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ABSTRACT Intrinsic disorder refers to seg-
ments or to whole proteins that fail to self-fold into
fixed 3D structure, with such disorder sometimes
existing in the native state. Here we report data on
the relationships among intrinsic disorder, se-
quence complexity as measured by Shannon’s en-
tropy, and amino acid composition. Intrinsic disor-
der identified in protein crystal structures, and by
nuclear magnetic resonance, circular dichroism,
and prediction from amino acid sequence, all ex-
hibit similar complexity distributions that are shifted
to lower values compared to, but significantly overlap-
ping with, the distribution for ordered proteins. Com-
pared to sequences from ordered proteins, these
variously characterized intrinsically disordered seg-
ments and proteins, and also a collection of low-
complexity sequences, typically have obviously
higher levels of protein-specific subsets of the follow-
ing amino acids: R, K, E, P, and S, and lower levels of
subsets of the following: C, W, Y, I, and V. The Swiss
Protein database of sequences exhibits significantly
higher amounts of both low-complexity and pre-
dicted-to-be-disordered segments as compared to a
non-redundant set of sequences from the Protein
Data Bank, providing additional data that nature is
richer in disordered and low-complexity segments
compared to the commonness of these features in
the set of structurally characterized proteins.
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INTRODUCTION

Amino acid sequence determines protein 3D structure1

with the oft-stated corollary that structure is prerequisite
to function2–5 by mechanisms such as lock and key6 or
induced fit.7 However, a number of proteins remain as
flexible ensembles under physiological conditions and yet
exhibit function when assayed.8–11 Such proteins have
been called “natively denatured,”12 “natively unfolded,”13

and “intrinsically unstructured.”14 Many other proteins
are not intrinsically disordered throughout, but rather
have functionally significant local regions of disorder.15–19

Intrinsic protein disorder has been identified by a vari-
ety of methods, including (1) protease digestion, with
disorder indicated by sites of hypersensitivity13,20–22; (2)
X-ray diffraction, with disorder indicated by residues
missing from electron density maps15,17,18,23; (3) NMR spec-
troscopy, with disorder indicated by sharp peaks, by the

absence of NOEs characteristic of secondary structure or by
negative values for 1H-15N heteronuclear NOEs8,10,20,23–29;
(4) circular dichroism, with disorder indicated by low inten-
sity from ; 210 to ; 240 nm9,13,30–32; and (5) determina-
tion of hydrodynamic values, where an atypically large
Stoke’s radius for a given molecular weight indicates
unfolded protein.9,12,13,20,30

We determined that intrinsically disordered regions
could be predicted from their amino acid sequences33–37

and identified long disordered regions (LDRs) having $ 40
residues characterized by especially strong predictions of
disorder.38 For our predictors with outputs, q, between 0 to
1.0 where q . 0.5 indicates disorder, about 1,000 putative
LDRs were identified with q . 0.85; here these are called
extreme LDRs. The Top 20 of these ranged in length from
120 to 576 residues with average predictor output values
from 0.94 to 0.99.38 The extreme LDRs and Top 20 were
intended to provide a target list for experimental tests on
the predictor.

Although no experimentalist has yet contacted us to
confirm or refute any of the extreme LDR or Top 20
predictions, three bioinformaticists (Blackwell, States, and
Frishman) told us that the Top 20 have low sequence
complexity as defined by Wooten and Federhen.39,40 This
suggested that the predictor could be detecting non-
globularity through low complexity rather than through
sequence features specifically associated with disorder.
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The uncertainties raised by the low complexity of the
Top 20 LDRs motivated this study. The results show
overlapping distributions for the complexity values of
ordered and disordered sequences, with only the topmost
being exclusively low complexity due to a dearth of some
amino acids, herein called order-promoting, and an abun-
dance of other amino acids, herein called disorder-
promoting. Overall, concerted use of sequence complexity
and disorder prediction appears to provide a useful tool for
the analysis of protein sequences.

MATERIALS AND METHODS
Sequences and Databases

The following databases were used: (1) Protein Data
Bank (PDB)41; (2) PDB_Select_2542; (3) the Naval Re-
search Laboratory 3D (NRL-3D) sequence database, which
is maintained and distributed by the Protein Identification
Resource (PIR)43; and (4) Swiss Protein (SW.)44

The NRL-3D database contains amino acid sequences
generated from the ATOMS list in PDB files; so, with
exceptions in which coordinates are from models rather
than from data, the sequences in NRL-3D comprise the
ordered subset of PDB.43 Modeled regions are identified in
the PDB files as having zero occupancy. These are rare and
usually short.

An all-globular version of NRL-3D (Globular-3D) was
constructed by removing all fibrous sequences (coiled coils,
collagen, and silk fibroins) and a few additional sequences
that were either non-globular or that were classified as low
complexity due to an abundance of ambiguous amino
acids.

Since NRL-3D contains ordered residues, disorder pre-
diction on this database gives a false-positive error rate.35,38

However, NRL-3D is highly redundant. In order to remove
biases in the evaluation of predictor error rates, we
developed a non-redundant set of ordered protein se-
quences. Starting with the August 3, 1999, version of
PDB_Select_25,42 which contains just 1 representative
from each group of related proteins in PDB, a non-
redundant set of ordered protein sequences, called O_PDB
_Select_25, was constructed by extracting the ordered
regions.

Sets of helical coiled-coils, silks, and collagens were
collected by key word searches on SW. Sequence regions
associated with globular domains in these proteins were
deleted.

Databases of disordered regions characterized by X-ray
diffraction, NMR, or CD were constructed. The segments
characterized as disordered by X-ray were identified as
residues having backbone and side chain atoms that were
absent from the ATOMS lists in the PDB_Select_25 files,
yielding the disordered subset called D_PDB_Select_25.
NMR- and CD-characterized segments of disorder were
identified from their descriptions in publications found by
key-word searches on PubMed.

Sequence Complexity Measure

Entropy as defined in Shannon’s information theory45

was previously applied to amino acid sequences by Woot-

ton.39 Shannon’s entropy, herein called K2, is given by the
following equation:

K2 5 2O
i 5 1

N ni

L Slog2

ni

LD 5 2O
i 5 1

N

filog2fi (1)

where N represents the number of letters in the alphabet
(20 amino acids in this case) and ni is the number of times
the letter i appears in the window of length L, so fi
corresponds to the fraction of amino acid i over the
window. For a window of L $ 20 and an alphabet of 20
letters (one for each amino acid), 0 # K2 # log2(20) ' 4.32
bits.

Statistics

The mole fractions for the amino acids in a database
were calculated as :

Pj 5 O ~niPji!/O ni, (2)

where Pji is the frequency of amino acid j in sequence i of
length ni and the summation is over all sequences in a
given database. The variances of the amino acids in the
database were calculated as:

Var~Pj! 5 $O ni
2Var~Pji!%/~O ni!

2, (3)

where Var(Pji) 5 Pji(1 2 Pji)/ni.
The fractional difference in composition between two

sets a and b is (Pj
a 2 Pj

b) / Pj
b. The variances for these ratios

are:

Var~Pj
a 2 Pj

b!/Pj
b 5 ~Pj

a/Pj
b!2$Var~Pj

a!/~Pj
a!2 1 Var~Pj

b!/~Pj
b!2%,

(4)
where Pj

a is the mole fraction of amino acid j for database a,
and Var(Pj

a) is the variance of amino acid j for database
a.46

Neural Network Predictors for Long Disordered
Regions

We have developed several neural network predictors of
natural protein disordered regions (PONDRs). In the
initial studies, disorder was partitioned according to length,
with the development of different predictors for short,
medium, and long disordered regions.35 The predictor for
long disordered regions (LDRs) is herein renamed PONDR
XL1. This predictor used 10 inputs. Later, disorder was
partitioned according to position, with the development of
different predictors for N-terminal, internal, and C-
terminal regions.34 These predictors used 8 inputs.

A new predictor for internal regions, called PONDR
VL1, was developed as briefly described herein. A training
set of 15 disordered regions having a total of 1,149 residues
was compiled and balanced by an equal number of ordered
residues taken randomly from NRL_3D. From an initial
pool of 31 attributes, a branch and bound search47 was
used to select 10 attributes that gave the best collective
discrimination between the order and disorder in the
training set using a Mahalanobis distance criterion. The
back-propagation learning algorithm48 was used to train a
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feedforward neural network having the ten selected at-
tributes as inputs, a fully connected hidden layer of ten
neurons and a single output. To estimate errors, the
training was repeated on 5 disjoint subsets each having
80% of the data with 3 different initializations, so neural
network training was repeated 5 3 3 5 15 times. Once the
accuracy was established by this 5-cross validation proce-
dure, a new neural network was trained to the same
accuracy using all the data.

Of the 15 disordered regions in the training set, 8 were
characterized by X-ray diffraction (PDB IDs: 2tbv, 2ts1,
1aui, 1bgw, 1elo, 1af3, 1ati, and 1lbh) and 7 by NMR (SW
IDs: prio_mouse, h5_chick, flgm_salty, regn_lambd, hsf_k-
lula, and hmgi_human, and PIR accession: S50866). The
31 attributes in the initial pool included the 20 amino acid
compositions, two different hydropathy scales,49,50 flexibil-
ity index,51 a-moment,52 b-moment,53 net charge (K 1 R 2
D 2 E),54 aromatic composition (W 1 F 1 Y),54 coordina-
tion number,55 codon number,56 alphabet size,57 and side
chain volumes.58

To enable prediction from the first to the last residue in a
protein, the PONDR VL1 and the predictors for the N- and
C-terminal regions were integrated. This integration was
carried out in 3 steps. First, predictions were made by the
three predictors over their respective domains, with over-
lapping predictions for positions 11–14 by the N-terminal
and VL1 predictors, and, for a protein of length M, with
overlapping predictions from M - 14 to M - 11 by the
C-terminal and VL1 predictors. Second, the values for
each of the 4 pairs of overlapping prediction were aver-
aged. Third, the now integrated prediction outputs were
smoothed by averaging over sliding windows of 9 amino
acids, with the first and last 4 sequence positions being
assigned the unsmoothed prediction output values from
the N- and C-terminal predictors, respectively. This inte-
grated predictor is herein called PONDR VL-XT.

RESULTS
Databases of Characterized Order and Disorder

The first step in this study was to collect ordered and
disordered sequences and organize them into databases as
outlined in Materials and Methods (Table I). The protein
identities for Table I are given on our website: http://
disorder.chem.wsu.edu

False-Positive Prediction of Disorder

An estimate of the false-positive error rate is needed in
order to determine the extent to which predicted LDRs are
contaminated with ordered protein. False-negative predic-
tions of order on actual disordered regions are less rel-
evant here because such miss-classification of LDRs as
ordered segments would not significantly affect the subse-
quent analysis.

Table II shows the false-positive error rates for PONDRs
XL1 and VL-XT, using two thresholds for disorder, namely
q . 0.5 and q . 0.85 for predicted and extreme LDRs,
respectively. For obvious reasons,38 the false-positive er-
ror rate drops with increasing length or threshold. VL-XT
has two advantages compared to VL1: a lower error rate

and predictions to the termini. The latter is especially
important because the ends of proteins are often disor-
dered.

The contamination of the predicted LDRs with ordered
segments was estimated as follows. Using O_PDB-
_Select_25, the false-positive prediction rates as a function
of length were determined. These rates were then used as
the expected frequency of false-positive LDRs in SW as a
function of length, assuming that all of SW is ordered and
that the ordered sequences in O_PDB_Select_25 are repre-
sentative of those in SW. This estimated (false-positive)
frequency was compared with the actual prediction fre-
quency as a function of length (Fig. 1). A lower bound for
the contamination was then estimated as the relative
areas under the two curves, yielding an estimate of 1.7%.
Repeating the simulation for the extreme LDRs gives an
estimate of less than 0.08% contamination. Carrying out
these simulations with XL1 rather than VL-XT resulted in
about 10-fold higher estimates of contamination, providing
a strong reason for using the VL-XT predictor for further
studies.

Databases of Predicted Order and Disorder

An efficient way to increase the size of the disordered
database would be to use prediction.35,38 Previously we
used PONDR XL1 to generate the LDRs, the extreme
LDRs, and the Top 20 (reference 38); here we used VL-XT
for the LDRs and extreme LDRs, but kept the original Top
20 to test the personal communications indicating that the
previous Top 20 segments are low complexity. Protein
identities for this database are provided at our website:
http://disorder.chem.wsu.edu/. The predictions of disorder
were compiled into a database (Table III). In addition,
low-complexity segments, defined as K2 , 2.9, were also
included.

The attributes used to train XL1 and the three parts of
VL-XT are given in Table IV. Even though alphabet size,
which is a measure of sequence complexity,57 was in the
attribute pool for the VL-XT, it was not selected. Thus,
neither XL1 nor VL-XT use sequence complexity.

TABLE I. Data Summary

Group Number of segments Number of residues

Fibrous sequences
Coiled coils 28 10,391
Collagen 27 20,109
Silk repeats 14 10,329

Order databases
Globular-3D 14,540 2,610,197
O_PDB_Select_25 1,111 220,668
XL1 training 7 1,561

Disorder databases
XL1 training 7 508
VL1 training 15 1,376
XT training 199 2,894
X-ray 56 2,844
NMR 41 4,019
CD 53 10,554
ALL 150 17,417

40 P. ROMERO ET AL.



Order, Disorder, and Sequence Complexity

The sequence complexities of ordered and disordered
proteins were compared by K2 distributions calculated
over sliding windows of 45 residues (Fig. 2). The distribu-
tion for Globular-3D is repeated in each panel to provide a
common reference for each set of data.

The distributions in Figure 2A show that the fibrous
proteins have mostly lower complexity sequences com-
pared to those in Globular-3D. These data are consistent
with previous work.40

Figure 2B compares the K2 histograms of both the
ordered and the disordered parts of the training set used to
develop PONDR XL1 with that of Globular-3D. These data
show that this predictor utilized data for which the
disordered and ordered fragments had similar complexi-
ties.

Figure 2C compares the K2 distributions of ordered
proteins with those from 3 different sets of disordered
regions as characterized by X-ray, NMR, and CD. The
three differently characterized sets of disordered proteins
yield remarkably similar complexity distributions and so
were combined into a single database called ALL-Disorder.

In Figure 2D the K2 distributions of predicted, extreme,
and Top 20 LDRs38 are compared with those of ALL-

Disorder and Globular-3D. A progressive shift from high to
low complexity is observed with Globular-3D . ALL-
Disorder . predicted LDRs . extreme LDRs . Top 20.

Amino Acid Compositions

To gain insight into the relationships between sequence
and disorder, we compared the amino acid compositions of
the ordered, disordered, fibrous, and low-complexity sets
in this study (see http://disorder.chem.wsu.edu for the raw
composition data). To visualize differences, the amino acid
mole fractions, P, of each amino acid, j, for pairs of protein
sets, a and b, are displayed as (Pj

a 2 Pj
b) / Pjb, where set a

varies and set b is Globular-3D (Fig. 3). For these compari-
sons, the lower bound is 21 for cases for which Pj

a 5 0 and
the upper bound for amino acid j is equal to (100 2 Pj

b) / Pj
b.

The amino acids in Figure 3 are arranged from the most
rigid to the most flexible according to the scale of Vihinen
et al.51 This scale is based on the averaged B-factor values
for the backbone atoms of each residue type as estimated
from 92 proteins.

The X-ray-, NMR-, and CD-characterized segments of
disorder have amino acid compositions that are similar to
each other and different from those of ordered segments
(Fig. 3A). Specifically, the disordered segments are ; 20
to ; 50% depleted in the amino acids to the left (e.g., the
negative peaks for W to L in Fig. 3A) and ; 20 to ; 50%
enriched in the amino acids to the right (e.g., the positive
peaks for M, A, R, Q, S, P, E, and K) with only a few
exceptions (especially G, N, and D). Given these results,
the amino acids to the left are herein called order-
promoting and those to the right disorder-promoting.

The fibrous proteins are also very significantly depleted
in order-promoting amino acids and enriched in disorder-
promoting amino acids (Fig. 3B). However, the enrichment
patterns of the fibrous proteins are very distinct from the

Fig. 1. Estimated contamination of predicted LDRs with ordered
segments. PONDR VL-XT was applied to SW and to O_PDB_Select_25.
Segments of length $ 40 with q . 0.5 for every position were collected for
both databases. The relative frequencies of disorder prediction on these
two databases were then determined and compared: the upper curve is
from SW, the lower is from O_PDB_Select_25 and provides an estimate
of the error rate vs. length.

TABLE III. Predicted Disorder and Low Complexity

PONDR
used

Number of
segmentsa

Number of
residues

Swiss-Protein 81,005 30,377,255
LDR VL-XT 40,764 2,571,711
Extreme LDR VL-XT 9,393 610,119
Top 20 LDR XL1 20 4,342
Low complexity K2 , 2.9 8,300 654,307

aProteins of length 45 and shorter were excluded from this analysis.

TABLE II. False-Positive Disorder Prediction Rates

PONDR Training error (%)a Threshold

O_PDB_Select_25 (%)

Per residue 10 or longer 20 or longer 40 or longer

XL1 26 6 4 0.5 34 17 7 1.30
VL-XT 17 6 3 0.5 22 9 3 0.40
XL1 — 0.85 4.4 0.7 0.1 0.00
VL-XT — 0.85 3.8 0.5 0.1 0.01

a5-cross validation was used for predictor training at the 0.5 threshold. The training error was from 15
experiments: 3 neural networks were trained using different initializations for each of 5 disjoint subsets
containing 4/5 of the data. Error rates were then estimated by application of the resulting 5 sets of 3 neural nets
to the data not used for training for each of the 5 sets.
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patterns of the disordered segments (compare Fig. 3A and
B).

The segments predicted-to-be-ordered show composi-
tions quite similar to those of segments structurally char-
acterized as ordered, with differences much smaller than
those for the other comparisons studied to date (Fig. 3C).
For 15 amino acids (W, Y, V, H, M, A. T, R, Q, S, N, P, E, D,
and K) the compositional differences are small (12% or
less), with significant differences (. 20%) for just 3 amino
acids (C, F, and L).

Likewise, the depletions and enrichments of the pre-
dicted LDRs and structurally characterized intrinsically
disordered segments are very similar to each other. For 11
of the 20 amino acids (W, I, V, L, M, A, T, G, Q, N, and E)
both predicted and characterized disorder are very simi-
larly depleted or enriched; for another 6 (C, F, Y, R, S, and
P) the changes from structured protein are similar. The
patterns of enrichment or depletion are dissimilar for only
3 amino acids (H, D, and K).

Figure 3D compares the amino acid compositions of
low-complexity sequences from SW, the extreme LDRs,
and the Top 20 predictions of disorder. Like the fibrous
proteins, the low-complexity segments are depleted in the
order-promoting amino acids and enriched in the disorder-
promoting ones, but the patterns of depletion and enrich-
ment are very different (compare Fig. 3D and B). On the
other hand, low-complexity and extreme LDRs show the
same trends for 17 of the 20 amino acids, with the
low-complexity segments typically exhibiting depletions of
the order-promoting amino acids and enrichments of the
disorder-promoting ones.

The Top 20 LDRs (Fig. 3D) are depleted in the 12
left-most amino acids (W to R) and also in Q. Enrichments
are observed for just 7 of the more disorder-promoting
amino acids, with very substantial enrichments in S
and E.

Low Complexity Segments and Predicted LDRs in
SW and PDB_Select_25

To understand relationships between low-complexity
and predicted LDRs, the protein chains in SW and PDB-
_Select_25 having at least one segment with one character-
istic and not the other and segments with at least one of

each characteristic were determined (Table V). The se-
quences in SW having at least one low-complexity segment
are 10 times richer than the corresponding sequences in
PDB_Select_25, that is 7.1% for SW compared to 0.7% for
PDB_Select_25, ; 3 times richer in predicted LDRs, that
is 29.1% for SW compared to 11.0% for PDB_Select_25,
; 15 times richer in extreme LDRs, that is 7.6% for SW
compared to 0.5% for PDB_Select_25. Finally, most of the
low complexity segments are also predicted to be LDRs.
Just 881 out of 5,748, or 15% of the chains in SW with
low-complexity segments do not correspond to predicted
LDRs and just 2 of 6 chains in PDB_Select_25 with
low-complexity segments fall into this category.

DISCUSSION
Identification and Miss-Identification of Intrinsic
Order and Disorder

Disordered segments characterized by X-ray diffraction,
NMR, and CD have been compiled (Table I). An X-ray-
characterized LDR could be identified as disordered due to
a wobbly, ordered domain and so could be miss-classified.
NMR reveals regions of high local motion and so provides
unambiguous indication of disorder; however, NMR-
characterized disorder is biased towards random-coils
compared to molten globules due to exchange line broaden-
ing for the latter. Furthermore, NMR analysis is typically
restricted to smaller proteins. Near and far UV CD in
combination can distinguish among ordered structure,
molten globules, and random coils, but CD is semi-
quantitative and lacks position-specific information. Thus,
the LDRs in Table I surely contain significant amounts of
ordered structure that are miss-classified as disordered.

The ordered protein data likely contains far fewer
miss-classified segments than the disordered data, yet
Globular-3D should not be considered to be devoid of
miss-classification. For example, from the more than 12,000
segments in Globular-3D, we sampled 50 that were pre-
dicted to be mostly disordered. Of this sample, 49 were
involved in complexes with DNA, proteins, or co-factors,
each with no record of crystallization when uncomplexed.
These proteins likely don’t self-fold but probably undergo
disorder-to-order transitions upon complex forma-
tion.18,19,59 Thus, the estimated false-positive error rates

TABLE IV. PONDR Inputs

PONDR Attributesa

XL1 Flexibility Hydropathy C W Y H D E K S
VL1 Coordination

number
Net charge WFY W Y F D E K R

XN Coordination
number

V VIYFW M N H D PEVK

XC Coordination
number

Hydropathy VIYFW M T H PEVK R

aThese attributes were calculated as normalized values of the indicated feature over sliding windows. For example, the value for C is simply the
number of times C appears in a given window divided by the window length, and the value for WFY is the sum of W 1 F 1 Y divided by the window
length. The normalization for a given value, Observed, is simply (Observed 2 Min)/(Max 2 Min), where Max and Min were determined from the
entire dataset. VL1 used windows of 21 residues. XL1 used windows that varied in length according to attribute type (as described previously35).
XN and XC used windows that varied in length and the position of prediction assignment according to location relative to the end of the chain as
described in detail elsewhere.34
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are probably too high, but the excess error would be
difficult to determine at this time.

Predicted Order and Disorder

Because of attempts to use only correctly classified
disorder, training sets have been very small: 508 disor-
dered residues for XL1 and 1,376 for the internal regions
part of VL-XT (Table I). Nevertheless, both XL1 and
VL-XT generalize well for the prediction of order on
O_PDB_Select_25. This database contains over 220,000
residues and samples the structured parts of nearly all
crystallized protein families. The apparent error rates
determined from O_PBD_Select_25 are within two stan-
dard deviations of the training values for both XL1 and
VL-XT (Table II). Also, the amino acid compositions of the
predicted and observed order match quite well (Fig. 3C).

The predicted LDRs and extreme LDRs were estimated
to be contaminated with 1.7% (Fig. 1) and 0.08% ordered
residues, respectively. However, a 40 or longer residue
segment with both order and disorder would be more likely
to be predicted as completely disordered as compared to a
fully ordered segment of the same length. Since segments
with both order and disorder were not considered in the
estimation of contamination, the actual contamination
with order must be higher than the estimates. On the
other hand, the contamination of the structurally charac-
terized disorder with order, especially for the X-ray and
CD disorder data, is likely to be quite high, so the predicted
LDRs, and almost certainly the extreme LDRs, could be
less contaminated with order than are the structurally
characterized LDRs.

Despite the uncertain contamination of the predicted
LDRs with order, these predictions are still useful. Predic-
tion increased the disorder data from not quite 20,000
residues (Table I) to over 600,000 for the extreme LDRs
and to over 2.5 million for the LDRs (Table III). A further
complication is that predicted LDRs are biased towards
disorder that resembles the training set. Disorder appar-
ently comes in different flavors, with those distinct from
the training set examples being miss-predicted as or-
dered.37 Thus, using both predicted and observed LDRs
should give a better overall understanding of the sequence
characteristics of disordered regions in proteins.

Sequence Complexity and Ordered Protein
Structure

Figure 2A shows that fibrous sequences have lower
complexities and globular proteins have higher complexi-
ties, with nearly all of the overlap arising from coiled-coils.
These data confirm Wootton’s original work39,40 with the
additional insight that complexity shifts to lower values in
the order globular protein . coiled coil . collagen . silk.

The Globular-3D K2 distribution appears to approach
the X-axis smoothly (Fig. 2). However, scale expansion
reveals a rather abrupt increase, changing from one to
thousands of examples over .08 units of K2. Not one of
these 45-residue segments has a sequence complexity
below K2 ' 2.9 (nor fewer than 10 amino acids), suggesting
a possible lower bound.57

Fig. 2. Complexity distributions. The complexities K2 were calculated
by equation (1) for sliding windows of 45 residues and converted to
histograms for the Globular-3D database and for other selected data-
bases from Tables I and III. A: Fibrous proteins (silk, collagen, and
coiled-coils) are compared with ordered protein (Globular-3D). B: Or-
dered and disordered segments used to train PONDR XL1 are compared
with Globular-3D. C: The three sets of disordered segments as character-
ized by X-ray, NMR, or CD are compared with Globular-3D. D: ALL-
Disorder, predicted LDRs, extreme LDRs, and the Top 20 disorder
predictions are compared with Globular-3D.
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Globular, ordered proteins need to have polar and non-
polar amino acids to define the outside surfaces and the core
regions. On the outside surface and on the surfaces of
crevices and pockets, various polar amino acids are needed to
meet solubility and functional requirements. Within the core
regions, variously sized and shaped non-polar amino acids
are needed to fill the nooks and crannies to yield the tight
packing observed in these proteins. In addition, some polar
amino acids and water molecules are commonly found within
protein cores, perhaps to facilitate conformational changes
associated with function. Thus, a complexity lower bound
corresponding to about 10 amino acids seems to be reason-
able for ordered, globular structure.

We used the observed lower bound of ordered protein
structure to define low-complexity sequences. Wootton and
co-workers defined low complexity differently, with a
“trigger” value and an “extension” value, both of which
have been incorporated into a program called SEG.60

Limited experimentation shows our definition of low com-
plexity to be more stringent than is Wootton’s SEG pro-
gram when used with its default parameters.

Sequence Complexity And Disordered Structure

In contrast to structured proteins, intrinsic disorder
exhibits a significant fraction of low complexity sequences
(Fig. 2C and D). Of the almost 20,000 disordered amino

Fig. 3. Comparisons of amino acid compositions for different sets of proteins. For two sets of proteins, a
and b, the ordinates are given by (Pj

a 2 Pj
b) / Pj

b 5 D / Globular-3D, with the error bars representing one
standard deviation, and with the terms and calculations as described in Statistics. The three differently
characterized sets of disorder are compared with Globular-3D in A, the three types of fibrous proteins in B,
predicted order, ALL-disorder, and predicted disorder in C, and low-complexity sequences, extreme LDRs, and
the Top 20 in D.
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acids in the ALL-Disorder database, about 1,587 residues
or 8%, fall in the region with K2 , 2.9 as compared to 0%
out of more than 2.5 million in Globular-3D. Without
structural constraints, disordered regions are free to con-
tain just a few amino acids, or even just one.

Low-complexity sequences can also form ordered struc-
ture under some circumstances. For example, the fibrous
proteins have low complexity and are predicted to be
disordered by both XL1 and VL-XT. Yet these sequences
form ordered (fibrous) structures upon self-association.
However, this folding requires formation of a complex with
a binding partner. We have yet to find a protein or region
with K2 , 2.9 that self-folds into ordered protein without a
partner.

On the other hand, even very high complexity sequences
can fail to form ordered structure. For example, two large
fragments from thioredoxin are disordered61 even though
their K2 distributions lie within the domain of 3.6 to 4.1.
Such failure to form order despite high complexity may be
due to lack of suitable long-range interactions or some
other feature and suggests that there might be no upper
limit on the sequence complexity of intrinsic disorder. In
agreement with this suggestion, ALL-Disorder and Globu-
lar-3D are observed to extrapolate to the same upper limit
(Fig. 2D); the extrapolation to apparently the same value
is conserved when a 100-fold scale expansion is used (not
shown).

High-complexity disordered sequences that fail to fold
due to the absence of suitable long-range interactions or
other features might be identified by PONDR as ordered.
Like the fragments in thioredoxin, such sequences could
have evolved to associate with partners. Indeed, several of
the sequences in the ALL-Disorder database were charac-
terized as disordered in the absence of known partners
such as RNA or DNA. Thus, the terms intrinsically
unstructured14 or intrinsically disordered do not necessar-
ily mean that the proteins are incompletely folded in the
cell, but only that the proteins don’t self-fold and may be
involved in complexes. A more interesting possibility is
that some proteins undergo order/disorder transitions
upon association/dissociation with their partners as impor-
tant steps in their biological functions.18,19,28

Sequence Complexity and Predicted LDRs

The Top 20 LDRs determined by PONDR XL1 are
low-complexity sequences (Fig. 3C), which raised the

possibility that disorder was being detected by low complex-
ity rather than by sequence attributes that correlate with
disorder. However, the ordered and disordered segments
used for training XL1 show a minor difference in complex-
ity (Fig. 2B), thus probably ruling out the possibility that
low complexity was an unknown characteristic of the
training set used to develop the predictor that identified
the Top 20.

Even though sequence complexity has not been an
explicit attribute used for the predictors (Table II), complex-
ity is reduced for predicted as compared to actual disorder
and complexity decreases still further for segments with
higher prediction scores. That is, the modes of the distribu-
tions for Globular-3D, ALL-Disorder, predicted LDRs,
extreme LDRs, and the Top 20 are K2 5 3.92, 3.75, 3.60,
3.10, and 2.49, respectively, and the percentages of these
same distributions with K2 # 2.9 are 0, 8, 15, 47, and 65,
respectively.

The disorder prediction score depends on attributes
(Table IV) associated with depletion of most of the order-
promoting amino acids and enrichment of some of the
disorder-promoting ones (Fig. 3). The disorder prediction
scores increase as the depletions and enrichments in-
crease. Increased depletions and enrichments lead to
decreased complexity. Thus, as prediction scores go up,
sequence complexity goes down.

Sequence Complexity and Amino Acid Composition

One suggested advantage of the sequence complexity
measure is its independence of amino acid type.40 A
separate issue is whether low-complexity sequences con-
tain a random or nonrandom sampling of the amino acids.
If low-complexity sequences were a random sampling of
the amino acids of ordered protein structure, then their
amino acid compositional differences as given in Figure 3D
would all be near 0; in contrast, almost none of the amino
acids exhibits differences from order near 0. Thus, the
low-complexity sequences in SW exhibit compositional
biases, not random sampling.

The fibrous and general low-complexity sets both show
large depletions of the order-promoting amino acids. The
single exception is the atypical enrichment in L for the
coiled-coils. This enrichment is perhaps due to an abun-
dance of leucine zippers in SW.

The fibrous and general low-complexity sets both also
show substantial enrichments of some disorder-promoting

TABLE V. Complexity and Disorder in a Structure Database and in Swiss
Protein

Categorya
PDB_Select_25

no. of chains
PDB_Select_25

% of chains
SwissProt

no. of chains
SwissProt
% of chains

Proteins .45 aa 920 81,005
Low K2 6 0.7 5,748 7.1
Predicted LDRs 101 11.0 23,570 29.1
Extreme LDRs 5 0.5 6,291 7.8
Low K2, no LDR 2 0.2 881 1.1
LDR, no Low K2 97 10.5 18,703 23.1
Low K2 or LDR 103 11.2 24,451 30.2
aChains having at least 1 of the indicated category.
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residues, but with differences in the patterns of enrich-
ment. The fibrous proteins are enriched in the specific
amino acids that correspond to their repeating motifs,
namely A, G, and P (silk), G and P (collagen), and R, Q, and
E (coiled-coils). The non-fibrous, low-complexity segments
are also enriched in A, G, Q, P, and E as are one or more of
the fibrous proteins, but the amount of enrichment is
different. Also, unlike any of the fibrous protein motifs, the
general low-complexity sequences are also substantially
enriched in S.

The low-complexity sequences from SW and the extreme
LDRs from this same database show similar trends of
depletion and enrichment for 17 of the 20 amino acids (Fig.
3D). Given the apparent inability of low-complexity se-
quences to form ordered, globular structure, one possible
explanation is that the non-fibrous, low-complexity seg-
ments were selected over evolutionary time for the specific
purpose of being intrinsically disordered.

Commonness of Predicted LDRs and Low-
Complexity Segments

The SW sequence database is far richer in low complex-
ity segments than is PDB_Select_25 (Table V), but the
fraction estimated to be low complexity here, about ; 7%,
is far below the ; 25% estimated previously by the SEG
program using default parameters.60 This comparison
points out the greater stringency of our definition of low
complexity.

The percentage of protein chains with either low-
complexity segments or predicted LDRs is ; 3 times
higher in SW as compared to PDB_Select_25, e.g., about
30.2% as compared to 11.2%. The probable explanation of
these results is that the requirement for crystallization
biases the latter database against proteins with significant
amounts of disordered or fibrous structure.35,60

Implications for Deducing Function from Sequence

The amount of amino acid sequence information from
the various genome projects is growing rapidly. A compan-
ion structural genomics project62,63 has started recently.
The goal of structural genomics is to characterize at least
one representative of every protein fold. These representa-
tive structures will provide the basis for constructing
useful 3D models by means of sequence similarity informa-
tion, e.g., by homology modeling. Of course the goal of this
approach is to identify sequence/function correlations us-
ing structural models as intermediates.

Determining the 3D structures of a representative set of folds
is and ought to be a top priority. However, many proteins have
low-complexity segments or intrinsically disordered regions
that are involved in function.9,10,13,15,17–21,23,26–28, 59, 64–81 As
pointed out above, the percentage of protein chains having
low complexity segments or putative disordered regions is
not small. Also, from the content of the current databases, it
appears to be very likely that many of the proteins with
disorder or low complexity won’t crystallize. Thus, unless
intrinsic disorder and low complexity are taken into account,
the structural genomics project and other efforts to deduce
function from sequence will fall short.
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