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Abstract. The proposed feature selection method aims to find
a minimum subset of the most informative variables for classifi-
cation/regression by efficiently approximating the Markov Blanket
which is a set of variables that can shield a certain variable from the
target. Instead of relying on the conditional independence test or net-
work structure learning, the new method uses Hilbert-Schmidt Inde-
pendence criterion as a measure of dependence among variables in
a kernel-induced space. This allows effective approximation of the
Markov Blanket that consists of multiple dependent features rather
than being limited to a single feature. In addition, the new method
can remove both irrelevant and redundant features at the same time.
This method for discovering the Markov Blanket is applicable to both
discrete and continuous variables, whereas previous methods cannot
be used directly for continuous features and therefore are not ap-
plicable to regression problems. Experimental evaluations on syn-
thetic and benchmark classification and regression datasets provide
evidence that the new feature selection method can remove useless
variables in low and in high dimensional problems more accurately
than existing Markov Blanket based alternatives.

1 INTRODUCTION

Selecting appropriate features is an important step in the data min-
ing process whose objectives include providing more accurate and
more efficient prediction as well as better understanding of data dis-
tribution. Feature selection approaches can be broadly categorized
into a wrapper model [6, 7, 10] and a filter model [12, 14]. The
wrapper model combines the learning method and feature selection
method, which is computationally expensive and is often impractical
for datasets with a large number of features. The filter model sep-
arates the feature selection from the learning process such that the
results of the feature selection step are independent of the learning
algorithm and are used for model learning in a follow up step.

This paper focuses on the filter model where information theory is
used to find a minimum subset of the most informative features by
searching the so called Markov Blanket. The Markov Blanket of a
variable is regarded as a set of variables which can shield this vari-
able from other variables. The key idea of feature selection using the
Markov Blanket is to eliminate a feature for which we can find the
Markov Blanket in the remaining features. Such a feature selection
process is demonstrated to result in a theoretically optimal set of fea-
tures [4]. Feature selection methods using the Markov Blanket can
be categorized into test-based, network structure learning-based and
approximate methods.
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Existing test-based Markov Blanket feature selection methods
[8, 16] are all using a *Growing - Shrinking’ (GS) [5] approach for
discovering the Markov Blanket. In the growing phase of this ap-
proach, all features belonging to the Markov Blanket and possibly
some false features enter the Markov Blanket. Then, in the shrinking
phase, all features in the current Markov Blanket are checked again
to remove the false features introduced at the growing phase. In both
phases, conditional independence testing is used to judge if a feature
belongs to the Markov Blanket or not. However, such conditional
independence test-based method requires that the sample has a large
number of instances to ensure the reliability of the independence test.
Another limitation of test-based feature selection algorithms is that
they are usually too aggressive in removing features [11].

In a structure learning-based method, a heuristic Bayesian net-
work structure learning is performed and then the Markov Blanket
is discovered corresponding to the learned structure [11]. In such an
approach, to restrict search space, two heuristics (called ’sparse can-
didate’ and ’screen-based’) are proposed for selecting the promising
candidates. However, the Bayesian network structure is learned us-
ing heuristic methods as the optimization here is a very hard problem.
These heuristics combine locally optimal structures, which results in
the learned structure that is not a global optimal solution. An addi-
tional limitation of such approaches is that learning network structure
could be computationally prohibitively expensive in the presence of
a larger number of features.

In an approximate Markov Blanket method called FCBFE, the re-
dundant features were eliminated in a potentially relevant subset ob-
tained by excluding the irrelevant features based on the correlation to
the target variable [15]. In this approach, symmetrical uncertainty is
used to measure the relation between variables. For a pair of features,
FCBF measures their symmetrical uncertainty and also the symmet-
rical uncertainty between either of them and target variable. If the
measured value between these two variables is bigger than the mea-
sured value between one of them and the target variable, the variable
with larger symmetrical uncertainty to the target is regarded as the
Markov Blanket of the other variable which is removed. FCBF as-
sumes the Markov Blanket of a feature has only one feature, since
it is based on pairwise comparison. Such an approach is often too
restrictive in practical situations as illustrated in the results section
of this article. In addition we found that FCBF is too aggressive in
eliminating features, since it gives too much priority to dominant fea-
tures.

The feature selection method proposed and evaluated in this study
approximates the Markov Blanket without relying on the conditional
independence test or network structure learning. This is achieved
by efficiently measuring dependence among variables according to
Hilbert-Schmidt Independence Criterion and using this to find effec-



tively an approximation of the Markov Blanket that consists of mul-
tiple dependent features rather than being limited to a single feature
as in FCBF [15]. In addition, the new method can remove both irrele-
vant and redundant features at the same time. An additional strength
of this method for discovering the Markov Blanket is that it is ap-
plicable to both discrete and continuous variables, whereas previous
methods cannot be used directly for continuous features and targets
and therefore are not applicable to regression problems.

2 MEASURING DEPENDENCE AMONG
VARIABLES

Feature selection requires using an appropriate correlation or depen-
dence measure to evaluate the relationship between features and the
target variable, or between features and features. In our study we
measure the dependence among variables in an appropriate kernel
space. In this section, we will first describe a dependence measure
called Hilbert-Schmidt Independence Criterion (HSIC) and then dis-
cuss the reason why we use it as the basis measure for the Markov
Blanket discovery.

A Hilbert space F of functions in which pointwise evaluation is a
continuous linear functional is called a Reproducing Kernel Hilbert
Space (RKHS) [12]. In other words, in RKHS for an arbitrary feature
set X, there is a mapping ¢ : X — F' to a Hilbert space F such that
< p(x),p(z") >= k(z,z’), where k is a unique positive definite
kernel [3]. Let X and Y be sets drawn from some joint probability
distribution Pr.,. Let F be the RKHS on X with, £ : X x X —
R and ¢ : X — F be the corresponding kernel and feature map.
Similarly, let G be the RKHS on Y with kernel ¢ and feature map .
Then, the cross-covariance [9] Cy: G — F' is defined as

Cuy = Euy[(p(x) = p2) ® (¥(y) — p1y)]

= Euylo(x) @9(y)] — e @ piy

where ® is the tensor product. Then, the Hilbert-Schmidt Inde-
pendence Criterion (HSIC) is defined as the square of the Hilbert-
Schmidt norm of the cross-covariance operator. A kernel version of
HSIC [3] is computed as:

HSIC(F, G, Przy) = ||Czy”%15
= Exa'yy'[k(z, 2" )y, y')] + B’ [k(z, 2')| Eyy'[£(y, )]

—2Fxy|Ex [k(x, )| Ey'[l(y,y")]]

Here, we regard E, ./, ./ as the expectation of two pairs (x, y) and
(z',y") which are independent to each other and both drawn from
Prag,.

Given a sample Z drawn from the distribution Pr,, an empirical
estimate of HSIC [3] is :

HSIC(F;,G,Z) = (m —1)"*trHKHL,

where K and L. are the kernel matrices of the feature F; and the
target variable C respectively, m is the number of instances and
Hi; = 0i; —m™" is used to center the features and targets in the
feature space.

HSIC can detect any dependence between two variable sets X
and Y by using a universal kernel (such as a Gaussian Kernel). It
has been proved in [3] that ||Cyy||3;s = O if and only if x and
y are independent to each other. This is the direct motivation why

we choose HSIC to measure the dependence. Actually, in this paper,
we use HSIC(F, G, Z) to replace the HSIC(F, G, Pryy) to mea-
sure the independence between two variable sets. The reason is that
HSIC(F,G, Z) is easy to compute and actually it is concentrated as
previously proven [3] by showing that with probability at least 1 — o

log(6/0)

|HSIC(F,G, Pray) — HSIC(F,G, Z)| < \| ==L +

C
a’m M
where o > 0.24, ¢ > 0 and C is the constant.

There are three more reasons why in the proposed algorithm HSIC
is used as the measure of dependence among variables. First, HSIC
measures dependence in the high dimensional kernel space and so
can detect any dependence between two variable sets with a universal
kernel, such as RBF kernel, which is not possible with previously
used measures. Second, HSIC can measure the dependence between
both discrete and continuous variables. In contrast, most measures
previously used to find the Markov Blanket are entropy-based, and so
they are not directly applicable in datasets with a continuous variable.
Third, HSIC is easy to compute from the kernel matrices without
density estimation.

3 APPROXIMATING THE MARKOV BLANKET

Let F be the whole set of features. The Markov Blanket M B; of fea-
ture F; (M B; C F, (F; ¢ MB;)) is the set of features with a prop-
erty that F; is conditionally independent of the remaining features
U and the target C. More formally, set M B; is called the Markov
Blanket of Fj iff:

P(U,C|F;, MB;) = P(U,C|MB;)
where: U = F — {F;} — M B;

If M B; is the Markov Blanket of Fj, then the prediction model
learned without considering F; is as accurate as the model learned
using all features F'.

It is often difficult to find the exact Markov Blanket for a given
feature. To address this problem we propose a novel method of find-
ing an approximate Markov Blanket for F;. We then use this method
to develop a feature selection algorithm based on the discovered ap-
proximate Markov Blanket.

Given a set of features we can easily check if it is the Markov
Blanket M B; of feature F;. However, evaluating all subsets of F
for this property is prohibitively costly. To reduce the search cost we
will evaluate some candidate subsets, as proposed in the following
subsection.

3.1 Identification of the Markov Blanket
candidates

Instead of searching for the exact Markov Blanket for a feature, in
practice it is appropriate to determine an approximate Markov Blan-
ket that can be used for removing this feature with little useful in-
formation lost. Intuitively, if M B; is the Markov Blanket for feature
F;, the features in M B; are more dependent to F; than those fea-
tures which are not in M B; [1]. Therefore, we can choose a subset
of k features which are strongly dependent to F; as the candidate
Markov Blanket of F;. Then, for each feature, we only need to eval-
uate its candidate Markov Blanket rather than all possible subsets in
the remaining features to see if such a candidate Markov Blanket is
sufficiently accurate to be regarded as the Markov Blanket.



The problem with this reasoning is how to find efficiently the
Markov Blanket candidate for each feature. The naive method
[4] to find the set of k features which are most dependent to
F; requires computing the dependence HSIC(F;, F;) = (m —
1)"%trHK; HK; for all pairs of features F; and F; (here, K; and
K; are the kernel matrices of feature F; and F); respectively). This
is clearly computationally too expensive for applications in high di-
mensional datasets. Instead, for F; we will compute an approximate
Markov Blanket candidate M B; whose each feature F'ys g, satisfies:

Fyp, = argrrlgaxHSIC’(KFB,Ki),
B

where : Fp € B; — MB; U{Fyp,}

Here, B; is a set of features which are more dependent to the target
variable C than F}, and Kr, and K; are kernel matrices of feature
F'p and F; respectively.

Observe that we tend to find the approximate Markov Blanket for
F; in the features which are more dependent with the target variable
C than Fj is.

To find the Markov Blanket Candidate for F;, we measure de-
pendence of each feature in F to target C and, for each feature Fj,
consider only a subset B; of features that are more dependent to
C than F; is. Here, dependence of feature F; to C is measured as
HSIC(F;,C) = (m — 1) *tr HK;HL,, whereK; and L. are the
kernel matrices of feature F; and target variable C. We approximate
the Markov Blanket Candidate of F; as the set of k features from set
B; that are most dependent to F;. For the features whose correspond-
ing set B; has less than k features, we choose all features in B; as the
Markov Blanket candidate of Fj.

We emphasize that quality of the Markov Blanket Candidate ob-
tained by the proposed method depends on choice of k which should
not be too large or too small (too large k could include features that
are irrelevant while too small £ could result in an incomplete Markov
Blanket). However, our experiments reported in Section 5 provide
evidence that this is not a serious limitation in practice since the pro-
posed method was quite robust over a large range of choices of k.

3.2 Screening the Markov Blanket candidates

Let M B; be the Markov Blanket candidate of feature I, found as
explain in section 3.1. We say that M B; passes the dependence-
based screening test and is regarded as an actual approximation of
the Markov Blanket if it satisfies the following two conditions:

L.LHSIC(MB;,C) > HSIC(MB; U F;, C)
2.HSIC(MB;,C) > HSIC(F;,C), and
HSIC(MB;, F;) > HSIC(F;, C)

where C is the target variable and HSIC(X, Y) is defined as the
dependence measure between two variable sets X and Y.

We remove the feature whose Markov Blanket candidate passes
this screening test. In contrast to a previous work [3], we remove
both irrelevant and redundant features at the same time rather than
separating into two steps. This is appropriate since an independent
irrelevant feature F; always satisfies the first test condition while a
dependent irrelevant F; will satisfy the second condition as in such
a case F; is irrelevant to C resulting in HSIC(F;, C) smaller than
HSIC(M B;, F;). Similar, condition 2 ensures that the redundant
feature is removed, since the corresponding M B; of such F; can
subsume the information this feature have about the target variable.
HSIC(MB;, F;) > HSIC(F;,C) implies F; is more dependent

to M B; thanto C; HSIC(M B;,C) > HSIC(F;,C) means M B;
is more dependant to C than F; and ensures M B; has more determin-
istic information to the target variable C than F; does.

4 FEATURE SELECTION ALGORITHM

The optimal feature selection using the Markov Blanket is based on
removing a feature for which we can find the Markov Blanket in the
remaining features. Instead, in our computationally efficient method,
we remove the feature for which we find an approximate Markov
Blanket. According to the approximate Markov Blanket construc-
tion described in Section 3, we propose the following independence-
based feature selection algorithm that will be called Hilbert-Schmidt
Markov Blanket method (HSMB).

For each Fj in the whole feature set F, this algorithm computes
HSIC(F;,C) which is the dependence between F; and target vari-
able C and then sorts features into a list S in descending order based
on the measured dependence. Then, for each feature Fj, the algo-
rithm constructs set B; consisting of the features which are located
before F; in the list S. Then, HSMB finds the Markov Blanket can-
didate M B.qn of F; which is exactly the k features in the set B; that
are most dependent to F;. If M B, passes the screen test, it is re-
graded as the Markov Blanket of feature F;. Therefore, the algorithm
will remove such feature F; from the sorted list S. In this way in a
single pass through the list of features, HSMB removes all features
for which the algorithm finds the approximate Markov Blanket in
the remaining set of features. No multi-iteration is needed in HSMB
algorithm. The HSMB algorithm is summarized in Algorithm 1.

Algorithm 1 HSMB
Input: ' = Fy, Fy, ..., Fiy, C'// training data set with N features
and target C
Output: MB // a set of selected features

for i=1to N do
calculate HSIC(F;,C);
insert F; into list S based on HSIC(F;,C);

end for
fori=1to N do
MBcan = @

B; = {F}|F} is before F; in S}
forj=1to kdo
Nusually, 1 < k <5
F. =arg max HSIC(Krg ,K);
Fp. €B; i

MBchn - MBcan + ch
remove F¢ from B;

end for

if F; and M B, pass the screen test then
remove F; from S;
MB =S,

end if

end for

The main cost of the HSMB algorithm is in computing HSIC val-
ues which has complexity of O(M?) in terms of the number of in-
stances M. This is better than the cost of other kernel-based methods
which usually have O(M?) complexity. Cost of HSMB in terms of
the number of features N is smaller. However, for each feature we
have to find the candidate Markov Blanket in which there are k fea-
tures. This requires searching for k most dependent features in the set



Table 1. Selected features on synthetic classification data (A0; and B0 mean the first redundant feature of AQ and BO respectively).
Data Sets Optimal Sets GS FCBF BAHSIC HSMB
Corral-7 A0,A1,B0,.B1 R,B1,A0 R,A0 R,A0,A1,B0,B1 R,A0,A1,B0,B1
Corral-46 A0,A1,B0,B1 B0,A0 A0,A1,B0,B1 A0,A0:,B1,Al A0,A1,B0,B1
Corral-rel-7 A0,A1,B0.B1 R,A0,B1 R,A0,BO R,A0,B0,A1,B1 R,A0,A1,B0,B1
Corral-rel-46  A0,A1,B0,B1 A0,B1 A0,BO A0,A01,B0,B0 A0,A1,B0,B1

Table 2. Selected features on synthetic regression data. Only BAHSIC and HSMB can work in regression problem. For BAHSIC, we choose the same
number of features as selected in HSMB automatically.

Data sets Optimal Sets BAHSIC HSMB

Selected Features ~ R-square Selected Features  R-square
Regression-22 x1,x2 x1,x2 0.86 x1,x2 0.86
Regression-38 x1,x2 x1,x1 0.69 x1, x2 0.86
Regression-138 x1, x2 12 features 0.54 12 features 0.75

B; (features before F; in the list S) to find the Markov Blanket Can-
didate. Hence, to select the optimal subsets MB, the algorithm takes
O(p * N) steps, where p is the number of features before a certain
feature F; in the list S. In the worst case, p becomes N, and then the
cost of the algorithm is O(N?). However, p is a small constant when
enough features are removed resulting in O(N) best case complex-
ity. This best case scenario corresponds to many high dimensional
datasets where we are likely to remove most features.

5 EXPERIMENTAL RESULTS.

The accuracy of the proposed feature selection algorithm is evalu-
ated on a variety of synthetic and benchmark datasets as reported
in this section. Synthetic data is used to compare the new algorithm
to the optimal solution [15]. The new algorithm is also compared to
the GS algorithm [5] which is a test-based Markov Blanket discover-
ing method, FCBF [15] which uses an approximate Markov Blanket
method and BAHSIC [13] based on HSIC feature selection without
Markov Blanket approximation. In experiments reported in sections
5.1-2 the k parameter of our algorithm was fixed to 3 and the influ-
ence of different k was explored in section 5.3.

As a learning method for all feature selection algorithms, we used
SVM with a Gaussian kernel and with § set to be the median dis-
tance between points in the sample [2]. In FCBF, GS and HSMB, the
number of features was determined automatically. BAHSIC is not
providing such an option as it ranks all features. So, for a meaningful
comparison, in BAHSIC we report the results using the largest of the
number of features automatically selected by FCBF, GS and HSMB.

5.1 Results on synthetic data
5.1.1 Classification on synthetic datasets

The first two datasets called Corral-7 and Corral-46 were used pre-
viously to prove the strength of FCBF [15]. Corral-7 consists of six
Boolean features, AO, Al, BO, B1, R, I and a Boolean class Y defined
by Y = (A0 A A1) V (B0 A B1). Among these six features, feature
A0, Al, BO and B1 are independent to each other, feature I is uni-
formly random, and feature R matches the class Y 75 percents of the
time. The optimal subset for the Corral-7 data set includes A0, Al,
B0 and B1, whereas I is the irrelevant feature and R is the redundant
feature. Corral-46 includes the same A0, Al, BO and B1 as Corral-7,

but it also has 14 additional irrelevant and 28 additional redundant
features. We also evaluated methods on Corral-rel-7 and Corral-rel-
46 datasets that are similar to Corral-7 and Corral-46, respectively,
except that AO, Al, BO and B1 in Corral-rel-7 and Corral-rel-46 are
not independent to each other any more. In the last two datasets, AO
matches Al 60 percents of the time, and the same level of depen-
dence is introduced between BO and B1. The feature selection re-
sults on these datasets are shown in Table 1. In all four experiments
HSMB selected all four relevant features. In two of these experi-
ments (Corral-46 and Corral-rel-46), it found the optimal set and in
remaining cases (Corral-7 and Corral-rel-7) it only included one ex-
tra redundant attribute. This was better than any of the alternative
algorithms. In particular, for the Corral-7 and Corral-rel-7 datasets,
both GS and FCBF removed too many features, which is consistent
with the previous discussion that these two methods are too aggres-
sive in removing features. In Corral-rel-7 and Corral-rel-46, FCBF
regarded Al and B1 as redundant features of AO and BO respec-
tively, even though they should be in the optimal set. BAHSIC did
not work well on Corral-46 and Corral-rel-46, since it applies tra-
ditional greedy backward feature selection which is not efficient in
removing redundant features.

5.1.2  Regression on synthetic datasets

Three synthetic datasets were used for evaluation on regression prob-
lems. The first dataset that we call Regression-22 was previously
used to demonstrate the advantages of BAHSIC [13]. Here, the la-
bel y is generated as y = x1 * e~™"=72" | o \where € is random
Gaussian noise. Regression-22 consists of x1, x2 and 20 additional
irrelevant features. Based on Regression-22, we generate two more
datasets, Regression-38 and Regression-138. Regression-38 includes
all features used in Regression-22 and 16 additional redundant fea-
tures. Among the 16 redundant features, for either x1 or x2, there are
8 redundant features matching x1 and x2 at 9/16, 10/16, ..., 16/16
of times, respectively (we use random values for those which do not
match). Regression-138 includes all features used in Regression-38
and 100 additional irrelevant features. Since BS and FCBF methods
can not be applied directly to regression problems, in these experi-
ments we compared the results of our method to BAHSIC. The re-
sults of these experiments provide evidence that the new method is
equally accurate on Regression-22 and is much more appropriate in
the presence of redundant features and when the number of irrelevant



features is larger (R-square accuracy and selected features shown in
Table 2). For BAHSIC, we choose the same number of features as
selected in HSMB automatically to build the prediction model and
measure the R-square accuracy.

5.2 Results on benchmark data.
5.2.1 Classification results on benchmark problems.

The number of features, instances and classes of 12 benchmark
datasets for the classification experiments are summarized in Table
3. Here, the 3-class Lung-cancer dataset is converted to three 2-class
problems and the average accuracy of these three 2-class problems
is reported. In the Promoters dataset each categorical feature is con-
verted into 4 binary features resulting in 228 (57*4) features. In the
Isolet dataset, the original 10-class problem is converted to a binary
classification problem by regarding labels which are not bigger than
13 as class 0 and the remaining as class 1.

Table 3. Properties of benchmark datasets for classification.

Datasets Features Instances  Classes
BC-wisconsin 9 683 2
Hepatitis 18 112 2
German 24 1000 2
Wdbc 30 569 2
wpbc 33 194 2
Lung-Cancer 56 32 3
COIL2000 85 5822 2
High Dimensional Data
Musk2 166 6598 2
Promoters 228 106 2
Madelon 500 2000 2
Isolet 617 1559 26
Arcene 10000 100 2

Table 4. Classification accuracy "%’ on benchmark datasets ("All’ means
using all features).

Datasets All GS FCBF BAHSIC HSMB
BC-Wisconsin 96.8 96.8 956 96.8 96.8
Hepatitis 82.6 83.0 86.9 78.3 89.8
German 100 100 100 100 100
Wdbc 96.7 970 96.2 95.0 97.3
wpbc 80.0 720  75.0 78.0 81.5
Lung-Cancer 679 620 65.0 70.4 70.4
COIL2000 937 940 944 90.2 94.4
High Dimensional ~ Data

Musk?2 86.0  88.0 89.2 89.1 92.4
Promoters 864 885 97.6 94.7 98.6
Madelon 56.0 63.3 61.5 62.0 70.1
Isolet 75.1 784 785 78.0 81.3
Arcene 594 602 624 64.2 70.6

The results of 12 benchmark classification problems are summa-
rized in Table 4 and Table 5. Each result listed in these two tables is
an average of 5 repeated experiments. Table 4 shows the predictive
accuracy. Here, the leave one out method is applied to the datasets
with less than 300 instances, in order to get stable results of SVM
predictors. Other results reported in these tables are obtained by av-
erage results of 5 repeated experiments. The obtained results (Ta-
ble 4) provide evidence that HSMB outperforms alternative methods
in accuracy over a variety of benchmark datasets. On Lung-Cancer,
Arcene, Promoters and wpbc evaluations, the GS algorithm was less

Table 5. Number of selected feature on benchmark datasets for
classification (HSIC method is not shown since it cannot automatically
select the optimal set).

Datasets GS FCBF HSMB
BC-wisconsin 8 8 8
Hepatitis 4 3 10
German 20 21 22
Wdbc 6 3 15
wpbc 3 2 6
Lung-Cancer 3 5 3
COIL2000 5 6 8
High Dimensional Data
Musk2 4 2 6
Promoters 15 13 17
Madelon 4 2 38
Isolet 4 4 10
Arcene 15 13 113

accurate as these datasets have a fairly small number of instances
which makes a conditional dependence test unreliable.

The number of features selected by each feature selection method
is reported in Table 5. All methods reduced the number of features
significantly. However, the GS and FCBF algorithms were too ag-
gressive in reducing features. In GS, this problem is due to unreli-
ability of the conditional dependence test for a small sample. The
reason FCBF tends to remove too many features is that it gives too
much priority to features that are highly correlated with the target.

Our results show that the proposed algorithm works well on both
low and high dimensional data sets. In the high dimensional data
set with a large number of irrelevant features, HSMB was effective
in selecting the dominant features from which accurate predictors
were built. In contrast, BAHSIC had high error in high dimensional
evaluations.

5.2.2  Regression results on benchmark problems.

Six benchmark datasets were used for the evaluation of the new al-
gorithm for regression problems. Available benchmark datasets for
regression were low dimensional. Therefore, for high dimensional
evaluation we have created three datasets based on the Housing
benchmark dataset. Housing-100 includes the original 13 features of
Housing dataset with 48 additional redundant features and 52 irrele-
vant features. Among the 48 redundant features, for each feature in
the optimal set selected by HSMB from Housing, there are 8 rele-
vant features which match the selected feature 9/16, 10/16, ..., 16/16
of time. Housing-500 includes the features used in Housing-100 and
additional 400 irrelevant features. Similar, Housing-1000 includes all
features of Housing-100 and 900 additional irrelevant features.

For each regression benchmark dataset, we performed the exper-
iments following the same procedure as that used in classification.
Our method is compared only to BAHSIC as other two methods are
specific for classification. Again, in BAHSIC the same number of
features is used as returned by our method. The R-square accuracies
of an SVM on the subsets selected by each of two feature selection
methods on benchmark datasets are reported in Table 6. The obtained
results were consistent results with classification results of section
5.2.1. In general, HSMB outperformed BAHSIC in these regression
problems. In low dimensional experiments, the predictor using full
features was the most accurate since there were almost no irrelevant
features in these benchmark datasets. However, in high dimensional
experiments with many irrelevant features (Housing-100, Housing-
500 and Housing-1000), the dominant features selected by the pro-



Table 6. Regression accuracy (R-square) on benchmark datasets. (BAHSIC is using the same number of features as selected by HSMB.)

Data Set All Features BAHSIC HSMB

Name # instances R-square  # Features R-square R-square  Selected Features
Cpu-performance 209 0.575 6 0.575 0.575 5
Auto-mpg 392 0.745 7 0.70 0.742 5
Concrete 1030 0.880 8 0.79 0.86 5
Housing 506 0.634 13 0.534 0.613 6
Aerosol 2000 0.756 14 0.61 0.714 6
Auto-mobile 159 0.492 18 0.391 0.398 5
High Dimensional Data

Wpbc 194 0.989 33 0.982 0.997 11
Housing-100 506 0.601 113 0.520 0.610 9
Housing-500 506 0.453 513 0.531 0.593 23
Housing-1000 506 0.364 1013 0.482 0.574 82

posed method were a much better choice.

5.3 Influence of parameter k

The quality of an HSMB solution depends on the number k of fea-
tures used for an approximation of the Markov Blanket (as described
in Section 3.1). Sensitivity of HSMB to k is evaluated on benchmark
datasets. Our experimental results suggest that the results of HSBM
method are quite stable over a large range of k values and that for
most datasets 2 or 3 is a good choice for the value of k . For k = 1
to 5, classification accuracy on some benchmark datasets is shown in
Table 7. These experimental results are consistent with what we de-
scribe in Section 3.1 that £ should not be too large or too small. The
results on remaining datasets are similar and are omitted here for the
lack of space.

Table 7. Classification accuracy (%) of HSMB for different values of k.

Datasets k=1 k=2 k=3 k=4 k=5
BC-wisconsin 96.2 93.8 96.8 97.1 96.7
Hepatitis 87.0 89.8 89.8 86.3 85.8
German-numeric 100 100 100 100 100

Wdbc 93.9 97.6 97.3 94.4 95.4
wpbc 79.4 81.5 81.5 79.5 76.9
Lung-Cancer 67.9 67.9 70.4 70.4 65

COIL2000 93.7 94.4 94.4 92.6 92.6
Musk?2 90 89.2 92.4 86 86

Promoters 98.1 98.1 98.6 96.2 95.3

6 CONCLUSIONS

In this paper we proposed a new Markov Blanket based filter method
for feature selection. This method, called HSMB, uses Hilbert-
Schmidt Independence Criterion (HSIC) as the measure of depen-
dence in finding the Markov Blanket. We restrict the search space by
approximating the Markov Blanket Candidate of feature F; as the k
most dependent features in the set B; consisting of the features be-
fore F; in the sorted list S in which all features are ordered by their
dependence to the target variable. Results on synthetic and bench-
mark datasets provide evidence that HSMB can select better subsets
of features than the alternative Markov Blanket based methods. The
new method is applicable to both low dimensional and high dimen-
sional classification and regression problems. To improve the pro-
posed method further, we will conduct additional theoretically and

empirically research related to selection of features for the Markov
Blanket Candidates approximation and for optimizing the value of k
automatically.
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