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Abstract.   In the proposed approach, learning from large 
spatial-temporal data streams is addressed using the sequential 
training of support vector machines (SVM) on a series of 
smaller spatial data subsets collected over shorter periods. A 
set of representatives are selected from support vectors 
corresponding to an SVM trained with data of a limited 
spatial-temporal coverage. These representatives are merged 
with newly arrived data also corresponding to a limited space-
time segment.  A new SVM is learned using both sources. 
Relying on selected representatives instead of propagating all 
support vectors to the next iteration allows efficient learning 
of semi-global SVMs in a non-stationary series consisting of 
correlated spatial datasets. The proposed method is evaluated 
on a challenging geoinformatics problem of aerosol retrieval 
from Terra satellite based Multi-angle Imaging Spectro 
Radiometer instrument. Regional features were discovered 
that allowed spatial partitioning of continental US to several 
semi-global regions. Developed semi-global SVM models 
were reused for efficient estimation of aerosol optical depth 
from radiances with a high level of accuracy on data cycles 
spanning several months. The obtained results provide 
evidence that SVMs trained as proposed have an extended 
spatial and temporal range of applicability as compared to 
SVM models trained on samples collected over shorter 
periods. In addition, the computational cost of training a semi-
global SVM with selective support vector propagation (SSVP) 
was much lower than when training a global model using 
spatial observations from the entire period.  

1. INTRODUCTION 
With recent advances in remote sensing technologies, 
scientists collect a much larger volume of spatial-temporal 
observations than previously. For example, since 2000, the 
Multi-angle Imaging SpectroRadiometer (MISR) instruments 
onboard Terra satellite of NASA’s Earth observing system 
have been used to observe solar radiation through nine 
cameras each in four spectral bands with 1.1 km spatial 
resolution and global coverage of Earth in about 9 days [1]. 
Such a resolution results in quick accumulation of terabytes of 
high dimensional spatial-temporal observation data.  The 
objective of learning nonlinear relationships from such non-
stationary data can in principle be addressed by artificial 
neural networks (ANN) and support vector machines (SVM) 
[2]. While theoretically such prediction models are more 

accurate with large training datasets, the computational cost of 
learning from high volume data prohibits the training and 
retraining of global models using the entire historical data.  

In a recent study [3], a neural network ensemble procedure 
was developed to learn ANN models from massive datasets. 
In this project, neural networks of low complexity were 
learned from small datasets first, and the component networks 
were incrementally combined into an ensemble while 
progressively increasing the size of the training dataset. This 
allowed for a regulation of the computational costs of 
developing nonlinear regression models from large datasets 
through an automated identification of an appropriate number 
of component networks, their complexity and a sample size 
for training the component.  

For learning nonlinear relationships in high dimensional 
data, SVM are frequently preferred when both stability and 
high accuracy are required [4]-[6]. However, the training and 
prediction time of SVM increases with the increased number 
of support vectors. Therefore, both training and prediction 
time may be prohibitively long when learning with an SVM 
for massive spatial-temporal datasets that typically require a 
large number of support vectors. Approaches considered to 
address this situation include reducing the size of datasets [7], 
improving the performance of SVM through incorporating 
known invariance of the problems [8], approximating the 
decision surface and reformulation of the training problem 
that yields the same decision surface using a smaller number 
of basis functions [9][10], using a proximal SVM [11], and 
exploiting partial/merge k-mean method with parallel 
computation [12]. Nevertheless, as long as the time-
consuming kernel matrix operations are required, it is 
prohibitively costly to develop a global SVM for massive 
spatial-temporal datasets. An efficient method uses SVMs 
trained locally with a small number of instances [13]. 
However, such an SVM is only valid locally while in many 
cases global and semi-global properties that are difficult to 
capture with local models are of primary interest. 

Inspired by previous projects, we propose efficient 
development of semi-global SVM models valid within 
extended spatial regions and usable over a longer time span 
than those of local models. This approach is based on the 
observation that regional features frequently exist in spatial-
temporal datasets over certain areas due to a large number of 
factors such as vegetation, topology, air pollution, humidity, 
snow, ice, and cloud coverage. Such factors are also strongly 
time dependent, and consequently induce semi-stationary 
temporal features within certain time intervals. Therefore, 
sub-models developed from regional datasets might remain 1  Temple University, USA, email: zoran@ist.temple.edu 
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accurate for a reasonably long time or over a large area, and 
so can be frequently reused for reduced computational cost. 
The proposed method for training and reusing the semi-global 
SVM models will be discussed first followed by a summary 
of the experimental evaluations and discussion.  

2. METHODOLOGY 
In the simplest case where the patterns are linearly separable, 
an SVM looks for a separation plane which maximizes the 
margin. For linearly non-separable patterns, the attributes are 
nonlinearly mapped to a higher dimensional space such that 
the patterns in the new feature space are linearly separable [6]. 
An SVM is represented by a kernel matrix, or equivalently a 
set of support vectors and parameters specifying the kernel 
functions. A kernel matrix in a quadratic size of the number of 
support vectors is involved in the SVM training processes.  

The support vectors of an SVM are the most important 
instances in the datasets from which the SVM is trained. 
Therefore, merging the support vectors of an SVM trained 
using dataset one with raw examples of another dataset results 
in a merged dataset which to some extent carries the 
properties of both datasets.  The number of instances in the 
merged dataset would be much smaller than the total number 
of instances in the combined raw datasets. This observation, 
the starting point in this project, is aimed at the construction 
of semi-global training datasets of limited size for efficient 
learning of a series of SVMs on large spatial-temporal data 
series.  

In spatial-temporal situations, data properties often remain 
semi-stationary over certain space and time intervals. 
Therefore, SVMs trained from neighboring local spatial 
datasets in a time series might frequently be similar. In such 
cases, merging the support vectors of a previous SVM to the 
adjacent raw data might be sufficient to learn a new SVM that 
preserves statistical properties of both regions.  Based on this 
idea, a coarse-grained pseudo code of the proposed algorithm 
for learning SVMs with selective support vector propagation 
(SSVP) is presented below: 

1. S is initialized to an empty support vector set 
2. For each spatial dataset Di, i=1,2,…, in a series  
3.     D = Union of S and Di

4.     Train a support vector machine Mi with D 
5.     S’ = support vector set of Mi

6.     S” = set of instances in S’ misclassified by Mi

7.     S = set of instances in S’ but not in S” 
8. End For 

While the number of support vectors in each individual 
dataset Di can be small, propagating all support vectors for 
merging with new data is likely to enlarge the merged data in 
time because of the inclusion of outliers that are considered 
support vectors. With a support vector selection method 
described in lines 5, 6, and 7 in the above pseudo code, the 
number of support vectors propagated to the next stage will be 
reduced significantly. More specifically, in each iteration of 
the training process, all the misclassified support vectors of 

the resulting SVM are excluded from the support vector set to 
be propagated to the next training step. The effectiveness of 
this method will be demonstrated and discussed in the 
experimental results section below. 

3. DATA DESCRIPTION 

3.1 Synthetic Data 
A series of simple synthetic datasets were generated with four 
cluster centers, namely (0, 1), (1, 0), (0, -1), and (-1, 0) on the 
2-D plane. For each dataset, the first two clusters are labeled 
as positive and the other two are negative. Using different 
noise levels, we generated a low noise and a high noise 
dataset. For the low noise dataset, a randomly generated noise 
of normal distribution with a standard deviation of 0.1 was 
added to the dataset. Each dataset in the low noise series 
contained 100 instances with 25 instances drawn from each of 
four clusters. While the properties of the series, such as the 
location of cluster centers and the standard deviations, did not 
vary with time, the dataset may still be considered a spatial-
temporal one in that the noise is injected in time.  For the high 
noise dataset, the same configuration of the datasets was 
adopted with a standard deviation of 0.3 in noise level. A 
series of 500 datasets were generated for low noise and high 
noise cases respectively.  

3.2 MISR Data 
The spatial-temporal data are obtained from the MISR 
instrument aboard the Terra satellite of NASA’s Earth 
observation system. MISR views Earth with nine cameras 
pointed at different viewing angles, each with four spectral 
bands. Terra orbits the Earth about 15 times per day and 
completes a data cycle in 16 days. For each 16-day cycle, 
there are 233 distinct MISR paths (orbits) 
[http://eosweb.larc.nasa.gov/MISRBR]. We analyzed four 
such cycles covering the entire continental U.S. from 
07/17/2002 to 01/08/2003 where each cycle consisted of data 
over 47 paths. 

The MISR Level 1B2 radiance and Level 2 aerosol optical 
depth (AOD) data were used for SVM model learning. We 
extracted 36 radiances and supplemented these with additional 
82 geometric parameters resulting in 118 dimensional 
patterns. The learning target was the green band regional 
mean AOD, which was converted to binary classes of low 
(thin) vs. high (thick) aerosol situations as compared to the 
mean AOD (0.18) for the entire datasets. So, the problem of 
aerosol estimation from radiances was reduced to a 
classification problem of identifying low vs. high aerosol 
situations given two classes of about the same size.  

The observations under cloudy conditions were removed 
since the existence of cloud would significantly affect the 
correctness of the AOD retrieval. Cases with low-quality 
radiance (radiometric data quality index less than 2) and with 
missing AOD were also removed. Therefore, the number of 
remaining instances used in our experiments is space and time 
dependent. The total number of instances in the constructed 
dataset of each cycle is shown in Table 3.1.  
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Table 3.1.  Cloud-free MISR radiance and aerosol data over entire 
continental US (period and number of instances). 

Cycle Start Time End Time # of Instances 
1 07/17/2002 08/01/2002 76449 
2 08/01/2002 08/17/2002 65620 
3 08/18/2002 09/02/2002 51869 
4 12/24/2002 01/08/2003 30451 

4. RESULTS AND DISCUSSION 
The method of combining and reusing the SVM proposed in 
Section 2 was applied to both synthetic and MISR dataset 
series described in Section 3. A linear classifier was used for 
experiments on synthetic datasets and RBF classifier with 
unity cost of constraint violation and width parameter for 
experiments with MISR datasets. 

4.1 Results from Synthetic Data 
The first objective was to explore the rate at which the 
number of support vectors might accumulate in time if all 
vectors were propagated to the next stages. For this 
experiment, the proposed method for merging relevant 
support vector representatives with new arriving data was 
applied without the proposed vector selection step by setting 
S” to be an empty set in line 6 of the algorithm in Section 2. 
The algorithm was applied to 50,000 data points partitioned 
into a series of 500 spatial datasets each consisting of 100 
instances. The experiment was performed for low as well as 
for high noise synthetic data described in Section 3.1. 

For a low noise situation, very few support vectors were 
propagated for merging with the newly arriving data 
independent of time. At the final 500-th time step, 10 support 
vectors were propagated for merging with 100 newly arrived 
data points and the resulting SVM was almost 100% accurate. 
In contrast, for high noise data, the number of propagated 
support vectors increased in time and soon become 
excessively large. In particular, unless pruned properly, about 
2,200 support vectors were collected throughout the SSVP 
process of the initial 499 stages and they dominated over the 
newly arriving 100 data points. The number of the support 
vectors propagated at each of the 500 stages for merging with 
the next dataset is plotted at the top panel of Fig. 4.1. The 
linear trend of support vectors accumulation in this 
experiment was due to outliers identified as support vectors.   

The selection step proposed for pruning support vectors 
(lines 5-7 of the algorithm described at Section 2) resolved 
this problem as shown at the bottom panel of Fig. 4.1. The 
simple selection method eliminated propagation of outliers as 
they were produced such that the number of propagated 
support vectors was much smaller (less than 140 throughout 
the entire process) as necessary for efficient applications in 
large spatial-temporal data series. While the accuracies of the 
final SVM obtained with and without support vector pruning 
on the entire dataset were similar (98.3% and 98.2%, 
respectively) the training and prediction with the pruning step 
was much faster than that without pruning. 

At the bottom panel of Fig. 4.1, the slope of the curve 
corresponding to the number of propagated support vectors as 
a function of the time step is typically larger when the number 
of support vectors is smaller.  This is expected since the 
position of the separation plane of an SVM is affected by the 
fraction of support vectors propagated from previous SVMs. 
The “inertia” of the separation plane, or the influence of 
previous datasets, increases with the fraction of propagated 
support vectors. On the other hand, the probability that a 
support vector from an earlier dataset is removed increases 
monotonically with time, such that the effect of a previous 
dataset becomes less important in the training process with the 
addition of new datasets. Therefore, the time interval, in 
which an SVM can be validly trained with the SSVP method, 
is determined by the competition of these two effects.  
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Figure 4.1.  Effect of SSVP on the size of the combined datasets for 
high noise synthetic data. Without pruning the number of propagated 
support vectors in each of 500 time steps monotonically increased 
(top panel) while it stays small when the proposed selection step is 
used (bottom panel).  

4.2 Results from MISR Data 
The proposed method with SSVP was then applied to the 
MISR AOD retrieval described in Section 3. In this 
challenging test data properties vary both spatially and 
temporally with highly complex regional and temporal 
features. To isolate the effect of regional features of the 
dataset on the training of SVMs, the first set of experiments

 was carried out using cycle 1 aerosol data over continental 
U.S. (Table 3.1).  

First, 47 SVMs were trained using 47 individual paths 
without SSVP. Each SVM was applied to predict out-of-
sample AOD at all 47 paths of cycle 1. It was evident that the 
SVMs trained on the Eastern region (paths 4 to 27) were not 
applicable to Western region (paths 28 to 50) and vice versa, 
whereas SVMs trained on a single path on one coast were
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somewhat applicable for out-of-path prediction over the same 
region. In particular, the average accuracy for 24 SVMs 
trained on a single eastern path when tested on out-of-sample 
data over the entire eastern region was 66%. Similarly, a 
single western-path-based SVM achieved 67% out-of-sample 
average accuracy on 23 region paths. 

Next, the proposed method was applied to cycle 1 data by 
learning SVMs on training data corresponding to individual 
paths supplemented with SSVP from previously learned 
SVMs. In this experiment the training started from the 
western most path (number 50 which is California data) and 
proceeded east (to finish at path number 4 which is East Coast 
U.S. data). Again, 24 East Coast predictors were tested for 
out-of-sample accuracy on the entire eastern region while 
each of 23 West Coast predictors was tested on the entire 
western region. The average out-of-sample accuracy of the 
SVMs with SSVP on the eastern and western regions was 
77% and 72% respectively, which is significantly higher than 
the accuracy obtained without SSVP.   

The result of the first two sets of experiments provide 
evidence that SSVP is also beneficial for improving the 
prediction accuracy when data is high dimensional and the 
spatial relationship is complex. The next set of experiments 
on the MISR dataset was designed to explore the applicability 
of the proposed methods for modeling temporal variation in 
the properties of spatial-temporal datasets. For prediction on 
all cycles, we first applied the final predictor of the previous 
experiment obtained by learning local SVMs starting from the 
western most path (50) and moving east with SSVP. The 
accuracy of this predictor on all paths at all cycles is 
summarized at the top panel of Fig. 4.2.  

As already observed, cycle 1 accuracy of this predictor was 
much better on the eastern region corresponding to path 
numbers lower than 28 (accuracy 73% vs. only 38% at west). 
The same predictor also had good accuracy on the eastern 
region when predicting at cycle 2 and 3 data (71% and 64%).. 
The prediction accuracy on cycle 4 was consistently much 
worse (40%) since this data corresponds to a completely 
different season as compared to training period (cycle 1). The 
identified temporal semi-stationary property of the MISR 
datasets provides opportunities for developing semi-global 
SVM models for periods covering multiple time cycles 
without discarding older observations of the same region. 

Figure 4.2.  Out-of-sample classification accuracy (darker is more 
accurate) on Cycles 1-4 when trained on Cycle 1 data. Application of 
a single SVM obtained with SSVP (top panel) is compared to using 
47 path-specific SVMs also constructed with SSVP (bottom panel).  

Dependence of temporal semi-stationary behavior on the 
regional features is further examined in the experiments 
summarized at the bottom panel of Fig. 4.2. Here, an SVM 
trained on path k data of cycle 1 with SSVP from path k+1 at 
cycle 1 is used for out-of-sample classification at path k in all 

four cycles. So, instead of applying a single predictor for out-
of-sample prediction, 47 path-specific predictors were trained 
with SSVP. The resulting accuracy was much improved as 
can be seen by comparing top and bottom panels of Fig. 4.2. 
In particular, for East Cost data (paths 4-27) average accuracy 
in cycle 1 and 3 is improved from 73%, 71% and 64% to 85%, 
73% and 75%. In addition, West Coast (paths 28-50) accuracy 
was 80%, 71%, 71% and 82% for cycle 1-4, respectively. 
Therefore, model reuse in the MISR datasets was possible 
both spatially and temporally. 

The performed experiments suggest that the SVMs trained 
with SSVP should only be extended to a spatial and temporal 
vicinity of the training datasets and not to extremely remote 
spatial regions or time periods. As a result, we developed a 
scheme for constructing a sequence of semi-global SVMs 
applicable for accurate prediction to moderately large spatial 
and temporal regions in an efficient way (such that the 
number of SVMs to cover the entire dataset is minimized). 

By analyzing in more details cycle 1 classification accuracy 
of the predictor summarized at the top panel of Fig. 4.2, it can 
be seen that it was highly accurate in an East Coast region 
covering about 10 paths followed by deteriorated accuracy as 
it was applied west (see Fig. 4.3). Accuracy of the global 
SVM trained on cycle 1 and semi-global SVMs with SSVP 
over shorter regions was compared next. The results over 4 
cycles and propagation over 47, 24, 16, 8 and 4 paths are 
reported in Fig. 4.4 (propagation over 47 paths at cycle 1 
corresponds to Fig. 4.3 results). The overall highest accuracy, 
which was even slightly better than that of the global SVM, 
was achieved by SSVP over blocks of 8 neighboring paths. In 
these experiments, SVMs trained with SSVP after every 8 
paths are applied for out-of-sample prediction at the 
corresponding 8 adjacent paths. Consequently, only six semi-
global SVMs were required to cover each data cycle. 
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Figure 4.3.  Path-specific training vs. prediction accuracy of the SVM 
trained with SSVP on Cycle 1. SSVP was from West to East (paths 50 
to 4). 

Finally, the computational efficiency of SVM training and 
prediction in a sequence of paths of MISR datasets with SSVP 
was compared to that of training a single SVM on the 
corresponding data.  Time comparison experiments were 
performed on  Cycle 1 data with the least number of missing 
values and the most balanced number of instances per path 
(see Table 3.1). A fixed number of 1500 instances were 
randomly sampled with replacement from each path (i.e. each 
instances may be included more than once). Both the training 
and the prediction CPU time was insensitive to the length of 
the data stream when learning in a series of local steps with 
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SSVP as proposed here. In contrast, for training a regular 
global model with merged data, the training time was a 
quadratic function of the number of paths N, and the 
prediction time increased linearly with N due to the increased 
size of training data (see Fig. 4.5).  

Figure 4.4.  Classification accuracy on cycles 1 to 4 with global and 
semi-global SMVs trained on cycle 1 with SSVP over blocks of 4, 8, 
16, 24 and 47 paths. Global SVM was trained with 70% instances of 
cycle 1. 

0 50

Figure 4.5.  Comparison of normalized training and prediction CPU 
time, as a function of the number of paths N covered in training, for 
SVMs trained with SSVP vs. regular SVM trained using merged raw 
data from all paths. Training was from west to east (path 50 to 4) 
using the data of Cycle 1, and prediction was for each individual path 
only. CPU time for regular training with merged data is presented 
normalized by the number of paths as to show a quadratic growing 
curve together with a linear growing CPU time curve of regular 
prediction and near-constant curves obtained when training and 
testing with SSVP.  

5. CONCLUSIONS 
The proposed method of sequential SVM training with SSVP 
was developed for supervised learning in a non-stationary 
series consisting of correlated spatial datasets. The objective 
was to obtain accurate semi-global prediction models with 
low computation cost. A simple support vector selection 
method was applied at each propagation step to prevent 
monotonic growth of the number of propagated support 
vectors over long sequences. The validity of the proposed 
method was demonstrated on simple synthetic and 

challenging geoinformatics spatial-temporal datasets. It was 
found that to predict within larger spatial and temporal 
neighborhoods, the SVM trained on a sequence of local 
spatially correlated datasets with SSVP from a neighboring 
region can be superior to reusing local models trained with 
individual datasets. 

Regional features discovered using the proposed approach 
allowed spatial partitioning of MISR aerosol data over the 
continental U.S. to western and eastern regions that provided 
more accurate prediction results. Furthermore, regional 
features were also found to be semi-stationary in time, such 
that the regional models trained on previous datasets were 
reusable for accurate regional predictions at future times. The 
proposed model reuse method was also demonstrated as a 
cost-effective alternative to merging raw data when learning 
SVMs from large spatial-temporal data streams. 
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