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Abstract— In many applications of the neural networks, 

predicting the conditional average of the target variable is not 
sufficient. Often, real life problems also require estimation of the 
uncertainty. In this study, uncertainty analysis is applied on a 
remote sensing problem of Aerosol Optical Depth (AOD) 
estimation. AOD is one of the most important properties of the 
atmosphere that indicates the amount of depletion that a beam of 
radiation undergoes as it passes through the atmosphere. To 
predict AOD, we used a data-driven approach based on training 
neural networks.  Several techniques for uncertainty estimation 
which are tractable for large amounts of high-dimensional 
remote sensing data are considered. Under the assumption that 
the noise in targets is input-dependent, the uncertainty of AOD 
predictions is computed as the variance of the conditional 
distribution of targets given the input data. Several methods for 
uncertainty estimation were applied to a real data set with 67,907 
observations collected over the whole Earth during three years 
(2005-2007) with the attributes derived from MODIS satellite 
instrument and with the targets obtained from ground-based 
AERONET instruments. Knowledge discovered from the 
uncertainty analysis of this data set can potentially be very useful 
for better understanding of aerosol properties.  
 

Index Terms— Regression, remote sensing, uncertainty 

I. INTRODUCTION 
Aerosols, small particles emanating from natural and man-

made sources, along with green house gases have been 
recognized as very important factors in ongoing climate 
changes [1]. The accurate study of aerosol composition and 
their concentration is one of the main challenges in current 
climate research. Aerosol optical depth (AOD) is a 
dimensionless measure of the degree to which aerosols 
prevent the transmission of light. The process of predicting 
AOD using ground or satellite based observations is known as 
AOD retrieval. 

We will consider aerosol-related data collected by the 

ground based Aerosol Robotic Network (AERONET) 
instruments and also by the Moderate Resolution Imaging 
Spectrometer (MODIS) instrument aboard both Terra and 
Aqua satellites. AERONET is a global remote sensing 
network that provides aerosol information from the ground 
with a relatively high accuracy but with low spatial coverage. 
The MODIS instrument observes reflected solar radiation 
through multiple spectral bands with high spatial resolution 
and provides almost daily global coverage.   
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To retrieve AOD the operational MODIS retrieval 
algorithm, called C005 (for Collection 5), relies on domain 
knowledge of aerosol properties to construct tables of 
expected AOD for various aerosol compositions [2]. In C005, 
observations provided by MODIS are matched to the values 
stored in limited-size lookup tables. However, this algorithm 
is not designed to estimate uncertainty of predicted AOD. 

More recently, statistical models based on artificial neural 
networks emerged as successful tools for nonlinear regression 
modeling of various remote sensing problems. In a neural 
network based approach for AOD retrieval, satellite 
observations are viewed as the inputs to a regression model 
while ground-based AOD data provided by AERONET 
instruments act as the corresponding target values. Such an 
approach [3] provided strong evidence that an application of 
neural networks for retrieving AOD could be more accurate 
than alternatives. 

Uncertainty estimation for the confidence of retrieval 
requires the modeling of the whole conditional distribution of 
the target variable. Previous studies [4,5] assume constant 
noise variance which is not valid for many remote sensing 
situations where noise is heteroscedastic (variance of noise is 
input-dependent). To overcome possible bias in the maximum 
likelihood approach, Bishop and Quazaz introduced a 
Bayesian method [6]. However, this method requires 
calculating Hessian matrices and their inverses during a 
training process of neural networks and is therefore 
prohibitively time-consuming for large scale applications like 
ours. So, in this paper we will consider several methods for 
uncertainty estimation based on the bootstrap technique that 
are tractable for large data sets [7].  

Several approaches for uncertainty estimation that are 
considered in our study are explained in Section II. In Section 
III, the MODIS and AERONET data used in our experiments 
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is described. A quality measure for comparing uncertainty 
estimation by various methods is defined in section IV, 
followed by a summary of the obtained results in section V. 
Finally, section VI contains the discussion and conclusions.  

II. METHODOLOGY  
We are given a set of data pairs {xi, yi} i = 1,2,…,N where 

xi and yi represent input attribute vectors and target variables, 
respectively. A neural network-based regression assumes that 
target y is related to input vector x by stochastic and 
deterministic components [8]   
   )()( xxy εμ += . (1) 
The stochastic component is a random variation of y around 
its mean μ(x) caused by heteroscedastic noise ε(x) with zero-
mean Gaussian distribution and input-dependent variance 
σn

2(x). The deterministic component determines a functional 
relationship between μ(x) and x. Our goal is to estimate both 
the stochastic and deterministic component as good as 
possible. 

Suppose we have chosen n training points out of N and 
want to train b neural networks in a bootstrap committee. 
First, we generate b bootstrap replicates BBi of the original 
training data set using sampling with replacement where each 
replicate contains n examples. We train a neural network mi(x) 
on each replicate BiB , i = 1,2,…,b. By averaging outputs of the 
b neural networks in the committee the deterministic 
component can be estimated as 
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The stochastic component is determined by training an 
additional neural network s(x). AOD prediction on a test data 
point x is computed as m(x) and uncertainty of that prediction 
is based on s(x). In the following, we evaluate three different 
approaches for training s(x) taking a special care to reduce 
bias in uncertainty estimation. 

A. Prediction of squared error 
A straightforward idea to estimate uncertainty σ2(x) is to 

train a neural network to predict squared error of m(x) defined 
as 
   . (3) 2))(( xmy −
In our experiments a standard Mean Squared Error (MSE) 
criterion was used to train this network.  

B. Maximization of log likelihood 
Assuming heteroscedastic noise in (1), the conditional 

target distribution can be written as 
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If μ(x) is estimated sufficiently well by m(x), uncertainty σ2(x) 
can be estimated by a neural network s(x) that maximizes the 
log-likelihood 
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Observe that s(x) in (5) is replaced by σn
2(x) in (4). 

C. Model uncertainty and noise variance 
In the negative log-likelihood approach it is assumed that 

the conditional mean μ(x) is exactly estimated by the bootstrap 
committee m(x). Since m(x) is only an estimate, the model 
uncertainty should be also considered. Model uncertainty for a 
particular pattern can be estimated as [9] 
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In this approach error occurs due to both uncertainty in the 
model and noise in target. Under the assumption that noise 
inherent to the data and model uncertainty are independent, 
squared error which comes from noise can be approximated 
with 
   . (7) )0)],())(max([()( 222
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Noise variance σn

2(x) is estimated by training a neural network 
s(x) to maximize log likelihood ([9]) 
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Notice that term (yi – m(xi))2 from (5) is replaced by r2(xi) to 
obtain (8). Uncertainty of the prediction is estimated as 
   . )()()( 22

iimi s xxx += σσ

III. DATA SET 
A regression model was trained using satellite observations 

to predict targets that are AERONET AOD measurements. 
MODIS instruments abroad Terra and Aqua satellites have 
global daily coverage with spatial resolution 250x250m2 
while, on the other hand, AERONET sites are located at fixed 
locations on the globe and acquire data every 15 minutes. The 
data set has been obtained after a spatio-temporal collocation 
of the two sources of data where AERONET site-based AOD 
values obtained within a short time before and after the 
satellite overpass are integrated with satellite-based 
observations at the overpass time. The data set contains 
67,907 observations from MODIS collocated with AERONET 
points at 201 AERONET sites over whole the globe in the 
period of three years (2005-2007). Fourteen satellite-based 
attributes listed in Table I have been used for uncertainty 
estimation and for AOD retrieval. 

IV. NLPD 
The average negative log-predictive density (NLPD) of the 

true targets is a measure which is used for estimation of the 
quality of uncertainty estimation. The main purpose of this 
measure is to compare different methods applied on the same 
data set. This loss function is defined as [10] 
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It penalizes both over and under-confident predictions. For 
Gaussian predictive distribution NLPD is calculated as  
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The constant c can be ignored for comparison purposes. Since 
NLPD is calculated as the negative logarithm, smaller NLPD 
scores (larger absolute values) correspond to better quality 
uncertainty estimates.     

TABLE  I 
LIST  OF ATTRIBUTES COLLECTED FROM MODIS 

Attribute index Description 

1-4 Mean reflectance in 50x50km2 blocks at four 
wavelengths 

5-8 Standard deviation of reflectance 

9-13 Solar Zenith, Solar Azimuth, Sensor Zenith, Sensor 
Azimuth, Scattering Angle 

14 AERONET site elevation 

V. EXPERIMENTAL RESULTS 
The considered methods have been applied to the Aerosol 

data set described in Section III. In experiments based on 
year-out cross-validation, two years of data were used as a 
training set while the model was tested on the remaining third 
year. Among 201 AERONET sites some do not have data for 
a particular year. Models composed of 30 neural networks in 
the committee were trained on the subset of sites which have 
data in both training and testing years. In that way AOD 
retrievals and uncertainty estimation were obtained for all 
three years which is of utmost importance for the following 
analysis. 

TABLE II 
R2 STATISTICS FOR BOOTSTRAP TECHNIQUE AND C005 OVER THREE YEARS 

R2
Algorithm 

Year 2005 Year 2006 Year 2007 
Bootstrap 0.797 0.782 0.809 
C005 0.724 0.685 0.722 

 
TABLE III 

NLPD SCORES FOR CONSIDERED METHODS 

Model for uncertainty estimation NLPD 

Squared error prediction -0.69 
Log-likelihood -2.01 
Model uncertainty and noise variance -2.03 

  
Accuracies in AOD prediction achieved by the bootstrap 

technique were the same for all three methods because of the 
same structure of the committee, but they were much higher in 
comparison to the accuracy of the C005 algorithm. R2 
accuracies are reported in Table II. Besides good prediction 
accuracy, our objective was to identify the method which 
gives the best uncertainty estimation. The difference between 
three methods was measured through NLPD score which was 
calculated by gathering estimates over all three years. NLPD 

scores are presented in Table III. In our experiments, taking 
into account model uncertainty and noise variance was 
slightly better than using a model trained on log-likelihood 
and was a lot better than the square error prediction. Further 
analysis of uncertainty reported in this section is based on the 
results achieved applying the uncertainty estimation method 
that accounts for model uncertainty and noise variance.  

According to a popular domain-specific measure [2], AOD 
predictions are considered to be good if they fall in the region 
specified by  
   . (11) iii ymy 15.005.0|)(| +≤− x
To use this measure we have sorted AOD retrievals according 
to uncertainty estimates in an ascending order and then we 
split them in equal-width bins of 3,000 points. In each bin we 
measured fraction of predictions defined as [3] 
   , (12) %100)/( ×= NIFRACTION
where I is a number of data points in the bin which satisfy 
relation (11) and N is 3000. At Fig 1 each bin is represented 
by the average of standard deviations of uncertainty estimates 
for 3,000 points it contains (horizontal) and FRACTION score 
for these points (vertical). We can see that for bins that 
contain more certain data points, the obtained corresponding 
FRACTION score is higher, thus satisfying our expectation. 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
45

50

55

60

65

70

75

80

85

90

95

Averaged standard deviation of uncertainty in a bin

Fr
ac

tio
n

Figure 1. Prediction accuracy measured as the Fraction score for equal-width 
bins of 3,000 points sorted from lower to higher uncertainty. 

 
The obtained results allow analysis of uncertainty of AOD 

retrieval at a given site over time and also uncertainty 
comparison at multiple sites. As an example, we compare 
uncertainty of AOD retrieval at Beijing site in China (Fig 2) 
vs. Muana Loa site in Hawaii (Fig 3) to conclude that 
properties of aerosols are much more stable at Muana Loa 
than in Beijing. It is easily noticeable that absolute errors for 
those sites have similar patterns as uncertainty estimates. Also, 
uncertainty level at Muana Loa site is very stable and 
extremely low. By further investigation we found that this 
discovery is consistent with domain experts’ expectations as 
this site serves for calibration of AERONET instruments.   

By an analysis of the NLPD scores for 450 site-year 
datasets (148, 169, and 133 sites in years 2005, 2006, and 
2007) we found that 12 site-year patterns are outliers with 
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high values which indicates failure of the algorithm. An 
example of such AERONET site in Taiwan in shown in Fig 4. 
Obviously, here absolute error values are much larger than a 
standard deviation of uncertainty estimates.  

Average uncertainties at 148 sites in 2007 were calculated 
and they are presented in Fig 5 where the smaller circle means 
the smaller average uncertainty. We could see that annually 
averaged uncertainty has spatial patterns.    
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Figure 2. Absolute error of AOD prediction and estimated uncertainty 
(standard deviation of the total variance) for Beigin AERONET site in 2007. 
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Figure 3. Absolute error of AOD prediction and estimated uncertainty for 
Muana Loa AERONET site in 2007. 
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Figure 4. Absolute error of the prediction, and estimated uncertainty for 
Taiwan AERONET site in 2006 with NLPD=29.41. 
 

Our analysis of seasonal uncertainty levels over three years 
also indicates existence of different interesting patterns 
(omitted from this report for lack of space). For example, we 
compared sites with the highest and the lowest average 
uncertainty over the seasons. For the most uncertain sites 
average seasonal variance was between 0.06 and 0.18. The 
highest uncertainty levels occur in Asia over all seasons, in 
Africa during the winter and fall, and in the central part of 
South America during the summer. These levels reach 
extreme values in summer while for other seasons are almost 
equal. On the other hand, the lowest levels of uncertainty 
appear in North America and Europe during winter, summer, 

and fall, and in South America during the spring. Variances of 
these uncertainties are fairly constant over all seasons ranging 
from 0.0019 to 0.0024.   
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Figure 5. Average uncertainty levels at 148 sites in year 2007. 

VI. CONCLUSION 
Three methods for uncertainty estimation were presented 

and compared. Committees of neural networks for AOD 
prediction were more accurate than the operational algorithm 
C005. It was shown that the Bootstrap technique which takes 
into account model uncertainty and noise variance provides 
the best results among the studied alternatives.  Spatial and 
temporal uncertainty analysis presented in this work provides 
multiple opportunities to improve our understanding of global 
properties of aerosol in a cost-effective way.  Searching for 
new algorithms and more sophisticated analysis methods are 
the objectives of our future work. 
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