7 Integration of Heterogeneous Sources of
Partial Domain Knowledge

PEDRO ROMERO ZORAN OBRADOVI¢ JUSTIN FLETCHER
promero@eecs.wsu.edu  zoran@eecs.wsu.edu  jfletche@xkl.com

School of Electrical Engineering and Computer Science
Washington State University, Pullman, Washington, 99164-2752

Abstract

This article explores the possibility of achieving better classification results us-
ing systems that integrate prior knowledge and learning from examples into a hy-
brid knowledge-based neurocomputing system. This integration is first discussed as
a transformation of either the original problem’s domain or its range. A domain
transforming neural network model that starts from a single source of prior knowl-
edge and grows incrementally as needed is introduced next. In this model two in-
tegration techniques are explored: (1) converting the expert system rule base into
a corresponding neural network and then extending this network by constructive
learning; and (2) embedding the pre-existing expert system directly into a construc-
tive neural network learning system. Domain transforming and range transforming
methods for integrating multiple prior-knowledge sources simultaneously are also
considered. Various experiments carried out on the two-spirals and a financial ad-
vising classification problems showed that prior knowledge can indeed help improve
the results obtainable by learning from examples alone. When integrating multiple
sources of prior knowledge, a competitive neural network based integration technique
significantly outperformed the individual classifiers, a symbolic based method and a
cooperative neural network based technique.

7.1 Introduction

Automatically classifying data into categories is an important problem in many
real life domains. When data is two-dimensional, classification tasks can be simple
for humans but still quite difficult for automatic systems (e.g. determining whether
a point is inside or outside of nested spirals is a well-known benchmark problem
for classification systems (Fahlman and Lebiere, 1990)). Higher-dimensional data
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classification is typically challenging for humans too, and sometimes more accurate
results are achievable by automatic classifiers (e.g. determining protein disorder
from amino acid sequence (Romero et al., 1997)).

There are two traditional ways for a computer system to acquire knowledge
required to perform classification tasks. The knowledge based approach translates
information obtained from human domain experts into a form that is interpretable
by a computer system (Hayes-Roth et al., 1983). This knowledge base is the core
of an expert system, which emulates human decision-making skills. The alternative
approach, called machine learning, is an attempt to extract knowledge directly from
data (Dietterich and Michalski, 1983).

Each of these two approaches has its advantages and disadvantages. An expert
system represents knowledge in symbolic form allowing relatively easy manipulation
and incorporation of newly obtained knowledge. In addition, its classification
engine may be readily interpreted by humans. A machine learning system is less
dependent on human understanding of the phenomena and can be, in principle,
applied to any domain with sufficient amount of available data. However, both
approaches are based on strong modeling assumptions. Expert systems assume
human understanding of the phenomena and availability of an expert capable of
explaining domain knowledge to a computer programmer. The knowledge used to
build an expert system is typically acquired from the expertise of many individuals
and thus, it can be inconsistent and incomplete. Similarly, a data set used to
build a machine learning system can be noisy, conflicting and sparse. Even if
these problems are not present in a given data set, extracting complex nonlinear
relationships directly from data through machine learning can still be a difficult
nonlinear optimization task.

Hybrid intelligent systems (Michalski and Tecuci, 1994) that integrate knowledge
extraction from data and use of existing alternative sources of domain specific
knowledge have had considerable practical success (Drossu and Obradovié¢, 1996;
Fletcher and Obradovié, 1993; Towell et al., 1990). Typical systems of this type use
domain-specific rules, stochastic analysis, nonlinear dynamics, genetic algorithms,
fuzzy logic or other approaches to complement limited training data information
and create more accurate prediction systems.

An inspection of recent literature indicates that the most popular approaches
for integrating multiple learning components are: (1) combining expert modules
through various averaging scenarios; and (2) selecting the most competent local
expert for any given example. The combining approach can potentially be used to
reduce the variance of an unstable predictor without increasing its bias (Breiman,
1996). This is very attractive when applying neural network modeling in complex
domains where these models are very likely to be unstable (Chan et al., 1996;
Chenoweth and Obradovié¢, 1996; Shimshoni and Intrator, 1996). In the selection
approach each expert module tends to learn only a subset of the training data, thus
devoting itself to a sub-region of the input space (Jacobs et al., 1991). This showed
quite promising results when forecasting a non-stationary time series (Weigend
et al., 1995).
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In particular, current research has been directed towards systems in which neural
network machine learning techniques are combined with expert systems in order to
complement and enhance their capabilities (Kandel and Langholz, 1992; Medsker
and Bailey, 1992). This combination has been carried out in several directions
including;:

Transformational models. Here, one type of system is transformed into another,
i.e. either an expert system is transformed into a neural network or vice versa (Gal-
lant, 1988; Samad, 1988). Neural nets are transformed into expert systems whenever
knowledge documentation and justification facilities are needed. Conversely, an ex-
pert system can be transformed into a neural network when speed, adaptability
and robustness are a priority.

Fully-integrated models. Here several systems share data structures and knowl-
edge representation. The most common variation of this model is the connectionist
expert system, in which symbolic nodes are connected by weighted links (Gallant,
1988). These systems are robust and have improved problem solving characteristics,
but the complexity of the system makes it difficult to develop and maintain.

Loosely-coupled models. This is an integrational model in which neural network
and knowledge based systems interact through shared data files. Examples include
one system serving as a preprocessor, post-processor, co-processor or interface
for the other (Benachenhou et al., 1990). These systems are easier to develop
than more integrated models, allowing for the use of commercial software for
both expert systems and neural networks, but at the cost of slower operation,
redundancy in computational capabilities, overlap in data input requirements and
high communication cost.

Tightly-coupled models. As in loosely-coupled models, this type of architecture
uses independent neural net and expert systems. The difference is that here the
interaction is by means of memory resident data structures, so communication and
operation velocities are vastly improved. System development is not much more
difficult than that for loosely-coupled systems, but redundancy is also here an issue
(Gutknecht et al., 1991; Hanson and Brekke, 1988; Hendler and Dickens, 1991).

The approaches just explained are used in this work to develop knowledge-based
neurocomputing systems that integrate neural network learning from examples
with sources of partial domain knowledge obtained from human symbolic reasoning
(henceforth called experts). This integration has been carried out in two ways:

Embedding transformed experts. This is a transformational approach in
which the expert is converted into a neural network that serves as a starting
point for learning from examples.

Embedding experts directly. In this approach the experts are embedded with-
out modifications in the hybrid classification system, which means that no knowl-
edge of their internal mechanisms is required. Thus, in this case, the definition of
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an expert can be expanded to include any system used to encapsulate pre-existing
knowledge: traditional expert systems, statistical prediction systems, nearest neigh-
bor algorithms, inductive algorithms, computer programs, fuzzy logic, genetic al-
gorithms, neural networks and the like.

In addition, the hybrid systems discussed in this study are organized into:

Single expert expansion systems. In this approach, all expert knowledge
comes from a single source, which is further expanded through neural network
learning,.

Multiple experts integration systems. Here multiple, possibly heterogeneous,
experts are integrated into a hybrid classification system.

The integration of partial domain knowledge sources can be viewed as a trans-
formation of either the problem domain or its range, as illustrated in Section 7.2.
Section 7.3 describes three single expert expansion systems, two being transforma-
tional, and one fully-integrated model that embeds an expert directly. Three multi-
ple experts integration techniques that embed prior knowledge sources directly are
presented in Section 7.4. Finally, Section 7.5contains experimental comparison of
these models on two classification problems.

7.2 Experts Integration: Domain or Range Transformation Dilemma

A classification problem can be viewed as identification of an appropriate mapping
from a given domain to a range of categories. For example, a classification problem
that takes a pattern composed of n real numbers as input and tries to classify it as
belonging to one of two classes, defined as “0” or “1”, can be seen as a mapping:

R {0,1}

where R™ is the domain of the mapping and {0,1} represents its range.

When integrating prior knowledge sources, the classification problem is hopefully
simplified by transforming its corresponding mapping. This can be achieved by
modifying either the problem domain or its range as discussed in this section.

7.2.1 Domain transformation

When using the outputs of several experts as inputs to a new classifier (called
a combiner), the original input space is transformed to an entirely new one, its
dimensionality being defined by the number of experts used and their output
representation.

For example, suppose K experts are to be combined to solve an n-input, m-class
classification problem. Assuming that each expert uses m outputs, the combining
classifier will have mK inputs, thus transforming the problem domain from n
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Figure 7.1 Integrating m experts: domain transformation from n-dimensional to
mK-dimensional.

dimensions onto mK dimensions. Figure 7.1 shows schematically how this process
works.

When transforming the problems domain as explained, the hope is that it will
be easier to identify an appropriate mapping using the new problem domain. This
can be the result of one or more of the following reasons:

Reduced domain dimensionality. This results in models with less parameters,
which, due to the curse of dimensionality, can be a significant advantage when
designing a model from a limited data set (Bishop, 1995).

Input pre-processing. The domain transformation can be regarded as a feature
extraction process (Fukunaga, 1990). This can help eliminate the effect of irrelevant
or noisy input variables.

Simpler decision regions. Even if the original dimensionality is not significantly
reduced through a transformation, classes in the new domain may be easier to
separate due to more favorable clustering of the patterns.

It is important to observe that information can be lost when transforming the
domain, resulting in a poor classifier. This is especially true for experts with
low-resolution output representations (e.g. one bit representation for each output
dimension). This is illustrated in Figure 7.2, where two experts, whose outputs are
one-bit numbers, are to be combined. In that figure, class 0 and class 1 patterns
are represented as circles and crosses respectively. The domain is partitioned into
regions according to the experts’ outputs, shown as pairs (a,b) for each region.
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Figure 7.2 Decision regions for two experts with binary outputs.

Notice that each pair (a,b) represents an input vector for the combiner. In this
example, the transformed domain is not faithful in any of the regions, meaning
that for each region there are examples that belong to different classes and that are
mapped to the same input vector for the combiner. This information loss makes it
impossible for a combiner to resolve the problem completely.

7.2.2 Range transformation

In this case, a classifier is trained to integrate the various experts by partitioning
the domain and assigning disjoint regions to individual experts. Here, the original
problem domain does not change, but the integrating classifier has a different class
range defined by the number of experts.

Suppose that K experts are to be integrated in this manner. The problem is
reduced to assigning each expert exclusively to its “region of expertise”, that is,
a sub-domain where a given expert’s classification performance is superior to that
of the other experts. So, the original m-class problem is transformed into a new
problem with f(K) classes.

For K = 2, the classifier could be trained to recognize the following possibilities:

Class 0 None of the local experts classifies
this example correctly;

Class 1 Expert 1 alone classifies the ex-
ample correctly;

Class 2 Expert 2 alone classifies the ex-
ample correctly;

Class 3 Both local experts classify the ex-
ample correctly.
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Figure 7.3 (a) Hypothetical range transformation for the integration of two
experts in a 2-class problem. (b) Two of the possible distributions of the input
space between the two experts.

Figure 7.3(a) shows a schematic view of the input space of a 2-class problem and
a possible range transformation into a 4-class problem according to the method
just explained for K = 2 experts. Notice that in this case the number of classes is
increased, but this is done anticipating that the new decision regions are simpler in
the transformed problem than in the original one. Whether or not this will be the
case depends on the characteristics of the problem and the quality of the experts
used.

This transformation leads to f(K) = 2K, so the number of classes grows
exponentially with the number of experts used. A better alternative for this example
would be to use only 2 classes:

Class 1:  Use expert 1 to classify the example;

Class 2:  Use expert 2.

However, the new problem here is that of assigning the patterns for which both
experts are correct (or incorrect). Figure 7.3(b) depicts two of the possible ways
to distribute the input space between the two experts. Notice that any decision
boundary laying within the region where both experts are correct (class 3 on the
right hand side of Figure 7.3(a)) is acceptable for this distribution: Figure 7.3(b)
just shows the extreme cases, that is, assigning the whole “class 3” region to either
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Figure 7.4 Range transformation for the Figure 7.2 problem.

expert. Similarly, the “class 0” region could have been assigned to expert 2 or even
distributed randomly between both experts. In any event, the decision regions thus
created would have been a lot more complex. In a problem with more dimensions
or experts, this assignment task gets even more complicated.

Hybrid systems relying on range transformation can provide various advantages
over original classifiers, specifically the following:

Simpler decision regions. As in the domain transformation case, it is anticipat-
ed that the transformed problem will have simpler decision regions than the original
one, thus being easier to solve and requiring a less complex classifier to do the job.

Restricted domain for local training. Assigning a portion of the domain to a
specific classifier allows local training of machine learning based experts on the
remaining region or regions. Examples of this approach are studied in Sections 7.3
and 7.4.

Insensibility to output representation. Range transformation works in the
same way regardless of the experts’ output representation. Indeed, the technique
can even work with experts whose output representations differ from one another.
Figure 7.4 shows the same hypothetical problem shown in Figure 7.2, but this time
the range transformation produces two distinct and easily separable regions corre-
sponding to the “areas of expertise” of each expert. Remember that this problem
was impossible to solve appropriately when transforming the domain.

7.3 Incremental Single Expert Expansion

In (Towell et al., 1990), the authors have proposed a knowledge-based artificial
neural network approach called KBANN, that generates neural networks from
hierarchically structured rules. In these neural networks units correspond to rules,
while connection weights and thresholds correspond to rule dependencies (as will be
demonstrated on a financial advising example in the results section). Each layer is
then fully connected with the weights of the new links set to small random values.
Finally, the initial knowledge is refined by neural network training from examples
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using the backpropagation algorithm (Werbos, 1995).

The “hyperplane determination from examples algorithm” (HDE) proposed at
(Fletcher and Obradovié, 1995) belongs to the class of constructive algorithms.
These algorithms, in addition to optimizing the model’s parameter values, also
search for an appropriate neural network topology by growing hidden units in a
greedy optimization manner. In contrast to the well known cascade correlation
technique (Fahlman and Lebiere, 1990), which grows neurons in depth, HDE is
used to construct a 2-layer neural network starting from a single hidden unit and
adding new hidden units as necessary.

This algorithm can be used to build a hybrid classification system by using an
expert to build the initial neural network and then applying HDE to add new hidden
units to improve classification performance. Similar to the KBANN technique, the
expert can be converted into a rule base and then transformed into a neural network
(Fletcher and Obradovié, 1993). Alternatively, the source of prior knowledge can be
used in a “black box” fashion by treating it as a single hidden unit (called an ezpert
unit). A more detailed explanation of this domain transforming hybrid model is
provided in this section.

7.3.1 The HDE algorithm

An interesting iterative construction of hidden units in a feed-forward neural
network with a single hidden layer was proposed at (Baum, 1991; Baum and Lang,
1991). This algorithm constructs a two layer neural network given examples and the
ability to query an oracle for the classification of specific points within the problem
domain. The algorithm is very efficient, but in practice the required oracle may
either be too expensive or not available.

Inspired by this work on learning from queries, our HDE algorithm constructs
the hidden units in a feedforward neural network from examples alone (Fletcher
and Obradovié, 1995). Construction of the HDE neural network is performed in
three phases:

1. Determination of points on the decision boundary;
2. Generation of a pool of candidate hyperplanes from the obtained points; and

3. Selection of the final separating hyperplanes from the candidate pool and cre-
ation of hidden units from selected hyperplanes.

These phases will be described using as an example the construction of a neural
network approximating the ideal decision boundary shown in Figure 7.5(a). For
simplicity of explanation, we will assume that the examples from the training set
T shown in the figure belong to two classes T1 and T5.

For all pairs of training examples belonging to different classes, a search for
corresponding points on the boundary separating those examples is performed.
Approximations to points on the decision boundary are determined by repeatedly
interpolating between example points of the classes T3 and T5. The interpolation
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Figure 7.5 HDE algorithm example: (a) ideal decision region; (b) initial unknown
region, (¢) next unknown region.

begins by selecting two examples m € Ty, n € T. The unknown region between m
and n is defined as the circle centered at the midpoint of m and n with a diameter
of the distance between m and n, as shown in Figure 7.5(b). The unknown region
between m and n is then searched for the training example nearest to the midpoint
of m and n. If such an example ¢ is found and ¢ € Ty (T») the search is then
repeated in the smaller unknown region between ¢ and n (m). The next unknown
region is shown in Figure 7.5(c).

If no point from T is found in the current unknown region (Figure 7.6(a)),
its midpoint is the closest approximation to a point on the decision boundary
(Figure 7.6(b)). If the radius of this known region is within a specified tolerance, the
boundary point is stored providing it has not been previously determined. Boundary
points continue to be generated until a pre-determined number have been found or
a number of data points have been examined without finding a new point on a
decision boundary. The resultant boundary points are shown in Figure 7.6(c).

Once the points on the decision boundary have been found, their k-1 nearest

Figure 7.6 HDE algorithm example: (a) last unknown region; (b) a point on the
decision boundary; (c) more points on the decision boundary.
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(b)

Figure 7.7 HDE algorithm example: (a) candidate hyperplanes; (b) selected
hyperplanes; (c) resultant decision boundary.

boundary points are determined. As previously, k is the domain dimensionality. A
pool of hyperplanes is then determined through solution of the equation system
defined by each set of the k£ boundary points. Figure 7.7(a) shows such a candidate
pool with their associated boundary points.

The first hidden unit is created from the candidate hyperplane which best clas-
sifies the training data. This hyperplane is then removed from the candidate list.
Each remaining hidden unit is created by evaluation of the remaining candidate
hyperplanes in conjunction with the previously created hidden units. This is accom-
plished by creating a hidden unit and iteratively setting the input layer connection
weights to the corresponding equation of each of the candidate hyperplanes. The
output layer weights for a candidate for the next intermediate network are then
determined by learning from the training examples using the ratcheted pocket al-
gorithm (Gallant, 1990). This procedure continues until no candidate hyperplane
results in a significant improvement in classification on the training set.

A final selection of hidden layer hyperplanes is shown in Figure 7.7(b) with the
resultant decision boundary depicted in Figure 7.7(c).

7.3.2 Embedding of transformed prior knowledge

Here, a symbolic expert is transformed into a neural network as in the KBANN
method. However, in a neural network obtained from the original rule-base, the
KBANN stage in which the layers are fully connected is omitted. Instead, the HDE
algorithm is used to add neurons to the last layer of the initial neural network. The
output weights of the starting network are modified after each new hidden unit is
added through HDE construction.

The obtained hybrid system is a transformational model in which a symbolic rule
base is required to build the original neural network using the KBANN technique.
This means that in this case it is not possible to use an arbitrary type of expert
since the knowledge source has to be a known AND/OR structured rule base.
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Figure 7.8 Direct integration of an expert into HDE construction.

7.3.3 Direct integration of prior knowledge

In this approach, no transformation of the expert system is required. Instead, a
hybrid architecture is constructed with the expert system directly embedded into
the neural network as shown in Figure 7.8.

The three-phase process of the HDE algorithm is followed with certain small
exceptions. An initial network consisting of the input layer, a single hidden unit
and an output unit is created. The hidden unit is designated as an expert unit,
which, instead of computing the usual activation function, calls the expert system
to determine the unit’s output. The expert unit, then, acts as the initial hidden
unit, contributing with its decision boundary, such as the simple one shown in
Figure 7.9(a).

As before, a set of candidate hyperplanes is built, and they are tested as new
hidden units in conjunction with the original one (the expert unit) in order to create
an intermediate network. The first hyperplane added in this example is shown in

Figure 7.9 Direct expert integration example: (a) first modification of the decision
boundary; (b) next decision boundary; (c) final decision boundary.
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Figure 7.9(b).

Any remaining hidden units are then created by evaluating each of the remaining
candidate hyperplanes with the intermediate hybrid network. This process continues
until either the candidate pool is exhausted or no significant improvement is gained
by integrating any candidate hyperplane. The final output layer weights are again
determined through use of the pocket algorithm. A final decision boundary is shown
in Figure 7.9(c).

In contrast to this simple example, an expert can contribute with a more complex
decision boundary that helps reduce the number of hidden units needed in the
integrated system as compared to that of a simple neural network constructed
similarly. This process has the same effect as an input space reduction through
range transformation as explained in Section 7.2.2, that is, the generation of new
hidden units is carried out only in the regions of the input space where classification
based on prior knowledge is unsatisfactory, effectively reducing the input space to
be solved. On the other hand, the hidden units act as experts, producing a domain-
transformed problem for the output layer to solve.

This classifier is an example of a fully integrated hybrid system with direct expert
embedding. Since the expert is not modified in any way, any kind of classifier can
be used as an expert neuron.

7.4 Multiple Experts Integration

Three techniques designed to integrate several sources of prior knowledge are
discussed in this section.

7.4.1 Cooperative combination of heterogeneous experts

The domain transformation through cooperative combination of multiple experts
has been successfully applied to a number of real-life classification problems (e.g.,
protein structure prediction (Zhang et al., 1992)).

In this article, a feedforward neural network is used as a combiner for K local
experts as shown in Figure 7.10. Here, each example for the combiner training
process is constructed from an input vector x and a desired response vector y*.
First, a vector z = [y1y2...yk] is assembled using the output vectors y1,y2, ... ,
yx obtained from the K experts when presented with the input vector x. Second,
vector z is fed to the combining neural network, which finally produces the output
vector y.

The combining module is trained by means of the backpropagation learning
algorithm (Werbos, 1995), using the z vectors as inputs, and the desired response
vectors (y*) as targets. Once the combiner is trained, the whole system can be
used, as shown in Figure 7.10, to classify new patterns.
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Figure 7.10 Neural network based cooperative combination.

7.4.2 Symbolic integration using decision trees

This technique, considered in (Romero and Obradovié, 1995), trains a decision tree
to select among the K local experts to be integrated. Because there is no simple
way to decide how to assign the patterns for which none, all or several experts
make a correct classification, the decision tree has to learn a 2%-class problem.
This corresponds to a range transformation, as explained in section 7.2.

Figure 7.11 shows an implementation of the proposed system. Again, each
training pattern consists of an input vector x and a desired response vector y*.
Each local expert outputs a response y; which is fed to a selection routine. This
class information is used for the decision tree generation.

The selection routine compares the local experts’ outputs (y;) to the desired
response y*. Then, it assigns the input x to a desired class z*. Thus, the decision
tree is generated from modified patterns, as illustrated in Table 7.1.

Classifier input | output (class)
vector vector

Expert X y |

Decision tree x z |

Table 7.1 Range transformation through decision tree integration.
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Figure 7.11 Decision tree symbolic integration.

After the three is generated, the system works as follows: The input vector x
is fed to the decision tree and to all local experts. The decision tree produces a
response z and each expert ¢ outputs a response y;. All these responses are given
to the selection routine, which, based on the value of z, selects one of the y;’s. The
selected value is then output as the system’s response.

When all experts are wrong, the system’s output can be generated randomly or
inferred from the data. For example, when solving a binary classification (2-class)
problem using 2 experts that are both incorrect on a given example, the system has
to output the opposite class from that selected by both experts.

The construction of the decision tree can be carried out using various decision tree
generation methods. In this study, GID3* (Fayyad, 1994) was used. This technique
groups together irrelevant attribute values before generating the three using the
ID3 algorithm (Quinlan, 1986). The classification problem addressed in this paper
has real valued attributes which have to be discretized before using GID3*. This is
achieved by using a multiple-interval discretization technique proposed in (Fayyad
and Irani, 1993). The common approach is to discretize the attributes at each
node of the decision tree. For the problem studied here, we found that a single
discretization step performed on each input variable before tree generation always
achieved better generalization, and so the results reported here were obtained using
the latter technique.

7.4.3 Competitive integration of heterogeneous experts
The competitive integration of heterogeneous experts, proposed in (Romero and

Obradovié, 1995), is an extension of the mixture of local experts architecture
(Jacobs et al., 1991) which uses a gating network to integrate the responses of
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Figure 7.12 Competitive neural network based integration.

all local experts, selecting the most competent local expert for any given example
(see Figure 7.12).

In the original architecture from (Jacobs et al., 1991) all K local experts are
backpropagation neural networks. A supervised learning process is carried out using
a set of training examples, each consisting of an input vector x and a desired
response vector y*. In the basic model, the input vector x is applied to both the
local expert networks and the gating network. The gating network used in this
study is a one-layer feedforward neural network whose output units use a softmax
activation function

e’i

Z}Kﬁ e’

where s; is the weighted input sum of the 4th output unit. This activation function
ensures that the system’s output y = Z,K:1 g;y; corresponds to a weighted average
of the individual expert’s outputs yi,...,y¥k. It is interesting to notice that
the softmax function is a continuous (differentiable) version of the “winner take
all” selection criteria, suitable for use in a gradient descent technique such as
backpropagation.

All experts use a special error function

g;i =

- e s
E:_lnL:_anli:_lnzgie 207 i
i=1 i=1

where In L represents the log likelihood of generating a response vector y*, and

0? is a scaling term. The summation term is called I; for clarity purposes. The
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system is trained as to minimize — In L (maximize the log likelihood), which allows
a competitive learning process by training only the most competent local expert(s)
on a given example. This is best understood when examining the last hidden layer
weight update term for the ith expert network:

(Aw;jr)i = n0;i(g:)or

where wj;, is the weight of the connection between hidden layer unit k£ and output
unit j, n is the learning rate, oy, is the output of hidden unit &, and J,;(g;) represents
the back-propagated error for output unit j of expert I (d;;), which is a function of
g;- It can be seen that the ith expert network weight change is dependent on g;, so
only the networks selected for a given example (those with g; greater than 0) will
have their weights updated, i.e. will “learn” that example.

The weights’ update for the gating network is given by

Au; = n(g; — hi)x

where u; represents the weight vector associated to output unit I, and h; = lf In
a statistical sense, the g;s can be regarded as prior probabilities of selecting the
ith expert, while the h;s represent posterior probabilities of expert ¢ generating the
desired output vector. Thus, as the gating network learns, the prior probabilities of
selecting an expert move towards the posterior probability of that expert generating
the desired response.

In an extended model, the gating network can receive an additional input x’ either
in conjunction with, or instead of the expert networks’ input x. Using an additional
input for the gating network could be useful as a “hint” on the correct distribution
of experts. For example, the gating network might work better if provided with the
sex of the speaker in a vowel recognition problem (Nowlan and Hinton, 1991).

In the competitive integration system used in this paper we assume that the local
experts can be not only neural networks, but also various sources of prior knowledge
(Romero and Obradovié¢, 1995). We will also assume that only the gating network
and any neural network components do the learning as explained above, while the
other expert components are fixed and can only be used to respond to the input
patterns.

7.5 Results

The systems discussed in previous sections are evaluated in the context of two quite
different benchmark problems. The first problem has a 2-dimensional domain, but
it requires generation of an extremely complex decision region, whereas the second
one is six-dimensional, but it can be solved by using a classifier with a simpler
decision region. Classification results of various hybrid systems applied to these
two problems are summarized in this section.

Some common parameters have been defined in order to standardize comparisons.
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O
Class 0

o
Class 1

Figure 7.13 The two-spirals problem.

For the HDE-based approaches’ default configuration, the maximum number of
points on the decision boundary is set to ten times the dimensionality of the
input space, or stopped if one thousand example pairs are examined without
determining a new boundary point. Gallant’s parameter recommendations for the
pocket algorithm, used for determination of the final output layer weights, are
followed (ten thousand initial iterations, increased by fifty percent if the pocket is
updated in the final eighty percent of the iterations). The learning rate for the
pocket algorithm is standardized at 30 percent, and no additional hyperplanes
are selected if the overall classification improvement is less than 0.5 percent. The
gating neural networks used on the competitive integration experiments are all
single layer networks, i.e., with no hidden units. Gating networks can in principle
be multi-layered, but the principal idea was to show how problem transformation
can simplify a classification mapping so that a basic classifier is able to achieve
good integration.

7.5.1 The two-spirals problem

The two-spirals problem was proposed by A. Wieland of MITRE Corporation as a
task constructed to test the ability of neural networks to deal with complex decision
regions. This well known benchmark (Fahlman and Lebiere, 1990) differs from many
others by testing only the memorization ability, rather than the ability to generalize
over the problem domain. The input space consists of two dimensional data points
arranged into two spirals on the x-y plane. This is a 2-class problem: all points on
a given spiral are of one class, while the points on the other spiral belong to the
opposite class, as shown in Figure 7.13.
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7.5.1.1 Sources of partial domain knowledge

Both the incremental construction and the competitive integration approaches were
applied to this problem in order to illustrate the effects of using sources of partial
domain knowledge to construct improved classifiers. To simulate partial domain
knowledge, it is assumed that a human expert is under the impression that the
class of a given point depends on its polar radius, that is, on its distance to the
origin. Using this assumption, several experts were developed. Based a distance
metric, the experts classify a given data point as follows:

Class — { 0 if dist mod 2 < 1

otherwise

Each of the various experts used in this work employs a different distance metric
dist, as defined in Table 7.2, where z and y refer to the pattern’s coordinates in the
2-dimensional input space. As an example, Figure 7.14 shows the decision regions
for Expert 0 from Table 7.2. Although the global classification rate for this expert
is only 50%, it actually contains information. In fact, this expert correctly classifies
points lying above the z axis (horizontal line in Figure 7.14). Similarly, for experts
1, 2 and 3 it is also possible to identify regions of the input space where they are
reasonably good classifiers.

Experts Distance metric Success
rate
Expert 0 dist = \/z? + y? 50.00%

Expert 1 | dist = /(z +0.5)2 + (y +0.5)2 | 32.99%

Expert 2 dist = /22 +y2 + 0.5 53.61%
Expert 3 dist = \/z2 +y%+ 1.0 53.09%

Table 7.2 Distance metrics for the two-spirals experts used in this work.
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points regions

O
Class 0

o
Class 1

Figure 7.14 Two-spirals: decision regions for expert system “0” from Table 7.2.

7.5.1.2 Incremental model construction

The results summarized in Table 7.3 and the corresponding decision boundary
shown in Figure 7.15(a) were obtained by the HDE algorithm using the default
learning parameters. This may be viewed as rather dismal results especially if
compared to cascade-correlation, which reports 100% classification using between 12
and 19 units (Fahlman and Lebiere, 1990). However, these results may be somewhat
improved if three additional steps are taken. First, the number of decision boundary
points is not limited to ten times the problem dimensionality but instead continue
to be generated until one thousand pairs are examined without generating a new
boundary point. This results in a significantly larger candidate hyperplane pool
(Figure 7.15(b)). Second, the hyperplane selection phase is eliminated as a hidden

(b) ()

Figure 7.15 HDE algorithm application on the two-spirals problem: (a) decision
boundary using default learning parameters; (b) candidate pool of decision bound-
aries; (c) final decision boundary.
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Average | Min. | Max. |

Boundary Points 20 20 20
Candidate Hyperplanes 15.7 18 18
Hidden Units 4.3 1 7
Accuracy 61.49 | 56.19 | 65.98

Table 7.3 Two-spirals: default HDE network construction.

Average | Min. | Max.

Boundary Points 159.6 157 163
Candidate Hyperplanes 152.1 150 156
Hidden Units 152 152 152
Accuracy 99.84 | 98.45 | 100.0

Table 7.4 Two-spirals: modified HDE network construction.

unit is constructed for each candidate hyperplane. Finally, the initial number of
iterations of the pocket algorithm during final output layer weight training is
increased from ten thousand to twenty-five thousand. Table 7.4 shows the new
results with a representative decision boundary shown in Figure 7.15(c).

While this results in near-perfect classification (one of the ten experiments result-
ed in 98.45% accuracy), the algorithm generated a very large network architecture,
which is not likely to generalize well on new data. A preferred approach would be
to integrate an existing knowledge base in order to reduce the complexity of the
classifier.

As shown in Table 7.2, Expert 0 has a success rate of 50%. If we embed this expert,
hyperplanes are selected in such a fashion as to take advantage of the areas where
the expert successfully classifies the input space (the region above the horizontal
line on Figure 7.14). Table 7.5 shows an improvement in classification ability of over
ten percent when integrating Expert 0 as compared to the original HDE algorithm
(Table 7.3). The default learning parameters were used in both cases.

A number of items are made apparent by this benchmark. The basic approaches

| Average | Min. | Max. |

Boundary Points 20 20 20
Candidate Hyperplanes 15.7 13 18
Hidden Units 3.5 3 6
Accuracy 74.43 | 68.56 | 76.29

Table 7.5 Two-spirals: Expert 0 4+ default HDE hybrid network construction.
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Figure 7.16 Integration of experts 0 and 2 for the two-spirals problem: (left)
4-class decision region; (right) one of the possible experts’ assignment.

to determining decision boundary points and constructing the candidate hyperplane
pool appear to be appropriate, but the proper number of decision boundary points
will vary with the problem. It is also apparent that process parameters may need
to be adjusted for each individual problem. However, an important point made by
this benchmark is that the integration of two techniques which do not perform well
independently may result in improved classification when combined into a hybrid
system.

7.5.1.3 Multiple experts integration

The experts shown in Table 7.2 can be combined in order to obtain a better
classifier. Due to the fact that these experts have single one-bit outputs, this
example is not suitable for domain transformation approaches as explained in
Section 7.2. (Figure 7.2). Indeed, the very nature of the decision regions generated
by these experts (see Figure 7.14) guarantees that different patterns from each of
the classes will be transformed into identical input vectors for the combiner.

On the other hand, range transformation approaches can work very well on this
problem. Figure 7.16, corresponding to the integration of Expert 0 and Expert 2,
shows graphically how the use of local experts can simplify the decision regions on
the input space. As explained in Section 7.2, the integration of two local experts
can result in the input space being partitioned in up to four different decision
regions, shown in the left picture of Figure 7.16. These regions correspond to the
ones shown in Figure 7.3(a), that is: (0) data points misclassified by both experts;
(1) data points correctly classified only by the first expert; (2) data points correctly
classified only by the second expert; and (3) data points correctly classified by both
experts. The right hand side of Figure 7.16 shows one possible domain partitioning
between the two experts in the manner illustrated in Figure 7.3(b).
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Success rate on training data
Local Upper Integrated
experts | bound system
0+1 66.49% 66.49%
0+2 76.80% 76.80%
0+3 100.00% 100.00%

Table 7.6 2-Spirals Problem: Success rates for local experts and their combina-
tions.

The competitive integration technique for multiple experts integration was tested
on this problem. The experiments summarized in Table 7.6 were performed by
integrating Expert 0 with one of the other experts shown in Table 7.2. The upper
bounds for the success rate are measured as the maximum accuracy obtainable by
combining experts perfectly, that is, always selecting the best expert for the job.
The difference from 100% corresponds to the examples that neither expert classified
correctly. As it can be seen in the table, the competitive integration system always
achieved the maximum possible success rate, which means that the system always
performed an optimal integration. Figure 7.17 depicts the decision region found
by the gating network for the integration of experts 0+2, which can be compared
to that shown on the right hand side of Figure 7.16. Notice that both solutions
are equally effective for integrating these experts, since they keep the areas where
only one of the experts is correct on opposite sides of the decision boundary, while
distributing the regions where both experts perform identically.

| Expert 2 A
region LA A Correct
x
AN . expert
A A x 4 -
x
s 4 pnLm e X x Expert 1
A AA AAAAX T x x
4 A AA AAAA)SS( X X x X A
A A A X % x
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A O A O 6 -l X m X m
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Figure 7.17 Gating network experts’ assignment for the integration of experts 0

and 2 shown in Figure 7.16.



24

Integration of Heterogeneous Sources of Partial Domain Knowledge

7.5.2 A financial advising problem

This problem is a modified version of the simple financial advisor from (Luger
and Stubblefield, 1989). The task is to advise whether an individual should invest
capital in additional savings or in the stock market. Although the rule based model
shown in Table 7.7 is extremely simplified, it illustrates issues involved in realistic
financial advising.

The system’s input consists of six real variables, shown in italics in Table 7.7:
annual income, if the income source is steady, current assets, current savings,
annual debt payments and the number of dependents. The output variable, in-
vest_stocks, can have two possible values, corresponding to advising “yes” or “no”.
The AND/OR graph corresponding to the rule base from Table 7.7 is shown in Fig-
ure 7.18.

7.5.2.1 Sources of partial domain knowledge

Pruned versions (i.e. with one or more rules missing) of the rule-base were used to
create imperfect local expert systems with diverse performances, which were used
as models of real-life, rule-based financial advising systems developed using incom-
plete knowledge. The experts used to test the constructive integration approach

| Label | Rule |
(1) if (savings_ok and
income_ok)

then invest_stocks

(2) if dependent_savings_ok
then savings_ok
3) if assets_high
then savings_ok

(4) if (dependent_income_ok
and earnings_steady)
then income_ok

(5) if debt_low

then income_ok
(6) if (savings > dependents x 5000)

then dependent_savings_ok
) if (income > 25000 +

4000% dependents )
then dependent_income_ok

(8) if (assets > income X 10)
then  assets_high
9) if (annual_debt < income x 0.30)

then debt_low

Table 7.7 Financial advisor rule base.
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debt_low earnings_steadydependent_income_ok

assets_high dependent_savings_ok

income_ok savings_ok

invest_stocks
Figure 7.18 Financial advisor AND/OR graph.

are shown in Table 7.8. This table identifies each expert by its pruning point. As
an example, the elimination of the savings ok rule and its antecedents dependen-
t_savings_ok and assets_high is indicated by a prior knowledge pruning point of
savings_ok. The expert system rule base of Table 7.7 is used to generate example
data.

The expert systems shown in Table 7.9 were used to test the multiple experts
integration approaches. The pruned rules for each expert are designated with rule
numbers corresponding to those used in Table 7.7. A fixed, previously trained neural
network, named “NN” was also used as a local expert. The output representations
for both symbolic and neural experts were treated as real numbers in the range [0, 1].
Notice that these experts can be separated into three classes: pessimistic, optimistic
and mixed. A pessimistic expert’s errors are always false negative predictions, that
is, errors in which the output is 0 (recommending to stay out of stocks) when it
should be 1 (recommending to invest). On the other hand, an optimistic expert’s
errors are all false positive predictions (it outputs 1 when it should say 0). A mixed

Prior knowledge Size Generalization
pruning point (hidden | rules rules +
units) alone | examples

no pruning 0 100% 100%

no prior knowledge 4.1 n/a 81.06%
dependent_savings_ok 3.4 74.95% 86.19%
assets_high 0 93.36% 93.36%
dependent_income_ok 0 95.2% 95.2%

earnings_steady 0 95.6% 95.6%

debt_low 5.7 61.76% 82.22%
savings_ok 0.4 90.18% 91.17%
income_ok 4.7 67.54% 85.02%

Table 7.8 Individual experts vs. hybrid systems classification accuracy.
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System | Success False prediction Pruned Expert
Rate negative | positive rules type
Expert 1 65% 100% 0% (2),(6) pessimistic
Expert 2 69% 100% 0% (5),(9) pessimistic
Expert 3 82% 100% 0% (3),(4),(7),(8) | pessimistic
Expert 4 73% 0% 100% (7),(4) optimistic
NN 87% 57% 43% not applicable mixed

Table 7.9 Local experts used in multiple experts integration approaches.

expert makes both kinds of errors.
7.5.2.2 Incremental model construction

As already explained, the expert system rule base of Table 7.7 is used to generate
example data. Five hundred training examples and five thousand test examples
were randomly generated consistent with the full rule base.

For these experiments, pruned versions of the AND/OR graph from Figure 7.18
were transformed into neural networks as in the KBANN technique, but without
fully connecting the network. Then, the HDE algorithm was used to add units to the
last hidden layer. As an example, Figure 7.19 illustrates the initial neural network
obtained by transforming the original AND/OR graph from Figure 7.18 with no
pruning.

Average results of five experiments are shown in Table 7.8. Observe that the
hybrid system’s performance was always equal or superior to those of the rule
based experts and learning from examples alone. Also, note that when learning
without the debt_low rooted subtree of the rule base, the constructive algorithm

debt_payments earnings_steady income dependents assets savings

Figure 7.19 Initial network.
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Generalization
Expert Upper | Decision | Cooperative | Competitive
systems bound tree network network
Experts 1 + 2 | 86.05% 67.75% 86.05% 85.78%
Experts 1 + 3 | 90.37% 68.60% 90.37% 90.02%
Experts 2 + 3 | 95.56% 70.00% 95.56% 94.53%
Experts 1 + 4 | 100.00% | 68.60% 58.62% 90.60%

Table 7.10 Financial Advising: integration of two experts.

showed an impressive increase in prediction quality. Predictive quality of 61.76%
from rules alone increased to 82.22% for rules and examples. In comparison, the
knowledge refinement technique of the extended KBANN rule-based network using
additional connections and backpropagation as in (Towell et al., 1990) provided an
increase to only 64.64%. It is also important to observe that when the expert was
able to classify the sample data well no hidden units were constructed.

7.5.2.3 Multiple experts integration

In the experiments carried out with the neural network combiners the training and
testing sets were generated independently, with 1,000 examples in the training set
and 10,000 in the test set. For the decision tree approach different training sets were
used, ranging from 120 to 500 examples, and the testing set was the same one used
for the neural network based integration techniques. Experiments were performed
by applying the three integration techniques discussed in Section 7.4 to different
combinations of expert systems and/or neural networks. For comparison purposes,
an upper bound on the success rate of each combination was computed for the
given test data set. As in the two-spirals problem (Table 7.6), this upper bound
represents the maximum possible success rate achievable by always following the
correct advice, i.e., selecting the expert that best classifies the given example. Also,
a bound below 100% means that there are cases where all local experts classification
responses are wrong, and so it is impossible to output a correct answer either by
selecting one of them, or by combining their outputs. Notice that this upper bound
is by no means tight. For example, a pair of “dumb” experts, in which one of the
modules always outputs 0 and the other always outputs 1, has an upper bound of
100% (they are never both wrong), but the information they provide is nil. Thus, the
cooperative combiner network can only achieve a very limited performance, while
the gating network used in the competitive approach is left with the task of learning
to classify the patterns by itself. Actually, the gating network has the advantage
of being fed the original input in addition to the outputs of the “dumb” experts,
and so it can learn to some extent how to classify the patterns. For the financial
advising problem, a gating network combining two “dumb” experts achieved a test
set success rate close to 72%.
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The results of integrating several pairs of expert systems are shown in Table 7.10.
The table presents the computed upper bound on the accuracy of each combination
and the generalization (testing data) success rates obtained by implementing the
decision tree, cooperative and competitive network, respectively. The results shown
for the decision tree approach are averaged over twelve training sets of different
sizes (120, 200, 300 and 500 examples). It is interesting to note here that the
monostrategy decision tree approach (i.e., using a decision tree to solve the original
classification problem) gave a better result (74.75%) than all the decision tree
integrated systems tested here. Notice that, when combining pairs of pessimistic
experts, both neural network-based methods produce excellent results. This is so
because it is very easy to combine either two or more pessimistic or two or more
optimistic experts by feeding their outputs to an AND gate (if the experts are
optimistic) or an OR gate (if the experts are pessimistic). Obviously, both problems
can be learned by a single neuron.

In contrast, the combination of pairs of experts of different types (14+4) proves
to be much more difficult for the cooperative combiner approach. In this case,
the competitive network achieves around 90% accuracy, and the decision tree
does a better job than the cooperative combiner. This is another example of the
domain transformation’s shortcomings when dealing with low resolution outputs,
as explained in Section 7.2.

The results of combining two of the expert systems with a neural network are
summarized in Table 7.11. The upper bound for the success rate is measured using
the symbolic expert and the fixed neural network. The table shows two different
implementations of the competitive network. In the fixed neural network case,
the neural network shown in Table 7.9 was used as an expert system, i.e. it only
responded to the inputs, with no further training. In the dynamic learning method,
the neural network local expert was trained at the same time as the gating network.

Notice that, in this case, the cooperative combiner’s performance when combining
“mixed” experts improves significantly over that on Table 7.10. This is caused
by the fact that the output from one of the experts (NN) is now a real number,
instead of a one-bit value. This increase in resolution facilitates the generation of
a more adequate decision region on the transformed domain. The gating network,
on the other hand does a very good job on integrating these systems, especially
when the local expert neural network is allowed to learn simultaneously with the
gating network. The decision tree approach managed to outperform the cooperative

Generalization
Expert Upper | Decision | Cooperative Competitive network
systems bound tree network Fixed NN | Dynamic NN
Expert 3 + NN | 94.11% | 74.05% 72.10% 89.00% 93.24%
Expert 4 + NN | 96.62% | 66.10% 78.21% 91.45% 95.33%

Table 7.11 Financial Advising: integration of one expert and a neural network.
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combiner in one of the cases, but its results continued to be very poor.

7.6 Conclusions

Several approaches to the development of knowledge-based neurocomputing classi-
fication systems integrating existing classifiers and learning from examples are dis-
cussed and compared on two domains. It was demonstrated that incremental single
expert expansion can provide generalization improvement over both the expert and
learning from examples alone. Also, it was evident that some of the multiple expert-
s integration techniques can take advantage of multiple heterogeneous sources of
partial domain knowledge. In particular, the competitive neural network approach
was found to be superior to the other multiple experts integration methods studied,
and to each of the sources of prior knowledge.

It is important to observe that single expert expansion and multiple experts
integration are not mutually exclusive approaches. Once heterogeneous experts are
efficiently integrated, the obtained system can be used as prior knowledge for single
expert expansion. Conversely, in multiple experts integration systems, a single
expert extended through incremental learning can be treated as one of several
sources of partial domain knowledge. Further research is needed to characterize
which approach is more appropriate for specific problem classes.
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