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Efficient Learning from Massive Spatial-Temporal
Data through Selective Support Vector Propagation
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Abstract. In the proposed approach, learning from large
spatial-temporal data streams is addressed using the sequential
training of support vector machines (SVM) on a series of
smaller spatial data subsets collected over shorter periods. A
set of representatives are selected from support vectors
corresponding to an SVM trained with data of a limited
spatial-temporal coverage. These representatives are merged
with newly arrived data also corresponding to a limited space-
time segment. A new SVM is learned using both sources.
Relying on selected representatives instead of propagating all
support vectors to the next iteration allows efficient learning
of semi-global SVMs in a non-stationary series consisting of
correlated spatial datasets. The proposed method is evaluated
on a challenging geoinformatics problem of aerosol retrieval
from Terra satellite based Multi-angle Imaging Spectro
Radiometer instrument. Regional features were discovered
that allowed spatial partitioning of continental US to several
semi-global regions. Developed semi-global SVM models
were reused for efficient estimation of aerosol optical depth
from radiances with a high level of accuracy on data cycles
spanning several months. The obtained results provide
evidence that SVMs trained as proposed have an extended
spatial and temporal range of applicability as compared to
SVM models trained on samples collected over shorter
periods. In addition, the computational cost of training a semi-
global SVM with selective support vector propagation (SSVP)
was much lower than when training a global model using
spatial observations from the entire period.

1. INTRODUCTION

With recent advances in remote sensing technologies,
scientists collect a much larger volume of spatial-temporal
observations than previously. For example, since 2000, the
Multi-angle Imaging SpectroRadiometer (MISR) instruments
onboard Terra satellite of NASA’s Earth observing system
have been used to observe solar radiation through nine
cameras each in four spectral bands with 1.1 km spatial
resolution and global coverage of Earth in about 9 days [1].
Such a resolution results in quick accumulation of terabytes of
high dimensional spatial-temporal observation data. The
objective of learning nonlinear relationships from such non-
stationary data can in principle be addressed by artificial
neural networks (ANN) and support vector machines (SVM)
[2]. While theoretically such prediction models are more
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accurate with large training datasets, the computational cost of
learning from high volume data prohibits the training and
retraining of global models using the entire historical data.

In a recent study [3], a neural network ensemble procedure
was developed to learn ANN models from massive datasets.
In this project, neural networks of low complexity were
learned from small datasets first, and the component networks
were incrementally combined into an ensemble while
progressively increasing the size of the training dataset. This
allowed for a regulation of the computational costs of
developing nonlinear regression models from large datasets
through an automated identification of an appropriate number
of component networks, their complexity and a sample size
for training the component.

For learning nonlinear relationships in high dimensional
data, SVM are frequently preferred when both stability and
high accuracy are required [4]-[6]. However, the training and
prediction time of SVM increases with the increased number
of support vectors. Therefore, both training and prediction
time may be prohibitively long when learning with an SVM
for massive spatial-temporal datasets that typically require a
large number of support vectors. Approaches considered to
address this situation include reducing the size of datasets [7],
improving the performance of SVM through incorporating
known invariance of the problems [8], approximating the
decision surface and reformulation of the training problem
that yields the same decision surface using a smaller number
of basis functions [9][10], using a proximal SVM [11], and
exploiting partial/merge k-mean method with parallel
computation [12]. Nevertheless, as long as the time-
consuming kernel matrix operations are required, it is
prohibitively costly to develop a global SVM for massive
spatial-temporal datasets. An efficient method uses SVMs
trained locally with a small number of instances [13].
However, such an SVM is only valid locally while in many
cases global and semi-global properties that are difficult to
capture with local models are of primary interest.

Inspired by previous projects, we propose efficient
development of semi-global SVM models valid within
extended spatial regions and usable over a longer time span
than those of local models. This approach is based on the
observation that regional features frequently exist in spatial-
temporal datasets over certain areas due to a large number of
factors such as vegetation, topology, air pollution, humidity,
snow, ice, and cloud coverage. Such factors are also strongly
time dependent, and consequently induce semi-stationary
temporal features within certain time intervals. Therefore,
sub-models developed from regional datasets might remain
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accurate for a reasonably long time or over a large area, and
so can be frequently reused for reduced computational cost.
The proposed method for training and reusing the semi-global
SVM models will be discussed first followed by a summary
of the experimental evaluations and discussion.

2. METHODOLOGY

In the simplest case where the patterns are linearly separable,
an SVM looks for a separation plane which maximizes the
margin. For linearly non-separable patterns, the attributes are
nonlinearly mapped to a higher dimensional space such that
the patterns in the new feature space are linearly separable [6].
An SVM is represented by a kernel matrix, or equivalently a
set of support vectors and parameters specifying the kernel
functions. A kernel matrix in a quadratic size of the number of
support vectors is involved in the SVM training processes.

The support vectors of an SVM are the most important
instances in the datasets from which the SVM is trained.
Therefore, merging the support vectors of an SVM trained
using dataset one with raw examples of another dataset results
in a merged dataset which to some extent carries the
properties of both datasets. The number of instances in the
merged dataset would be much smaller than the total number
of instances in the combined raw datasets. This observation,
the starting point in this project, is aimed at the construction
of semi-global training datasets of limited size for efficient
learning of a series of SVMs on large spatial-temporal data
series.

In spatial-temporal situations, data properties often remain
semi-stationary over certain space and time intervals.
Therefore, SVMs trained from neighboring local spatial
datasets in a time series might frequently be similar. In such
cases, merging the support vectors of a previous SVM to the
adjacent raw data might be sufficient to learn a new SVM that
preserves statistical properties of both regions. Based on this
idea, a coarse-grained pseudo code of the proposed algorithm
for learning SVMs with selective support vector propagation
(SSVP) is presented below:

1. S is initialized to an empty support vector set
2. For each spatial dataset D;, i=1,2,..., in a series
3. D= Union of S and D;

Train a support vector machine M; with D

S’ = support vector set of M;

4
5
6. S”=set of instances in S’ misclassified by M;
7. S =set of instances in S’ but not in S”

8.

End For

While the number of support vectors in each individual
dataset D; can be small, propagating all support vectors for
merging with new data is likely to enlarge the merged data in
time because of the inclusion of outliers that are considered
support vectors. With a support vector selection method
described in lines 5, 6, and 7 in the above pseudo code, the
number of support vectors propagated to the next stage will be
reduced significantly. More specifically, in each iteration of
the training process, all the misclassified support vectors of

the resulting SVM are excluded from the support vector set to
be propagated to the next training step. The effectiveness of
this method will be demonstrated and discussed in the
experimental results section below.

3. DATA DESCRIPTION

3.1 Synthetic Data

A series of simple synthetic datasets were generated with four
cluster centers, namely (0, 1), (1, 0), (0, -1), and (-1, 0) on the
2-D plane. For each dataset, the first two clusters are labeled
as positive and the other two are negative. Using different
noise levels, we generated a low noise and a high noise
dataset. For the low noise dataset, a randomly generated noise
of normal distribution with a standard deviation of 0.1 was
added to the dataset. Each dataset in the low noise series
contained 100 instances with 25 instances drawn from each of
four clusters. While the properties of the series, such as the
location of cluster centers and the standard deviations, did not
vary with time, the dataset may still be considered a spatial-
temporal one in that the noise is injected in time. For the high
noise dataset, the same configuration of the datasets was
adopted with a standard deviation of 0.3 in noise level. A
series of 500 datasets were generated for low noise and high
noise cases respectively.

3.2 MISR Data

The spatial-temporal data are obtained from the MISR
instrument aboard the Terra satellite of NASA’s Earth
observation system. MISR views Earth with nine cameras
pointed at different viewing angles, each with four spectral
bands. Terra orbits the Earth about 15 times per day and
completes a data cycle in 16 days. For each 16-day cycle,
there are 233 distinct MISR  paths  (orbits)
[http://eosweb.larc.nasa.gov/MISRBR]. We analyzed four
such cycles covering the entire continental U.S. from
07/17/2002 to 01/08/2003 where each cycle consisted of data
over 47 paths.

The MISR Level 1B2 radiance and Level 2 aerosol optical
depth (AOD) data were used for SVM model learning. We
extracted 36 radiances and supplemented these with additional
82 geometric parameters resulting in 118 dimensional
patterns. The learning target was the green band regional
mean AOD, which was converted to binary classes of low
(thin) vs. high (thick) aerosol situations as compared to the
mean AOD (0.18) for the entire datasets. So, the problem of
aerosol estimation from radiances was reduced to a
classification problem of identifying low vs. high aerosol
situations given two classes of about the same size.

The observations under cloudy conditions were removed
since the existence of cloud would significantly affect the
correctness of the AOD retrieval. Cases with low-quality
radiance (radiometric data quality index less than 2) and with
missing AOD were also removed. Therefore, the number of
remaining instances used in our experiments is space and time
dependent. The total number of instances in the constructed
dataset of each cycle is shown in Table 3.1.
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Table 3.1. Cloud-free MISR radiance and aerosol data over entire
continental US (period and number of instances).

Cycle Start Time End Time # of Instances
1 07/17/2002 08/01/2002 76449
2 08/01/2002 08/17/2002 65620
3 08/18/2002 09/02/2002 51869
4 12/24/2002 01/08/2003 30451

4. RESULTS AND DISCUSSION

The method of combining and reusing the SVM proposed in
Section 2 was applied to both synthetic and MISR dataset
series described in Section 3. A linear classifier was used for
experiments on synthetic datasets and RBF classifier with
unity cost of constraint violation and width parameter for
experiments with MISR datasets.

4.1 Results from Synthetic Data

The first objective was to explore the rate at which the
number of support vectors might accumulate in time if all
vectors were propagated to the next stages. For this
experiment, the proposed method for merging relevant
support vector representatives with new arriving data was
applied without the proposed vector selection step by setting
S” to be an empty set in line 6 of the algorithm in Section 2.
The algorithm was applied to 50,000 data points partitioned
into a series of 500 spatial datasets each consisting of 100
instances. The experiment was performed for low as well as
for high noise synthetic data described in Section 3.1.

For a low noise situation, very few support vectors were
propagated for merging with the newly arriving data
independent of time. At the final 500-th time step, 10 support
vectors were propagated for merging with 100 newly arrived
data points and the resulting SVM was almost 100% accurate.
In contrast, for high noise data, the number of propagated
support vectors increased in time and soon become
excessively large. In particular, unless pruned properly, about
2,200 support vectors were collected throughout the SSVP
process of the initial 499 stages and they dominated over the
newly arriving 100 data points. The number of the support
vectors propagated at each of the 500 stages for merging with
the next dataset is plotted at the top panel of Fig. 4.1. The
linear trend of support vectors accumulation in this
experiment was due to outliers identified as support vectors.

The selection step proposed for pruning support vectors
(lines 5-7 of the algorithm described at Section 2) resolved
this problem as shown at the bottom panel of Fig. 4.1. The
simple selection method eliminated propagation of outliers as
they were produced such that the number of propagated
support vectors was much smaller (less than 140 throughout
the entire process) as necessary for efficient applications in
large spatial-temporal data series. While the accuracies of the
final SVM obtained with and without support vector pruning
on the entire dataset were similar (98.3% and 98.2%,
respectively) the training and prediction with the pruning step
was much faster than that without pruning.

At the bottom panel of Fig. 4.1, the slope of the curve
corresponding to the number of propagated support vectors as
a function of the time step is typically larger when the number
of support vectors is smaller. This is expected since the
position of the separation plane of an SVM is affected by the
fraction of support vectors propagated from previous SVMs.
The “inertia” of the separation plane, or the influence of
previous datasets, increases with the fraction of propagated
support vectors. On the other hand, the probability that a
support vector from an earlier dataset is removed increases
monotonically with time, such that the effect of a previous
dataset becomes less important in the training process with the
addition of new datasets. Therefore, the time interval, in
which an SVM can be validly trained with the SSVP method,
is determined by the competition of these two effects.
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Figure 4.1. Effect of SSVP on the size of the combined datasets for
high noise synthetic data. Without pruning the number of propagated
support vectors in each of 500 time steps monotonically increased
(top panel) while it stays small when the proposed selection step is
used (bottom panel).

4.2 Results from MISR Data

The proposed method with SSVP was then applied to the
MISR AOD retrieval described in Section 3. In this
challenging test data properties vary both spatially and
temporally with highly complex regional and temporal
features. To isolate the effect of regional features of the
dataset on the training of SVMs, the first set of experiments
was carried out using cycle 1 aerosol data over continental
U.S. (Table 3.1).

First, 47 SVMs were trained using 47 individual paths
without SSVP. Each SVM was applied to predict out-of-
sample AOD at all 47 paths of cycle 1. It was evident that the
SVMs trained on the Eastern region (paths 4 to 27) were not
applicable to Western region (paths 28 to 50) and vice versa,
whereas SVMs trained on a single path on one coast were
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somewhat applicable for out-of-path prediction over the same
region. In particular, the average accuracy for 24 SVMs
trained on a single eastern path when tested on out-of-sample
data over the entire eastern region was 66%. Similarly, a
single western-path-based SVM achieved 67% out-of-sample
average accuracy on 23 region paths.

Next, the proposed method was applied to cycle 1 data by
learning SVMs on training data corresponding to individual
paths supplemented with SSVP from previously learned
SVMs. In this experiment the training started from the
western most path (number 50 which is California data) and
proceeded east (to finish at path number 4 which is East Coast
U.S. data). Again, 24 East Coast predictors were tested for
out-of-sample accuracy on the entire eastern region while
each of 23 West Coast predictors was tested on the entire
western region. The average out-of-sample accuracy of the
SVMs with SSVP on the eastern and western regions was
77% and 72% respectively, which is significantly higher than
the accuracy obtained without SSVP.

The result of the first two sets of experiments provide
evidence that SSVP is also beneficial for improving the
prediction accuracy when data is high dimensional and the
spatial relationship is complex. The next set of experiments
on the MISR dataset was designed to explore the applicability
of the proposed methods for modeling temporal variation in
the properties of spatial-temporal datasets. For prediction on
all cycles, we first applied the final predictor of the previous
experiment obtained by learning local SVMs starting from the
western most path (50) and moving east with SSVP. The
accuracy of this predictor on all paths at all cycles is
summarized at the top panel of Fig. 4.2.

As already observed, cycle 1 accuracy of this predictor was
much better on the eastern region corresponding to path
numbers lower than 28 (accuracy 73% vs. only 38% at west).
The same predictor also had good accuracy on the eastern
region when predicting at cycle 2 and 3 data (71% and 64%)..
The prediction accuracy on cycle 4 was consistently much
worse (40%) since this data corresponds to a completely
different season as compared to training period (cycle 1). The
identified temporal semi-stationary property of the MISR
datasets provides opportunities for developing semi-global
SVM models for periods covering multiple time cycles
without discarding older observations of the same region.
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Figure 4.2. Out-of-sample classification accuracy (darker is more
accurate) on Cycles 1-4 when trained on Cycle 1 data. Application of
a single SVM obtained with SSVP (top panel) is compared to using
47 path-specific SVMs also constructed with SSVP (bottom panel).

Dependence of temporal semi-stationary behavior on the
regional features is further examined in the experiments
summarized at the bottom panel of Fig. 4.2. Here, an SVM
trained on path k data of cycle 1 with SSVP from path k+1 at
cycle 1 is used for out-of-sample classification at path k in all

four cycles. So, instead of applying a single predictor for out-
of-sample prediction, 47 path-specific predictors were trained
with SSVP. The resulting accuracy was much improved as
can be seen by comparing top and bottom panels of Fig. 4.2.
In particular, for East Cost data (paths 4-27) average accuracy
in cycle 1 and 3 is improved from 73%, 71% and 64% to 85%,
73% and 75%. In addition, West Coast (paths 28-50) accuracy
was 80%, 71%, 71% and 82% for cycle 1-4, respectively.
Therefore, model reuse in the MISR datasets was possible
both spatially and temporally.

The performed experiments suggest that the SVMs trained
with SSVP should only be extended to a spatial and temporal
vicinity of the training datasets and not to extremely remote
spatial regions or time periods. As a result, we developed a
scheme for constructing a sequence of semi-global SVMs
applicable for accurate prediction to moderately large spatial
and temporal regions in an efficient way (such that the
number of SVMs to cover the entire dataset is minimized).

By analyzing in more details cycle 1 classification accuracy
of the predictor summarized at the top panel of Fig. 4.2, it can
be seen that it was highly accurate in an East Coast region
covering about 10 paths followed by deteriorated accuracy as
it was applied west (see Fig. 4.3). Accuracy of the global
SVM trained on cycle 1 and semi-global SVMs with SSVP
over shorter regions was compared next. The results over 4
cycles and propagation over 47, 24, 16, 8 and 4 paths are
reported in Fig. 4.4 (propagation over 47 paths at cycle 1
corresponds to Fig. 4.3 results). The overall highest accuracy,
which was even slightly better than that of the global SVM,
was achieved by SSVP over blocks of 8 neighboring paths. In
these experiments, SVMs trained with SSVP after every 8
paths are applied for out-of-sample prediction at the
corresponding 8 adjacent paths. Consequently, only six semi-
global SVMs were required to cover each data cycle.
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Figure 4.3. Path-specific training vs. prediction accuracy of the SVM
trained with SSVP on Cycle 1. SSVP was from West to East (paths 50
to 4).

Finally, the computational efficiency of SVM training and
prediction in a sequence of paths of MISR datasets with SSVP
was compared to that of training a single SVM on the
corresponding data. Time comparison experiments were
performed on Cycle 1 data with the least number of missing
values and the most balanced number of instances per path
(see Table 3.1). A fixed number of 1500 instances were
randomly sampled with replacement from each path (i.e. each
instances may be included more than once). Both the training
and the prediction CPU time was insensitive to the length of
the data stream when learning in a series of local steps with
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SSVP as proposed here. In contrast, for training a regular
global model with merged data, the training time was a
quadratic function of the number of paths N, and the
prediction time increased linearly with N due to the increased
size of training data (see Fig. 4.5).
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Figure 4.4. Classification accuracy on cycles 1 to 4 with global and
semi-global SMVs trained on cycle 1 with SSVP over blocks of 4, 8,
16, 24 and 47 paths. Global SVM was trained with 70% instances of
cycle 1.
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Figure 4.5. Comparison of normalized training and prediction CPU
time, as a function of the number of paths N covered in training, for
SVMs trained with SSVP vs. regular SVM trained using merged raw
data from all paths. Training was from west to east (path 50 to 4)
using the data of Cycle 1, and prediction was for each individual path
only. CPU time for regular training with merged data is presented
normalized by the number of paths as to show a quadratic growing
curve together with a linear growing CPU time curve of regular
prediction and near-constant curves obtained when training and
testing with SSVP.

5. CONCLUSIONS

The proposed method of sequential SVM training with SSVP
was developed for supervised learning in a non-stationary
series consisting of correlated spatial datasets. The objective
was to obtain accurate semi-global prediction models with
low computation cost. A simple support vector selection
method was applied at each propagation step to prevent
monotonic growth of the number of propagated support
vectors over long sequences. The validity of the proposed
method was demonstrated on simple synthetic and

challenging geoinformatics spatial-temporal datasets. It was
found that to predict within larger spatial and temporal
neighborhoods, the SVM trained on a sequence of local
spatially correlated datasets with SSVP from a neighboring
region can be superior to reusing local models trained with
individual datasets.

Regional features discovered using the proposed approach
allowed spatial partitioning of MISR aerosol data over the
continental U.S. to western and eastern regions that provided
more accurate prediction results. Furthermore, regional
features were also found to be semi-stationary in time, such
that the regional models trained on previous datasets were
reusable for accurate regional predictions at future times. The
proposed model reuse method was also demonstrated as a
cost-effective alternative to merging raw data when learning
SVMs from large spatial-temporal data streams.
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