model identifica-
tion, especially if the identification accuracy in the absence of measurement errors was
already low. With measurement error variance of 10% ajzc series S1 was correctly iden-
tified in only 1 out of 10 attempts (both AIC and MDL experiments accounted), while
with the error variance of 100% 0% neither criterion provided a correct identification.

Identification of series with spatially correlated model errors. Experimental results
suggest that the spatial correlation of model errors, introduced by coefficients ¢ (k, I)
different from values at Eq. (14), may have a negative effect on model identification.
When errors were highly spatially correlated the selection criterion tended to recognize a
higher temporal order p while underestimating the spatial order L. This can be explained
by behavior of estimated autocorrelations prr x(m,n) for samples shifted in time
k=1,2).

3.3. Parameter Estimation and Forecasting

Experiments on parameter estimation and prediction accuracy were performed assuming
the correct orders of estimated STUG series had been identified.
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Ordinary sampling. When the Yule—Walker estimation was applied to ordinary sampled
simulated STUG series S1-S8, we were always able to obtain a useful prediction model
(R2 > () with small variation in prediction accuracy (std (R 2) < 0.02), as reported

at Table 2. The accuracy was close to the theoretical optimum obtained by computing
2
theoretical® . . Lo
An introduction of measurement error led to decrease in the prediction accuracy.

The higher error resulted in the smaller accuracy. The average estimated coefficient of
determination for series S1, which was 0.64 in the absence of noise (Table 2), decreased
to 0.55 in the presence of 10% noise and was merely 0.20 when the variances of noise
and of the STUG series were equal (100% noise) with standard deviation of estimated

R? smaller than 0.02. Similar results were obtained for series S2 and S3.
The presence of spatially correlated model error introduced by values of the co-

efficients ¢g(k, /) different from Eq. (14) decreased theoretical prediction accuracy

R?h coretical- TOT such data properties, the estimated mean of prediction accuracy R?

decreased while the variance of prediction accuracy slightly increased, as anticipated
from the identification results discussed in Section 3.2. Hence, although we were able

to achieve R? close to the theoretical optimum, the prediction accuracy in the presence
of a high model error correlation may be unsatisfactory.

Temporal interlacing. Model estimation was performed using the Gauss—Newton re-
gression with 100 iterations on series S1-S8. Ten randomized realizations were gen-
erated for each simulated spatial-temporal series, and for each realization the model
estimation and the model evaluation were repeated 10 times due to a stochastic charac-
ter of the estimation technique, giving a total of 100 estimation experiments.

For series S1 and S2 useful predictors were obtained with prediction accuracies
close to those obtained with ordinary sampled data, as shown in Table 2. However,
using the proposed method on data with temporal interlacing, no useful prediction

models could be estimated for series with a relatively small thh coretical (S3), or spatial

orders L > 1 (§4-S6) where prediction was incorrect (IAQ2 < 0), presumably due to an
inadequate initialization of the applied iterative estimation procedure. In addition, since
the estimation method is designed for series with temporal order p = 1, series S7 and
S8 could not be properly forecasted.

When anon-correlated measurement error was present, the proposed method resulted
in useful prediction models for STUG (1, 1) series on temporal interlaced data if models
on ordinary sampled data had at least moderate prediction accuracy. Thus, for series S1,
accuracy on temporal interlaced samples was close to or sometimes even better than
the accuracy obtained using ordinary sampled data. On data with 10% measurement
error variance, models on temporal interlaced data resulted in R? 0f 0.53 £ 0.09, while
with 100% measurement error variance we achieved R2 of 0.17 # 0.04. Similar results
were obtained for series S2. In contrast, on series S3—S8 where prediction accuracy
was already low in the absence of the measurement error, no useful model on temporal
interlaced data could be estimated when the measurement error existed.

The presence of spatially correlated model errors within temporal interlaced samples
for the majority of examined series had similar effects as in the case of ordinary sampled
data, where the forecasting accuracy was significantly reduced due to highly correlated
model errors.

Spatial interlacing. On spatially interlaced data, we estimated model (10) using non-
averaged least-squares (see Section 2.3.3). For all series, estimated models were useful

for forecasting (R% > 0, see Table 2). When the spatial or the temporal order of a
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simulated series was larger than 1 (series S4—S8) models trained on spatially interlaced
data outperformed those on temporal interlaced data, approaching in some cases the
accuracy achieved on ordinary sampled data (Table 2).

In the presence of uncorrelated measurement errors or spatially correlated model
errors, the models estimated on spatially interlaced data behaved similarly to those esti-
mated on ordinary sampled data. When uncorrelated measurement errors were present,
the prediction accuracy decreased proportional to the variance of the additive measure-
ment error. In the presence of correlated model errors, the accuracy of the proposed
model, Eq. (10), significantly dropped but the proposed estimation technique still pro-
vided useful forecasting models.

4. Experiments on Real-Life Data

The applicability of the proposed method on real-life datasets was evaluated on agri-
cultural data obtained from Idaho National Engineering and Environmental Laboratory
(INEEL) field research (Hoskinson et al., 1999; Pokrajac et al., 2002, in press). The
dataset consisted of 12 soil attributes (concentrations of boron (B), copper (Cu), iron
(Fe), potassium (K), manganese (Mn), nitrogen (N), phosphorus (P), sulfur (S), and zinc
(Zn) and soil salinity (sa), cation exchange capacity (CEC), and pH value (pH) in the top
1 foot (30.5 cm) of soil) provided on a uniform spatial grid of 10.66 x 10.66 m? covering
the total area of 60.04 ha, during four consecutive years (1995-1998). Within each year,
soil attributes were sampled several times at time instances that corresponded to specific
phases in the crop development (fertilization and planting, growing season, just prior to
harvesting). In this paper, for each attribute we considered two spatial-temporal series,
corresponding to the summer and fall seasons. For all attributes, an individual temporal
data layer corresponded to data collected in a specified year and season and consisted
of 84 x 65 examples.

Prior to the application of our methods to a particular attribute, the mean values
were estimated for each temporal layer and subtracted from corresponding sample val-
ues, to obtain data that satisfy the zero-mean property of the proposed STUG model
(see Section 2.1). Observe that a similar normalization procedure has been applied
by Wikle and Cressie (1999). This was followed by estimation of spatial and temporal
statistics of the normalized data. The parameters of estimated spatial variograms (Chiles
and Delfiner, 1999) expressed significant non-stationarity in the observed period of four
years, which prevented the application of geostatistical prediction methods (Posa, 1995).
On the other side, in spite of significant values of computed temporal autocorrelations
prrk(0,0), k =1, 2, 3 for the same season samples of attributes collected in different
years, we were not able to obtain satisfactory prediction results using non-spatial meth-
ods due to a small number of available temporal layers (insufficient temporal history)
and non-stationarity of data.

For each attribute/season combination, STUG models were trained on samples
from years 1995-1997 and tested on data from the consecutive year: 1998. As in
Section 3, prediction accuracy was evaluated through estimated coefficient of deter-

mination R2 (Eq. 5). To directly compare the influence of the order selection, we
chose to evaluate STUG models with various values of spatial and temporal orders,
instead of performing model identification. For ordinary sampling and spatial inter-
lacing we varied both temporal and spatial orders (such that p = 1,2 and L (or
L’ for spatial interlacing) = 0, 1,2, 3) while in the case of temporal interlacing we
only estimated STUG models with temporal order p = 1 (for which specifically the
estimation procedure in Section 2.3.2 has been developed). For ordinary sampling as
well as for spatial interlacing, the application of models with L = 0 (corresponding
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to non-spatial modeling) or L’ = 0 led to accuracy similar to a trivial mean predictor.
For temporal interlacing, modeling with L = 0 or L > 1 consistently failed to provide
useful predictors.

When modeling was applied on ordinary sampled data, the proposed technique was

capable of providing useful prediction models (R? > 0)on a relatively small subset
of observed attributes/seasons. Overall, the best performance was achieved using the
STUG (p = 1, L = 2) model and the highest predictability out of all attributes was
obtained for Mn in summer, with R? = 0.24. Except for pH, where acceptable prediction
accuracy (with best R? in the range of 0.14—-0.22) was obtained for summer and fall, the
proposed model could not provide good prediction consistently for both seasons. Our
hypothesis is that the predictability of attributes in different seasons was unstable due to
the diverse properties (temporal and spatial correlation) of various unobserved factors
that may have been involved in distinct phases of plant development. In addition, we
should observe that in spite of the limited overall prediction quality, there were parts
of the field where the proposed method did perform well (Pokrajac et al., 2002, in
press), which indicates the spatial non-stationarity of the analyzed dataset and potential
improvements that might be achievable by heterogeneous prediction models (Pokrajac
et al., 1999).

The application of models estimated on temporal interlaced data could provide pre-
diction with the coefficient of determination up to 0.32 (for pH in fall). Prediction
using temporal interlaced data, in addition to this attribute/season combination, over-
performed modeling on ordinary sampled data on salinity in both observed seasons (R>
was 0.07), and on P in fall (R? of 0.28), while both models performed similarly on P
and pH in summer (R? in the range of 0.14-0.15). Generally, predictions in the fall
were better than in the summer. Also, temporal interlacing was able to provide useful
prediction models (R? in the range of 0.14-0.28) for the attribute/season combina-
tions (Fe and K in fall) where autocorrelation prr i (0, 0) increases with the temporal
lag k.

Modeling on s;z)atial interlaced data resulted in rather high prediction accuracy,
where estimated R“ ranged ug to 0.99 (for S in summer). For both seasons, predic-
tion was good for N (best R“ was in the range of 0.80-0.87) and B (best R% 0.51
and 0.84). For the summer season, besides S, high prediction accuracy was achieved
for Fe and salinity (R? in the range of 0.67-0.93). For each attributes/season combi-
nation where modeling on spatial interlaced data provided a useful prediction, it also
outperformed modeling on ordinary sampled data and modeling with temporal inter-
lacing. We hypothesize that by using spatial interlacing we were able to exploit the
spatial correlation of samples taken at the same time instance without the risk of con-
sidering many almost identical samples (as we would in the case of ordinary sampled
data where two immediate neighbors have a high degree of similarity). Jagger et al.
(2002) made similar hypotheses when concluding that their estimation procedure failed
to converge due to high spatial correlations of neighborhood samples. For the majority
of cases, there was no significant improvement of model performance due to adoption
of higher spatial (L’ > 1) and temporal (p > 1) orders. Our hypothesis is that here
potential benefits due to the application of more complex models were offset by prob-
lems due to estimation of the higher number of parameters (caused by spatial
non-stationarity of the data). However, we should point out that the best results for
certain attributes were achieved with higher spatial or temporal orders (p = 1 and
L’ = 3, for B and Mn in fall; p = 2, L’ = 1 for Fe in summer and CEC in fall),
which can be an impetus for a follow-up analysis of these attributes by soil science
specialists.
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5. Conclusions

We have provided a theoretical foundation and experimental evaluation for prediction in
spatial-temporal data with a short history using spatial-temporal auto-regressive models
on uniform grid (STUG) where the response value is influenced by its pre-specified
spatial and temporal neighborhood.

In the theoretical part of the study, we considered definition, model identification,
and covariance structure of the proposed data model. In addition to ordinary sampling
where all samples from the observed spatial-temporal grid are available, we investigated
estimation and forecasting techniques on data sampled with the density reduced along
either temporal or spatial directions.

The validity of the proposed estimation techniques was first evaluated on synthetic
data that was generated to satisfy STUG model assumptions, with prediction accuracy
measured through the average coefficient of determination (R?). On ordinary sampled
data, the techniques based on information theoretic criteria have been shown capable of
providing acceptable model identification and we achieved prediction accuracy close to
the theoretical maximum in spite of a relatively small number of temporal data layers
available for model estimation. In the presence of spatially correlated model errors or
measurement errors, the identification was more challenging but the proposed prediction
methods were still able to approach the optimal performance. Sampling with spatial
interlacing was more appropriate for synthetic data with higher spatial or temporal
orders. In contrast, on data where the response at a sampling location depended only on
its immediate neighbors in space and the immediate predecessors in time, models on
temporal interlaced data were superior to those on spatial interlaced data and, in fact,
these results approached the accuracy on ordinary sampled data.

To verify the applicability of the proposed method to real-life datasets with a short ob-
servation history, we performed forecasting experiments on agricultural spatial-temporal
data consisting of 12 attributes observed in two seasons through four consecutive years.
Although modeling on ordinary sampled data was capable of providing useful predic-
tions only on a relatively small subset of observed attributes/seasons, significant accuracy
improvements were obtained when sampling density was reduced by spatial interlacing.
While we still do not have the complete explanation for such phenomena, our exper-
imental results clearly indicate the appropriateness of the proposed STUG model for
forecasting data with a short temporal span.

Our work in progress includes extensive empirical comparison of the proposed
STUG methods with the alternative prediction techniques on spatial-temporal data with
short observation history where theory suggests the advantage of the STUG modeling.
Also, we emphasize the importance of additional experimentation on real-world datasets
outside of agriculture, including medical data, 3-D image sequences and remote sensing
data. Further theoretical development of the proposed techniques includes their adapta-
tion for forecasting on distributed spatial-temporal datasets. In addition, supplementary
research is necessary to develop novel model identification techniques and to simplify
the stationarity criteria for spatial-temporal modeling explored in this study.

Acknowledgements. The authors are thankful to Dragan Obradovic, Aleksandar Lazarevic, and
Yelena Quigley for discussing Kalman filters, providing useful comments and help with style
polishing. In addition, the authors express their gratitude to the anonymous reviewers whose
comments significantly improved the structure and overall quality of the paper. Work was in part
supported by INEEL LDRD Program under DOE Idaho Operations Office Contract DE-ACO07-
991ID13727.



384 D. Pokrajac et al.

References

Addink EA, Stein A (1999) A comparison of conventional and geostatistical methods to re-
place clouded pixels in NOAA-AVHRR images. International Journal of Remote Sensing 20(5):
961-977

Bennett RJ (1979) Spatial time series. Pion, London

Box G, Jenkins G, Reinsel G (1994) Time series analysis. Prentice-Hall, Englewood Hills, NJ

Brown RG, Hwang PYC (1993) Introduction to random signals and applied Kalman filtering (with Matlab
exercises and solutions) (3rd edn). Wiley, New York

Buxton BE, Pate AD (1999) Estimation of joint temporal-spatial semivariogram. In Proceedings of fifth
international geostatistics congress, Wollongong, Australia, September 1996, pp 150-161

Campling P, Gobin A, Feyen J (2001) Temporal and spatial rainfall analysis across a humid tropical catchment.
Hydrological Processes 15(3):359-375

Carrat F, Valleron A-J (1992) Epidemiologic mapping using the ‘Kriging’ method: application to an influenza-
like illness epidemic in France. American Journal of Epidemiology 135:1293-1300

Chiles J, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

Cressie N, Majure JJ (1997) Spatio-temporal statistical modeling of livestock waste in streams. Journal of
Agricultural, Biological and Environmental Statistics 2(1):24-47

Davidson R, MacKinnon JG (1993) Estimation and inference in econometrics. Oxford University Press, New
York

Denman KL, Freeland HJ (1985) Correlation scales, objective mapping and a statistical test of geostrophy
over the continental shelf. Journal of Marine Research 43:517-539

Harvey AC (1981) Time series models. Wiley, New York

Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University
Press, Cambridge, UK

Haykin S (1996) Adaptive filter theory (3rd edn). Prentice-Hall, Englewood Cliffs, NJ

Hoskinson RL, Hess JR, Alessi RS (1999) Temporal change in the spatial variability of soil nutrients. In
Proceedings of 2nd European conference on precision agriculture, Odense, Denmark, pp 61-70

Huang H-C, Cressie N (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter.
Computational Statistics and Data Analysis 22:159-175

Jagger T, Niu X-F, Elsner JB (2002) A space-time model for seasonal hurricane prediction. Inter- national
Journal of Climatology 22:451-465

Jones PD, Raper R, Bradley RS, et al. (1986) Northern hemisphere surface air temperature variations: 1851—
1984. Journal of Climate and Applied Meteorology 25:161-179

Kafatos M (1999) Data access, querying, analysis and data mining in a distributed framework for earth system
science support. In Proceedings of Geocomputation *99, Fredericksburg, VA, CD-ROM, paper 022

Kerry KE, Hawick KA (1998) Kriging interpolation on high-performance computers. In Proceedings of
high-performance computing and networks (HPCN) Europe ’98, Amsterdam, 1998, also available on
http://acsys.adelaide.edu.au/reports/035/abs-035.html

Kokaram A, Godsill S (1996) A system for reconstruction of missing data in image sequences using sampled
3D AR models and MRF motion priors. In Proceedings of European conference on computer vision 1996,
Springer Verlag, pp 613-624

Lindkvist L, Lindqvist S (1997) Spatial and temporal variability of nocturnal summer frost in elevated complex
terrain. Agricultural and Forest Meteorology 87(2-3):139-153

Ljung L (1999) System identification: theory for the user (2nd edn). Prentice-Hall, Englewood
Cliffs, NJ

Mardia KV, Goodall C, Redfern C, et al. (1998) The kriged Kalman filter. Test 7(2):217-252

McQuarrie ADR, Tsai C-L (1998) Regression and time series model selection. World Scientific, Singapore

Megalooikonomou V, Ford J, Li S, et al. (2000) Data mining in brain imaging. Statistical Methods
in Medical Research 9(4):359-394

Neter J, Waserman W, Kuther M (1985) Applied linear statistical models (regression, analysis of variance,
and experimental Designs) (2nd edn). Richard D. Irwin, Homewood, IL

Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer, Boston, MA

Papoulis A (1991) Probability, random variables, and stochastic processes (3rd edn). McGraw-Hill, New York

Pokrajac D, Fiez T, Obradovic D, et al. (1999) Distribution comparison for site-specific regression modeling
in agriculture. In Proceedings of 1999 international joint conference on neural networks, Washington,
DC, CD-ROM, No. 346, Section 10.9

Pokrajac D, Obradovic Z (2001a) Improved spatial-temporal forecasting through modeling of spatial residuals
in recent history. In Proceedings of first international SIAM conference on data-mining, Chicago, 2001,
CD-ROM, No. 9

Pokrajac D, Obradovic Z (2001b) Spatial-temporal autoregressive model on uniform sampling
grid. Technical report CIS TR 2001-05, Computer and Information Sciences Department,



Modeling Spatial-Temporal Data with a Short Observation History 385

College of Science and Technology, Temple University, Philadelphia, PA, also available on
http://www.ist.temple.edu/pokie/techreport2001.ps

Pokrajac D, Obradovic Z (2002) Experiments with spatial-temporal autoregressive models on uni-
form grid. Technical report CIS TR 2002-01, Computer and Information Sciences Department,
College of Science and Technology, Temple University, Philadelphia, PA, also available on
http://www.ist.temple.edu/pokie/techreport2002.ps

Pokrajac D, Hoskinson RL, Lazarevic A, et al. (in press) Spatial-temporal techniques for prediction and
compression of soil fertility data. In Proceedings of 6th international conference on precision agriculture,
Minneapolis, MN

Posa D (1995) A simple description of spatial-temporal processes. Computational statistics and Data Analysis
15(4):425-437

Pukkila TM, Krishnaiah PR (1988) On the use of autoregressive order determination criteria in univariate
white noise tests. IEEE Transactions on ASSP 36(5):764-774

Rissanen J (1989) Stochastic complexity in statistical enquiry. Series in Computer Science 15, World Scientific,
Singapore

Robert PC (ed) (1999) Proceedings of 4th international conference on precision agriculture. ASA-CSSA-
SSSA, Madison, WI

Roddick JF, Hornsby K, Spiliopoulou M (2001) An updated bibliography of temporal, spatial and spatio-
temporal data mining research. In Roddick JF, Hornsby K (eds). Lecture Notes in Artificial Intelligence
2007, Springer, Berlin, pp 147-164

Rouhani S, Myers DE (1990) Problems in space-time kriging of geohydrological data. Mathematical Geology
22(5):611-623

Shibata R (1989) Statistical aspects of model selection. In Willems JC (ed). From data to model. Springer,
Berlin, pp 215-240

Smirnov A (1999) Processing of multidimensional signals. Springer, Berlin

Stroud J, Miller P, Sansé B (1999) Dynamic models for spatio-temporal data. Technical report working paper
99-20, Institute of Statistics and Decision Sciences, Duke Unversity, Durham, NC

Wei WW (1994) Time series analysis, univariate and multivariate methods. Addison-Wesley, Redwood City,
CA

Whelan BM, McBratney AB, Viscarra Rossel RA (1996) Spatial prediction for precision agriculture. In Robert
PC, Rust RH, Larson WE (eds). Proceedings of 3rd international conference on precision agriculture,
ASA-CSSA-SSSA, Madison, W1, pp 331-342

Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika
86:815-829

Wikle CK, Milliff RF, Nychka D, et al. (2001) Spatio-temporal hierarchical Bayesian nodeling: tropical
ocean surface winds. Journal of the American Statistical Association Applications and Case Studies
96(454):382-397

Author Biographies

Dragoljub Pokrajac received a BS degree in Electrical engineering and an MS
degree in Telecommunications from the University of Nis, Serbia and Montene-
gro, in 1993 and 1997, respectively. From 1998 to 2000, he attended a PhD
program in Computer Science at Washington State University, Pullman, WA. He
received a PhD degree at Temple University, Philadelphia, PA, in 2002. He is
currently an adjunct professor at Temple University. Dr Pokrajac has authored or
co-authored one book, six journal papers and numerous conference papers and
is a co-author of one patent application. His research interests include spatial-
temporal data mining in brain imaging, remote sensing, and precision agriculture,
as well as machine learning, statistics and neural networks.




386

D. Pokrajac et al.

Reed Hoskinson received a bachelor’s degree with majors in Physics and Math-
ematics from the University of Iowa, and a master’s and PhD in Ecology from the
University of Minnesota, and has worked at the Idaho National Engineering and
Environmental Laboratory (INEEL) for 18 years. Reed has worked in scientific
programming for over 35 years, including modeling of agricultural ecosystems
and statistical analyses of ecological data, and development of major software
systems. He was one of the founders of the INEEL Spatial Analysis Laboratory
for GIS applications, and later was the manager of the laboratory. Reed has been
a Principal Investigator for INEEL precision agriculture research for the past
10 years. He has over 35 agriculture-related publications, and eight agriculture-
related patents and patent applications.

Zoran Obradovic is the Director at the Center for Information Science and Tech-
nology and a Professor of Computer and Information Sciences at Temple Univer-
sity, Philadelphia. His research interests focus on solving challenging bioinfor-
matics, biomedical, geoinformation sciences and computational finance problems
by developing and integrating data mining and statistical learning technology for
an efficient knowledge discovery at large databases. Funded by NSF, NIH, DOE
and industry, during the last decade he has contributed to about 130 refereed
articles on these and related topics and to several academic and commercial soft-
ware systems. He is/was an editorial board member at the Multiple Valued Logic,
Journal of Computational Intelligence in Finance and the IEEE Transactions on
Education and has organized several journal special issues and workshops. For
more details see www.ist.temple.edu/~zoran.

Correspondence and offprint requests to: Dragoljub Pokrajac, Delaware State University, Computer Science
Department, 1200 N Dupont Hwy, Dover, DE 19904, USA. Email: pokie@ist.temple.edu



