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Evaluation of a Neural Network-Based
Approach for Aerosol Optical Depth Retrieval
and Uncertainty Estimation

Kosta Ristovski, Slobodan V ucetic, and Zoran Obradovic

Abstract— In many applications of the neural networks,
predicting the conditional average of the target variable is not
sufficient. Often, real life problems also require estimation of the
uncertainty. In this study, uncertainty analysis is applied on a
remote sensing problem of Aerosol Optical Depth (AOD)
estimation. AOD is one of the most important properties of the
atmosphere that indicates the amount of depletion that a beam of
radiation undergoes as it passes through the atmosphere. To
predict AOD, we used a data-driven approach based on training
neural networks. Several techniques for uncertainty estimation
which are tractable for large amounts of high-dimensional
remote sensing data are considered. Under the assumption that
the noise in targets is input-dependent, the uncertainty of AOD
predictions is computed as the variance of the conditional
distribution of targets given the input data. Several methods for
uncertainty estimation were applied to areal data set with 67,907
observations collected over the whole Earth during three years
(2005-2007) with the attributes derived from MODIS satellite
instrument and with the targets obtained from ground-based
AERONET instruments. Knowledge discovered from the
uncertainty analysis of this data set can potentially be very useful
for better under standing of aerosol properties.

Index Terms— Regression, remote sensing, uncertainty

|. INTRODUCTION

Aerosols, small particles emanating from natural and man-
made sources, along with green house gases have been
recognized as very important factors in ongoing climate
changes [1]. The accurate study of aerosol composition and
their concentration is one of the main challenges in current
climate research. Aerosol optica depth (AOD) is a
dimensionless measure of the degree to which aerosols
prevent the transmission of light. The process of predicting
AOD using ground or satellite based observations is known as
AQOD retrieval.

We will consider aerosol-related data collected by the
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ground based Aerosol Robotic Network (AERONET)
instruments and aso by the Moderate Resolution Imaging
Spectrometer (MODIS) instrument aboard both Terra and
Aqua satellites. AERONET is a global remote sensing
network that provides aerosol information from the ground
with arelatively high accuracy but with low spatia coverage.
The MODIS instrument observes reflected solar radiation
through multiple spectral bands with high spatial resolution
and provides amost daily global coverage.

To retrieve AOD the operational MODIS retrieva
algorithm, called C005 (for Collection 5), relies on domain
knowledge of aerosol properties to construct tables of
expected AOD for various aerosol compositions [2]. In C005,
observations provided by MODIS are matched to the values
stored in limited-size lookup tables. However, this algorithm
is not designed to estimate uncertainty of predicted AOD.

More recently, statistical models based on artificial neural
networks emerged as successful tools for nonlinear regression
modeling of various remote sensing problems. In a neural
network based approach for AOD retrieval, satellite
observations are viewed as the inputs to a regression model
while ground-based AOD data provided by AERONET
instruments act as the corresponding target values. Such an
approach [3] provided strong evidence that an application of
neural networks for retrieving AOD could be more accurate
than alternatives.

Uncertainty estimation for the confidence of retrieval
requires the modeling of the whole conditional distribution of
the target variable. Previous studies [4,5] assume constant
noise variance which is not valid for many remote sensing
situations where noise is heteroscedastic (variance of noiseis
input-dependent). To overcome possible bias in the maximum
likelihood approach, Bishop and Quazaz introduced a
Bayesian method [6]. However, this method requires
calculating Hessian matrices and their inverses during a
training process of neural networks and is therefore
prohibitively time-consuming for large scale applications like
ours. So, in this paper we will consider severa methods for
uncertainty estimation based on the bootstrap technique that
aretractable for large data sets[7].

Several approaches for uncertainty estimation that are
considered in our study are explained in Section 1. In Section
[11, the MODIS and AERONET data used in our experiments
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is described. A quality measure for comparing uncertainty
estimation by various methods is defined in section 1V,
followed by a summary of the obtained results in section V.
Finally, section VI contains the discussion and conclusions.

II. METHODOLOGY

We are given a set of data pairs {x;, y;} i =12...,N where
X; and y; represent input attribute vectors and target variables,
respectively. A neura network-based regression assumes that
target y is related to input vector x by stochastic and
deterministic components [8]

y=px)+e(x). D
The stochastic component is a random variation of y around
its mean u(Xx) caused by heteroscedastic noise ¢(x) with zero-
mean Gaussian distribution and input-dependent variance
0,°(X). The deterministic component determines a functional
relationship between u(x) and x. Our god is to estimate both
the stochastic and deterministic component as good as
possible.

Suppose we have chosen n training points out of N and
want to train b neural networks in a bootstrap committee.
First, we generate b bootstrap replicates B; of the origina
training data set using sampling with replacement where each
replicate contains n examples. We train a neural network m2,(x)
on each replicate B;, i = 1,2, ...,b. By averaging outputs of the
b neura networks in the committee the deterministic
component can be estimated as

m(x) = U/ b) éml-(x). @

The stochastic component is determined by training an
additional neural network s(x). AOD prediction on atest data
point x is computed as m(x) and uncertainty of that prediction
is based on s(x). In the following, we evaluate three different
approaches for training s(x) taking a special care to reduce
bias in uncertainty estimation.

A. Prediction of squared error

A straightforward idea to estimate uncertainty o°(X) is to
train a neural network to predict squared error of m(x) defined
as

(y—m(x)?. (©)
In our experiments a standard Mean Squared Error (MSE)
criterion was used to train this network.

B. Maximization of log likelihood

Assuming heteroscedastic noise in (1), the conditional
target distribution can be written as

P(i1%) = (WU 2707(x,)): @
-expl=(v; — u(x,))* (207 (x)]
If u(x) is estimated sufficiently well by m(x), uncertainty o”(x)
can be estimated by a neural network s(x) that maximizes the
log-likelihood

logL = Ylog P(y, | X,) =
. (5)
= WD S, ~m(x))? 125(x) +10gs(x,)]
i=1

Observe that s(x) in (5) is replaced by ,°(x) in (4).

C. Model uncertainty and noise variance

In the negative log-likelihood approach it is assumed that
the conditional mean u(x) is exactly estimated by the bootstrap
committee m(x). Since m(x) is only an estimate, the model
uncertainty should be also considered. Model uncertainty for a
particular pattern can be estimated as [9]

2 _ b 2
o, (x)=[1/(-1] Zl[mj(xi)_m(xi)] . (6)
j=

In this approach error occurs due to both uncertainty in the
model and noise in target. Under the assumption that noise
inherent to the data and model uncertainty are independent,
squared error which comes from noise can be approximated
with

r2(x;) = max([(v; = m(x;))* = 0,2 (x)1,0) - ©
Noise variance 6,°(X) is estimated by training a neural network
s(x) to maximize log likelihood ([9])

(-1/2)Y [ ()] 25(%,) +10gs(x,)]. ®

Notice that term (y; — m(x;))* from (5) is replaced by *(x;) to
obtain (8). Uncertainty of the prediction is estimated as
o?(%;) = o (%) +5(%;) -

I1l. DATA SET

A regression model was trained using satellite observations
to predict targets that are AERONET AOD measurements.
MODIS instruments abroad Terra and Aqua satellites have
global daily coverage with spatial resolution 250x250m?
while, on the other hand, AERONET sites are located at fixed
locations on the globe and acquire data every 15 minutes. The
data set has been obtained after a spatio-temporal collocation
of the two sources of data where AERONET site-based AOD
values obtained within a short time before and after the
satellite overpass are integrated with satellite-based
observations at the overpass time. The data set contains
67,907 observations from MODIS collocated with AERONET
points at 201 AERONET sites over whole the globe in the
period of three years (2005-2007). Fourteen satellite-based
attributes listed in Table | have been used for uncertainty
estimation and for AOD retrieval.

IV. NLPD

The average negative log-predictive density (VNLPD) of the
true targets is a measure which is used for estimation of the
quality of uncertainty estimation. The main purpose of this
measure is to compare different methods applied on the same
data set. Thisloss function is defined as [10]
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NLPD =—( n)¥10g p(v; | X,) - ©)
i=1

It penalizes both over and under-confident predictions. For
Gaussian predictive distribution NLPD is calculated as

(W n)3{logo(x,) + [y, ~ m(x,)]? 120%(x;) +} .
i=1

The constant ¢ can be ignored for comparison purposes. Since
NLPD is calculated as the negative logarithm, smaller NLPD
scores (larger absolute values) correspond to better quality
uncertainty estimates.

(10)

TABLE |
LIST OF ATTRIBUTES COLLECTED FROM MODIS
Attribute index Description
1-4 Mean reflectance in 50x50km? blocks at four
wavelengths
5-8 Standard deviation of reflectance
9-13 Solar Zenith, Solar Azimuth, Sensor Zenith, Sensor
Azimuth, Scattering Angle
14 AERONET site elevation

V. EXPERIMENTAL RESULTS

The considered methods have been applied to the Aerosol
data set described in Section Il1l. In experiments based on
year-out cross-validation, two years of data were used as a
training set while the model was tested on the remaining third
year. Among 201 AERONET sites some do not have data for
a particular year. Models composed of 30 neural networks in
the committee were trained on the subset of sites which have
data in both training and testing years. In that way AOD
retrievals and uncertainty estimation were obtained for al
three years which is of utmost importance for the following
analysis.

TABLEII
R? STATISTICS FOR BOOTSTRAP TECHNIQUE AND C005 OVER THREE YEARS
2
Algorithm R
Y ear 2005 Y ear 2006 Y ear 2007
Bootstrap 0.797 0.782 0.809
C005 0.724 0.685 0.722
TABLEIII
NLPD SCORES FOR CONSIDERED METHODS
Model for uncertainty estimation NLPD
Squared error prediction -0.69
Log-likelihood -2.01
Model uncertainty and noise variance -2.03

Accuracies in AOD prediction achieved by the bootstrap
technique were the same for all three methods because of the
same structure of the committee, but they were much higher in
comparison to the accuracy of the C005 agorithm. R?
accuracies are reported in Table Il. Besides good prediction
accuracy, our objective was to identify the method which
gives the best uncertainty estimation. The difference between
three methods was measured through NLPD score which was
calculated by gathering estimates over all three years. NLPD

scores are presented in Table I11. In our experiments, taking
into account model uncertainty and noise variance was
dlightly better than using a model trained on log-likelihood
and was a lot better than the square error prediction. Further
analysis of uncertainty reported in this section is based on the
results achieved applying the uncertainty estimation method
that accounts for model uncertainty and noise variance.

According to a popular domain-specific measure [2], AOD
predictions are considered to be good if they fall in the region
specified by

| y; —m(X;) € 0.05+0.15y; . (1)
To use this measure we have sorted AOD retrievals according
to uncertainty estimates in an ascending order and then we
split them in equal-width bins of 3,000 points. In each bin we
measured fraction of predictions defined as[3]

FRACTION = (I N)x100%, (12

where I is a number of data points in the bin which satisfy
relation (11) and N is 3000. At Fig 1 each bin is represented
by the average of standard deviations of uncertainty estimates
for 3,000 pointsit contains (horizontal) and FRACTION score
for these points (vertical). We can see that for bins that
contain more certain data points, the obtained corresponding
FRACTION scoreis higher, thus satisfying our expectation.
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Figure 1. Prediction accuracy measured as the Fraction score for equal-width
bins of 3,000 points sorted from lower to higher uncertainty.

The obtained results alow analysis of uncertainty of AOD
retrieval a a given site over time and aso uncertainty
comparison at multiple sites. As an example, we compare
uncertainty of AOD retrieval at Beijing site in China (Fig 2)
vs. Muana Loa site in Hawaii (Fig 3) to conclude that
properties of aerosols are much more stable at Muana Loa
than in Beijing. It is easily noticeable that absolute errors for
those sites have similar patterns as uncertainty estimates. Also,
uncertainty level a& Muana Loa site is very stable and
extremely low. By further investigation we found that this
discovery is consistent with domain experts expectations as
this site serves for calibration of AERONET instruments.

By an analysis of the NLPD scores for 450 site-year
datasets (148, 169, and 133 sites in years 2005, 2006, and
2007) we found that 12 site-year patterns are outliers with
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high values which indicates failure of the algorithm. An
example of such AERONET sitein Taiwan in shown in Fig 4.
Obviously, here absolute error values are much larger than a
standard deviation of uncertainty estimates.

Average uncertainties at 148 sites in 2007 were calculated
and they are presented in Fig 5 where the smaller circle means
the smaller average uncertainty. We could see that annually
averaged uncertainty has spatial patterns.
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Figure 2. Absolute error of AOD prediction and estimated uncertainty
(standard deviation of the total variance) for Beigin AERONET sitein 2007.
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Figure 3. Absolute error of AOD prediction and estimated uncertainty for
Muana Loa AERONET sitein 2007.
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Figure 4. Absolute error of the prediction, and estimated uncertainty for
Taiwan AERONET site in 2006 with NLPD=29.41.

Our analysis of seasonal uncertainty levels over three years
also indicates existence of different interesting patterns
(omitted from this report for lack of space). For example, we
compared sites with the highest and the lowest average
uncertainty over the seasons. For the most uncertain sites
average seasonal variance was between 0.06 and 0.18. The
highest uncertainty levels occur in Asia over all seasons, in
Africa during the winter and fall, and in the central part of
South America during the summer. These levels reach
extreme values in summer while for other seasons are almost
equal. On the other hand, the lowest levels of uncertainty
appear in North America and Europe during winter, summer,

and fall, and in South America during the spring. Variances of
these uncertainties are fairly constant over all seasons ranging
from 0.0019 to 0.0024.
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Figure 5. Average uncertainty levels at 148 sitesin year 2007.

V1. CONCLUSION

Three methods for uncertainty estimation were presented
and compared. Committees of neural networks for AOD
prediction were more accurate than the operational algorithm
CO005. It was shown that the Bootstrap technique which takes
into account model uncertainty and noise variance provides
the best results among the studied alternatives. Spatial and
temporal uncertainty analysis presented in this work provides
multiple opportunities to improve our understanding of global
properties of aerosol in a cost-effective way. Searching for
new agorithms and more sophisticated analysis methods are
the objectives of our future work.
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