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Abstract
Highly discriminative short time-series subsequences, known as
shapelets, are used to classify a time-series. The existing shapelet-
based methods for time-series classification assume that shapelets
are independent of each other. However, they neglect temporal de-
pendencies among pairs of shapelets, which are informative fea-
tures that exist in many applications. Within this new framework,
we explore a scheme to extract informative orders among shapelets
by considering the time gap between two shapelets. In addition, we
propose a novel model, Pairwise Shapelet-Orders Discovery, which
extracts both informative shapelets and shapelet-orders and incor-
porates the shapelet-transformed space with shapelet-order space
for time-series classification. The hypothesis of the study is that the
extracted orders could increase the confidence of the prediction and
further improves the classification performance. The results of ex-
tensive experiments conducted on 75 univariate and 6 multivariate
real-world datasets provide evidence that the proposed model could
significantly improve accuracy on average over baseline methods.

1 Introduction
Time-series classification has garnered importance [1] in the
data-mining community due to the abundance of temporal-
ordered data available from a wide range of domains. One
group of popular models focuses on identifying short dis-
criminative patterns (subsequences) from the time-series
for classification. These short time-series subsequences,
known as shapelets [27], are local patterns that can be used
to identify the target class for determining the time-series
class membership. The main advantage of using shapelets
is that they provide local variation information within the
time-series as well as high interpretability of predictions
due to easy visualizations. Various approaches (such as,
[9, 11, 17, 26, 27]) have been proposed to discover the dis-
criminative subsequences from time-series data for classifi-
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Figure 1: The blue univariate time-series is from class 1, and
the red univariate time-series is from class 2. Shapelet 1 and
Shapelet 2 could misclassify either classes, as they are present in
both classes. However, considering pairwise shapelet-orders allows
to differentiate the blue from the red time-series.

cation and have resulted in multiple real-world applications
[16, 19, 21, 28].

Almost all of these shapelet discovery methods are fo-
cused on univariate time-series data. Only a handful of
methods (e.g., [3, 7, 10]) consider extracting shapelets from
multivariate time-series. Both the univariate and multivari-
ate shapelet discovery methods assume that the extracted
shapelets are independent of each other, neglecting the role
of temporal dependency among pairs of shapelets. For ex-
ample, in Fig. 1, two instances which are colored differently
are from different classes. Shapelet 1 and Shapelet 2 are
two potential shapelets extracted from the dataset. These
two shapelets could not distinguish instances from differ-
ent classes, as they are present in both instances. However,
taking the orders of shapelets into account could classify
these instances correctly. A real-life example is in Intensive
Care Units (ICU) where a patient is connected to multiple
health monitoring devices that monitor the patient’s health
by checking heart rate, blood pressure, etc. Temporal pat-
terns from multiple sensors are often good indicators of the
patient’s health status. Therefore, the order among shapelets
is informative in classification.

In this paper we explore a novel scheme, named
TimeGap-based-orders, to extract informative orders among
pairwise shapelets by considering the time gap between any
pairs of shapelets. Based on this scheme, we propose a novel
model, Pairwise Shapelet-Orders Discovery (PSOD), which
extracts both informative shapelets and shapelet-orders and
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incorporates the shapelet-transformed space with shapelet-
order space for time-series classification. Our experiments
show that the extracted pairwise shapelet-orders could re-
fine the class membership confidence, which measures the
probability of belonging to a particular class of a time-series
instance, and improve the classification accuracy.

The proposed model first randomly extracts a subse-
quence from time-series. If it is significantly different from
the already accepted shapelets and rejected shapelets, it is
considered as a candidate shapelet. Then the order between
the candidate shapelet and any shapelet in the accepted list is
evaluated. If the overall classification accuracy is improved,
then the candidate shapelet and the order will be saved into
the accepted shapelet list and order list respectively. Other-
wise, if the candidate shapelet alone improves the classifi-
cation performance, then the candidate shapelet will be ac-
cepted and the order candidate will be discarded. The clas-
sification performance of PSOD has been evaluated on both
synthetic and real-life datasets.

The main contributions of this work are the following:
• This is the first study that considers temporal dependency
information among pairs of shapelets and generates pairwise
shapelet-orders for use in time-series classification.
• One order-generation scheme is explored, which empha-
sizes the time gap between shapelets.
• A novel model, PSOD, is proposed to extract informative
shapelets and pairwise shapelet-orders together from data.
The experimental results provide evidence that when consid-
ering shapelet-orders, classification accuracy is improved.

2 Related work
In the field of time-series classification, extracting shapelets
to perform classification has recently received extensive
attention [12, 22, 26, 29]. The minimum distance between
a shapelet and a time-series, namely shapelet transformation
[11, 15], is a very popular feature, and can be used as
predictors in the traditional classifier framework. Therefore,
discovering the most discriminative subsequences is crucial
for the success of time-series classification using shapelets.

Search-based techniques [8, 27] conduct an exhaus-
tive search of all possible subsequences, which is often in-
tractable for large datasets. Numerous methods [10, 13,
17, 20, 27] have been proposed to speed up the search
process for identifying discriminative shapelets from poten-
tial candidates. Alternatively, instead of searching all pos-
sible subsequences, generalized shapelets [9, 12, 29] are
learned from the data. The above approaches are mainly de-
signed for univariate time-series datasets. A few studies (e.g.
[2, 3, 7, 10, 13]) have investigated the shapelet procedure for
multivariate time-series datasets.

All the existing shapelet-based approaches only focus
on how to select (or generalize) discriminative shapelets, but
ignore the orders among shapelets, which is also an impor-

tant ingredient in prediction. Mueen et al. [17] had proposed
Logical shapelets, which are logical combinations of multi-
ple shapelets. Using conjunctive and disjunctive logical op-
erations, they increased the expressiveness of the shapelets
by discovering logical rules. However, the rules discovered
failed to capture the temporal dependency among shapelets.
Moreover, Logical shapelets was proposed for univariate
time-series datasets and the technique of combining mul-
tiple shapelets through logical rules from different dimen-
sions was not discussed. Recently, Patri et al. [18] briefly
discussed that the temporal dependency among shapelets
on multivariate time-series can improve classification per-
formance. The idea is to inter-leave time-series segments
from multiple dimensions to form a final concatenated one
dimensional time-series. However, this is only applicable to
multivariate time-series. In contrast, we propose a formal
generalized method to extract the most informative pairwise
shapelet-orders that enhance the confidence of prediction on
both univariate and multivariate time-series.

Another direction of analyzing time-series has focused
on extracting association rules among frequent patterns [4]
from time-series. A common approach is to first discretize
[5, 14, 25] the time-series data into segments and convert
each segment into a symbol. The rules are then discov-
ered in the transformed symbolic domain. The discovery
of high quality rules from time-series was also proposed in
[23]. Tatavarty et al. [24] considered the problem of discov-
ering temporal dependencies between frequently appearing
patterns in multivariate time-series. Their work focused on
discovering temporal associations among frequently occur-
ring subsequences from different dimensions by transform-
ing the time-series to a symbolic representation, whereas, we
focus on discovering discriminative shapelets and the tem-
poral gap among them in both univariate and multivariate
time-series data for classification. To the best of our knowl-
edge, this paper is the first work which proposes a formal
methodology to extract shapelet-orders and present an aug-
mented space of shapelets and shapelet-orders. In addition,
our approach is applicable to both univariate and multivariate
time-series datasets.

3 Method Preliminaries
A time-series dataset composed of I training instances is
denoted as T ∈ RI×D×L. We consider instances having
d (1 ≤ d ≤ D) dimensions where each Ti (1 ≤ i ≤ I)
is of length L (for notation convenience we assume Ti have
equal frequency in all dimensions and L is fixed, however,
the length of time-series can vary among training instances)
and the corresponding label is a nominal variable Yi ∈
{1, ..., C}I . When d = 1, the data represents a univariate
time-series, while d > 1 it corresponds to a multivariate
(multidimensional) time-series.

Candidate shapelets S are short subsequences extracted
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from time-series, which are discriminative patterns and char-
acterizes the target class. Let skd ∈ S represent the kth can-
didate shapelet of length l extracted from dimension d (l is
not mentioned in the notation for simplification). Next, we
introduce definitions of some terminologies used.

DEFINITION 1. Distance between two candidate shapelets
Dis(sk1 , sk2): The distance between two candidate
shapelets sk1 and sk2 of same length l is calculated as

Dis(sk1 , sk2) =
√

1
l

∑l
p=1(s

k1
p − sk2p )2, where skp repre-

sents the pth value in the candidate shapelet skd of length l.

DEFINITION 2. Minimum distance (mi,k): The
minimum distance mi,k between the time-series
Ti and a candidate shapelet skd is the minimum
distance between the candidate shapelet and any
segment of length l extracted from Ti, that is,

mi,k = minq=1,...L−l+1

√
1
l

∑l
p=1 (Ti,d,p+q−1 − skd,p)2,

where Ti,d,p+q−1 represents (p + q − 1)th value in the
dimension d in the instance Ti and skp represents the pth

value in the candidate shapelet skd of length l. Note that mi,k

is normalized by dividing shapelet length, so that mi,k is
independent of length l.

DEFINITION 3. Shapelet transformation (M): The mini-
mum distance between candidate shapelets skd and the time-
series Ti indicates the degree of similarity between a candi-
date shapelet skd and the time-series Ti examples. This rep-
resentation is known as shapelet-transformed data [11]. The
representation M ∈ RI×K reduces the dimensionality of the
original time-series since number of candidate shapelets K
is less than the length of the time-series L.

DEFINITION 4. Start-time (Bki ): The start-time of a candi-
date shapelet skd in Ti is the point q from which the candidate
shapelet skd has minimum distance to Ti, that is,

(3.1) Bki = argmin
q

√√√√1

l

l∑
p=1

(Ti,d,p+q−1 − skd,p)2

The benefit of using shapelet-orders to correctly clas-
sify time-series has been shown in Fig. 1. One straightfor-
ward option is to consider the relative position of two candi-
date shapelets in the time-series, that is, whether a candidate
shapelet sk1 occurs earlier (or later) than (or overlaps with) a
candidate shapelet sk2 . However, in most cases, the time gap
between two candidate shapelets is much more informative.
For example, if sk1 occurs more than 10 time-points earlier
than sk2 , then the instance belongs to one class. Otherwise,
the instance belongs to another class. Simply considering the
relative position between the candidate shapelets fail to han-
dle the time gap between the candidate shapelets. Therefore,

Algorithm 1 Selection of a random candidate shapelet

1: procedure SEARCH
2: Input: T ∈ RI×D×L, Accepted shapelet list A, Re-

jected shapelet listR, Distance threshold εd
3: Draw random series: i ∼ U{1, · · · , I};
4: Draw random dimension: d ∼ U{1, · · · , D};
5: Draw random shapelet length: l ∼ U{1, · · · , L};
6: Draw random start point: p ∼ U{1, · · · , L− l+1};
7: Randomly selected candidate: sk ← Ti,d,p:p+l−1;
8: if sk is not similar to any previously accepted

shapelets in A as well as any rejected shapelets in R
then;

9: Return sk
10: else
11: R = R∪ sk

we propose a scheme, named TimeGap-based-orders, which
considers the time gap between a pair of candidate shapelets.
Please note that the proposed order scheme incorporates and
generalizes the scheme of considering the relative position
of two shapelets.

DEFINITION 5. TimeGap gi(sk1 , sk2): Given two candidate
shapelets sk1 and sk2 and a time-series Ti, the time gap
between two candidate shapelets is the difference of start-
time of two shapelets in the Ti, that is,

(3.2) gi(s
k1 , sk2) = Bk1i −B

k2
i .

Note that the candidate shapelets sk1 and sk2 could be
either from the same dimension, or from different dimen-
sions (in case of multivariate time-series datasets), thus we
omit d in their notations.

4 Model Description:
In this section, we introduce Pairwise Shapelet-Orders
Discovery (PSOD) model for extracting informative
shapelets and pairwise shapelet-orders for time-series
classification. The proposed model computes the confidence
of classifying a time-series instance to a particular class
category. The confidence is calculated from two different
spaces, shapelet-transformed space and shapelet-order
space. We first discuss the process of identifying candidate
shapelets, followed by the identification of candidate orders.
In each case, a confidence measure is introduced to evaluate
the quality of a candidate shapelet as well as a candidate
order respectively.

Randomized shapelet candidate extraction: Inspired
from the huge speed up by Grabocka et al. [10], we take
a similar shapelets extraction approach to randomly select
subsequences from time-series, and then evaluate it by com-
puting classification accuracy. The steps to randomly select
a candidate shapelet is summarized in Algorithm 1.
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The primary idea of this method is to select a candi-
date shapelet from randomly chosen subsequences (lines 3-
7) and prune similar candidate subsequences of same length
(lines 8-11). The motivation behind randomly choosing sub-
sequences lies in the fact that the majority of subsequences
from time-series instances are similar, therefore it is com-
putationally efficient to only consider a small set of non-
redundant candidate segments which are helpful in classi-
fication. The distance threshold εd, obtained from the P per-
centile of distances between any pairs of random segments
from time-series examples [10], prunes the search space of
similar shapelets. The distance between a randomly selected
subsequence sk and any shapelet of same length in the ac-
cepted set A as well as rejected shapelets set R is calcu-
lated based on Definition 1. If the distance is larger than
the threshold εd, then sk will be considered as a candidate
shapelet. Otherwise, it will be pruned and added inR.

Class membership confidence in shapelet-transformed
space: The shapelet-transformed space is a matrix MI×K
of minimum distances between K accepted shapelets and
I time-series instances where each element of the matrix is
mi,k. For a time-series instance Ti, the shapelet-transformed
space is a vector of size 1×K denoted as mi. The probability
pij of a time-series instance Ti selecting another instance
Tj as its neighbor is calculated using the softmax over
Euclidean distances in the shapelet-transformed space, that
is,

(4.3) pij =
eα||mi−mj ||2∑

z=1···I,z 6=i e
α||mi−mz||2

, pii = 0

where α (α < 0) is a parameter to control the precision
of the function. When α is very small, e.g. α = −100, the
instance will have a high probability of choosing the instance
with the smallest distance as its closest neighbor, which may
make the model biased to the nearest neighbor.

The class membership confidence pS
i,c of time-series

instance Ti for class c in shapelet-transformed space is the
sum of the probability of Ti selecting other instances Tj
whose labels are c, that is,

(4.4) pS
i,c =

∑
Yj=c

pij

where Yj = c represents that the label of time-series instance
Tj is class c. Each time-series instance Ti shall have |C|
confidence values and the class with the highest probability
shall be assumed to be the estimated class of the instance Ti.

Pairwise shapelet-order extraction: Assume sk1 is an ac-
cepted shapelet and sk2 is a candidate shapelet. Before
accepting sk2 , we extract the potential orders between sk1
and sk2 using TimeGap-based-order scheme introduced in
Sec. 3.

T1

Tj

TI

+1

+1

-1

g(sk ,sk )
13

-2

2

Class1 2

(a) Computing the time dif-
ference of sk1 and sk2 in I
instances.

+1,
+1,
-1,...

...

+1,
-1, +1

...
+1,

+1, +1,...

g(sk ,sk )

g(sk ,sk )<=3 g(sk ,sk )>3

1 2

1 2 1 2

(b) Selecting the cut point h = 3,
and separate the instances into two
subsets.

Figure 2: An example of finding a TimeGap-based-order candi-
date.

For a pair of shapelets, sk1 and sk2 , the time gap
gi(s

k1 , sk2) between sk1 and sk2 related to an individual
time-series instance Ti is calculated based on Eq. 3.2. For I
training instances, a vector 〈g1(sk1 , sk2), · · · , gI(sk1 , sk2)〉
of length I is obtained. Then, the cut-point h ∈
{g1(sk1 , sk2), · · · , gI(sk1 , sk2)} that separates the dataset
into two subsets and maximizes the information gain is cho-
sen. The left subset contains the instances which satisfy
g(sk1 , sk2) ≤ h, and the right subset contains the instances
which satisfy g(sk1 , sk2) > h. An illustrated procedure is
shown in Fig. 2. The entropy of both subsets are calculated.
The one that has the smaller entropy will be selected as a can-
didate order. For example, if the entropy of the left subset is
smaller, then g(sk1 , sk2) ≤ h will be selected as a candidate
order, otherwise, g(sk1 , sk2) > h will be considered as a
candidate order.

Let o represent a candidate order. The class of a
candidate order is determined by the class that has the
highest number of instances in the subset with the smaller
entropy. For example, in Fig. 2b, assume that the left subset
has the smaller entropy and the number of instances with
label +1 is more than the instances with other label, then the
candidate order g(sk1 , sk2) ≤ h shall be assigned to the class
of +1. In this example, o : g(sk1 , sk2) ≤ h, and Yo = +1.

The precision of the candidate order o of
Class = c is defined as P (Class = c|o exists) =
P (o exists|Class=c) P (Class=c)

P (o exists) .
The confidence of the candidate order o of class = c is

defined as a product of the precision of the candidate order
and the probability of the intersection that the candidate
order exists and belongs to class c, that is,
(4.5)
C(o) = P (Class = c|o exists)× P (Class = c ∩ o exists)

Both terms in Eq. 4.5 are probabilities, thus the confidence
measure for order o is a value between 0 and 1.

Updating class membership confidence using orders: Let
O denote order space. The class membership confidence pO

i,c
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Algorithm 2 Pairwise shapelet-orders discovery - training

1: procedure PSOD-TRAIN
2: Input: T ∈ RI×D×L, Labels Y ∈ CI
3: Initialize: Accepted Shapelets list A ← ∅, Accepted

order list O ← ∅, Rejected shapelet listR ← ∅;
4: for iteration = 1: NILQD1 do
5: acc← ACCURACY(A,O );
6: sk ← SEARCH();
7: {A,O} ← EVALUATE(sk, acc);

Return A,O;

of time-series Ti for class c in the order space is calculated
using the confidences of orders of class c that exist in Ti,

(4.6) pO
i,c = C

 ⋃
Yon=c ∩ on occurs in Ti

on


For example, suppose two orders of class c exist in instance
Ti. The class membership confidence of instance Ti for
class c from the order space is computed as pO

i,c = C(o1 ∪
o2) = C(o1) + C(o2) − C(o1

⋂
o2) = C(o1) + C(o2) −

C(o1) ∗ C(o2). In a general case when there are multiple
orders, Eq. 4.6 can be calculated according to the inclusion-
exclusion principle of probability.

The initial class membership confidence for each time-
series instance is computed in the shapelet-transformed
space using Eq. 4.4. The confidence of the orders provides
further evidence for or against the class membership for each
time-series Ti instance to each class categories. Therefore,
the updated class membership confidence of Ti when orders
of class c occur can be computed as following,

(4.7) P (Yi = c|M,O) = pS
i,c × pO

i,c

If no order of class c occurs in Ti, then the class
membership probability is penalized by 1

C , that is,

(4.8) P (Yi = c|M,O) = pS
i,c ×

1

C

This update rule is valid since we can assume that prior
probability of an example being from class c is equal to 1

C .

Pairwise shapelet-orders discovery Finally, we are in po-
sition to introduce the training phase of PSOD. The pseudo
code is outlined in Algorithm 2. The model begins by search-
ing a candidate shapelet using SEARCH() function (outlined
in Algorithm 1), and then evaluating the candidate shapelet
sk as well as the potential pairwise shapelet-orders using
EVALUATE() (outlined in Algorithm 3). This process (lines
5-7) is repeated within a limited number of iterations or stops
when the accuracy of the model in the training set converges.
The maximum number of iterations is upper bounded by the
maximum number of candidate subsequences which is the

Algorithm 3 Evaluate candidate shapelets

1: procedure EVALUATE
2: Input: Accepted shapelet list A, Accepted order list
O, Rejected shapelet list R, current accuracy acc, a
candidate shapelet sk;

3: tempAcc1← ACCURACY(A, O, sk)
4: tempAcc2 = 0, tempOrder = 0;
5: for m = 1, · · · , |A| do
6: Extract a order candidate om between sk and sm.
7: tempAcc2← ACCURACY(A, O, sk, om);
8: if tempAcc2 >tempAcc1 then
9: tempAcc1 = tempAcc2

10: tempOrder = om
11: if tempAcc1 > acc and tempOrder ! = 0 then
12: O ← O

⋃
tempOrder;

13: A ← A
⋃
{sk};

14: else
15: if tempAcc1 > acc and tempOrder == 0 then
16: A ← A

⋃
{sk};

Return A,O

product of the I × L ×Q ×D for a particular dataset. Q is
the number of shapelet lengths to be evaluated.

In Algorithm 2 line 7, EVALUATE() returns an updated
list of accepted shapelets and an updated list of orders.
In EVALUATE() (Algorithm 3), a candidate shapelet sk
is first evaluated (line 3) by calculating the classification
accuracy (outlined in Algorithm 4). Then, the potential
orders between sk and any already accepted shapelet in A
are evaluated (lines 5-10). Only the candidate order, which
yields the highest accuracy compared to other orders and sk

alone, is considered. If the overall classification accuracy
is improved, then the candidate order and the candidate
shapelet (lines 11-13) are selected. Otherwise, the candidate
order is discarded. The candidate shapelet is accepted if it
alone improves the accuracy (lines 15-16). At the beginning,
for the first candidate shapelet, the accuracy is computed
only in shapelet-transformed space, as no order exists.

While computing accuracy (outlined in Algorithm 4), if
the accepted shapelet-orders list O is empty, then the class
membership confidence is calculated only in the shapelet-
transformed space (line 6). If O is not empty and multiple
orders of class c exist in the instance, then the class member-
ship confidence is calculated based on Eq. 4.7, otherwise, it
is computed according to Eq. 4.8. Note that the class mem-
bership confidence is calculated for each class (Algorithm 4,
line 5), and the predicated class of instance Ti is the class
with the highest probability (Algorithm 4, line 12).

The pseudocode of the testing phase of PSOD is out-
lined in Algorithm 5. For a test instance T′i, the minimum
distances between the K accepted shapelets and T′i are com-
puted according to Definition 1. The probability of T′i se-
lecting an instance Tj in the training dataset as its neighbor
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Algorithm 4 Classification accuracy

1: procedure ACCURACY
2: Input: T , Labels Y , Accepted shapelet listA, Accepted

order list O, a candidate shapelet sk and a candidate
order o

3: acc = 0, A ← A
⋃
{sk}, O ← O

⋃
{o}

4: for i = 1, · · · , I do
5: for c = 1, · · · , C do
6: P (Yi = c|M,O) = pS

i,c ;
7: if |O| > 0 then
8: if Order of class = c exist then
9: P (Yi = c|M,O) = pS

i,c × pO
i,c;

10: else
11: P (Yi = c|M,O) = pS

i,c × 1
C ;

12: Ŷi = argmaxc P (Yi = c|M,O);
13: if Ŷi == Yi then
14: acc = acc+ 1;
15: acc = acc/I ;
16: A ← A \ {sk}, O ← O \ {o}
17: Return acc

Algorithm 5 Pairwise shapelet-orders discovery - testing

1: procedure PSOD-TEST
2: Input: T ′ ∈ RITest×D×L, T ∈ RITrain×D×L, Ac-

cepted Shapelets list A, Accepted order list O;
3: for i = 1: ITest do
4: for j = 1: ITrain do
5: pij =

eα||mi−mj ||
2∑

z=1···I,z 6=i e
α||mi−mz||2

;

6: for c = 1, · · · , C do
7: P (Yi = c|M,O) = pS

i,c =
∑
Yj=c

pij ;
8: if |O| > 0 then
9: if Order of class = c exist then

10: P (Yi = c|M,O) = pS
i,c × pO

i,c;
11: else
12: P (Yi = c|M,O) = pS

i,c × 1
C ;

13: Ŷi = argmaxc P (Yi = c|M,O);
14: Return Ŷ

is computed based on Eq. 4.3, and the class membership con-
fidence for T′i in shapelet-transformed space is computed us-
ing Eq. 4.4. Next, the selected orders in the order list O will
be checked whether they occur in T′i. For class = c, if some
orders belonging to class c occur, the class membership will
be updated according to Eq. 4.7, otherwise, it will be updated
based on Eq. 4.8. The class with the highest membership
confidence will be selected as the final predicted class.

Analysis of runtime: Given a dataset of I training examples
of length L having C classes, the total number of shapelet
candidates has an order of O(IL2). We would like to re-
call that Eq. 4.4 (class membership confidence) is computed

for each class for each time-series. Thus the worst-case time
complexity to identify the best shapelet is O(I2L4C). Us-
ing the distance threshold εd reduces the number of total
shapelet candidates to an order of O(fIL2) where f is a
fraction of the total candidate shapelets that are evaluated,
denoted by f = #Accepted shapelts+#Rejected shapelets

IL2 . The
time complexity is thus lowered to O(fI2L4C). Further-
more, the discovery of shapelet orders among the accepted
shapelets increases the time complexity of the algorithm.
The total number of possible shapelet orders evaluated is
upper bounded by the total number of accepted shapelets.
The running time to accept the best candidate shapelet or-
der is O(#Accepeted shapelets × I × C). Therefore, the
overall running time can be denoted as O(fIL2 × (IL2C +
#Accepted shapelets× I×C)). In Table 1 we empirically
compare PSOD’s training time with state-of-art shapelet
based methods on different datasets.

5 Experimental Evaluation
The proposed model was evaluated extensively on both
univariate and multivariate real-world datasets. Additionally,
two synthetic datasets were used to highlight the advantage
of leveraging shapelet-orders over shapelet information. The
univariate datasets were obtained from the UEA & UCR
Time Series Classification Repository [1]. Details about each
univariate datasets can be viewed on repository’s website1.
Moreover, we chose 6 multivariate datasets used in [10]
to highlight the advantage of shapelet-orders in real-world
multidimensional time-series datasets.

The focus of the proposed model is to improve upon
shapelet-based classification models and since there is no
existing model which considers orders between shapelets,
we compared the proposed method, PSOD, with 5 state-of-
art shapelet-based time-series classification models.
• Scalable Shapelet Discovery (SSD) [10]: This method

is a fast procedure to extract random shapelets from the
time-series dataset. Our PSOD method generalizes SSD
by taking pairwise shapelet-orders into account and this is
why these two methods are compared.
• Learning Time-Series Shapelets (LTS) [9]: The LTS gen-

eralizes shapelets, thus it obtains more accurate prediction
on most datasets. However, LTS is not directly applicable
to multivariate datasets while PSOD is applicable.
• Fast Shapelets (FS) [20]: The FS algorithm discretize and

approximates the shapelets rather than a complete search
at each node of the decision tree. It is also not directly
applicable to multivariate time-series datasets.
• Naive Shapelets2 (NS) [19]: This is an naive extension of

the FS algorithm where a d-dimensional multivariate time-

1The UEA & UCR Time Series Classification Repository,
www.timeseriesclassification.com

2We implemented the model as original source code was not available.
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Figure 3: Average accuracies of FS, SSD, LTS and PSOD on
synthetic dataset where (a) orders between shapelets and (b)no
order between shapelets exists in the data.

series example is converted into d univariate time-series
instances and FS is applied to each equivalent univariate
representation to learn a decision tree independently. The
final label is determined via a majority voting scheme.
• Shapelet Forests2 (SF) [19]: The SF algorithm combines

the FS algorithm for univariate time series to build an
ensemble of classifiers, one for each time series dimension
in the multivariate time-series instances.

The default training and test sets were used in all ex-
periments. The average accuracy of 5 trials was reported
for each method. Three shapelet lengths were used, l ∈
{0.1L, 0.2L, 0.3L}. The distance threshold percentile (P )
was set at P = 0.35 for all datasets. For parameter α, we
consider two choices,−10 and−100, and chose the best one
through internal cross validation in the training set. All ex-
periments were run on a windows 10 machine with 32 GB
RAM and Intel i7 quad core processor.

Results on synthetic datasets Two groups of synthetic
time-series datasets were generated: (1) the orders of
shapelets are different in two classes; (2) there is no order
between shapelets. Two subsequences with specific patterns
were considered. The first one is y = sinx, x ∈ [0, π], and
the second one is y = − sinx, x ∈ [0, π]. In the group
of synthetic dataset where order matters, the first pattern al-
ways occurs before the second one in the data that is labeled
as “Class 1”, whereas the first pattern always occurs after
the second one in the data that is labeled as “Class 2”. A
sample of time-series from both classes and two patterns are
plotted in Fig. 1. In both synthetic datasets, the start-time of
patterns were randomly selected, and the remaining points in
the time-series follow Gaussian distributionN (0, 0.05). Be-
sides, we added noise sampled from a product distribution
comprised ofN (0, 0.05) and U(0, 0.25) to the patterns. The
length of time-series is 400, and 20 time-series were gener-
ated for each class in both training and test datasets.

Fig. 3a shows the classification accuracy obtained by all
baselines and PSOD on the synthetic dataset where shapelets
have different orders in two classes. PSOD has significantly
outperformed all baselines in terms of classification accu-
racy. As expected, the accuracies obtained by all baselines
are random, as there is no subsequence that could differen-
tiate the class. Moreover, all baselines and PSOD perform
comparable on the dataset where there is no order among
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Figure 4: The effect of varying percentile parameter P on (a)
number of shapelets rejected and (b) accuracy.

shapelets (Fig. 3b). Therefore, the benefit of taking shapelet-
orders into account was more evident when temporal depen-
dency among pairs of shapelets could differentiate the class.

Analysis of percentile (P) parameter We evaluated the
sensitivity of the distance threshold εd in Algorithm 1 on
three real-world datasets. The threshold distance used for
pruning similar candidates has a significant effect on the
quantity of rejected candidates. The distance threshold
εd is controlled by the parameter P which denotes the
percentile of distances. Larger values of P means that two
subsequences which have large distance will be considered
as similar. As indicated in Fig. 4a larger percentile values
result in more candidate subsequences being rejected with a
degradation in accuracy (shown in Fig. 4b).

Results on real-world univariate datasets We first com-
pared the performance of PSOD versus all the baseline meth-
ods on 6 datasets that have a variety of properties in terms
of time-series length and number of classes. The average
accuracy and their training time (in brackets) are reported
in Table 1. On the first group of datasets, BeetleFly and
Earthquark, which have binary classes and moderate time
series length, PSOD produced much better results than FS
and SSD. Although PSOD and LTS obtained comparable ac-
curacy on Earthquake dataset, PSOD only took a quarter
of LTS’s training time to finish training the model. On the
second group of datasets, HandOutline and StarLingthCu.,
which have long length, PSOD produced the most accurate
results. The superiority of PSOD compared to LTS with re-
spect to training time is also more clear. On the third group of
datasets, InsetW. and FaceAll, which have multiple classes,
PSOD still outperform FS and SSD with respect to accuracy.
Table 1 revealed that (1) although PSOD attained slightly in-
ferior results than LTS, it is efficient. (2) PSOD obtained
better (or comparable) classification accuracy than FS and
SSD on all 6 datasets. Although SSD was the fastest, the
training time of PSOD is better than FS and LTS.

Next, we evaluated the effectiveness of PSOD on 75
real-world univariate datasets obtained from 7 categories
namely ECG, Image, Sensor, Simulated, Spectro, Motion
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Figure 5: (a) Critical difference diagram. (b) Average percentage improvement of PSOD over FS and SSD across 75 univariate datasets.
(c) Accuracy improvement over FS w.r.t 7 categories. (d) Accuracy improvement over SSD w.r.t 7 categories.

Table 1: Average accuracy (Training time in minutes) of 6 different real-world time-series datasets.

Dataset C L FS LTS SSD PSOD

BeetleFly 2 512 0.65 (0.3) 0.7 (1.3) 0.7 (0.001) 0.75 (0.2)
Earthquake 2 512 0.71 (27.7) 0.74 (41) 0.68 (1.2) 0.73 (11)
HandOutline 2 2709 0.81 (2051) > 2 days 0.81 (0.8) 0.86 (627)
StarLightCu. 3 1024 0.91 (131) 0.85 (920) 0.94 (1.5) 0.94 (781)
InsectW. 11 256 0.47 (2.6) 0.60(157) 0.45 (0.3) 0.48 (12)
FaceAll 14 131 0.62 (4.1) 0.74 (303) 0.73 (0.1) 0.73 (26)

Table 2: Average accuracy of NS, SF, SSD and PSOD on 6 multivariate datasets over 5 trials.

Dataset D C L NS SF SSD PSOD

mhealth 23 12 51 - 3431 0.75 0.78 0.73 0.81
Characters 3 20 109 - 205 0.90 0.96 0.97 0.97

HMP 3 21 125 - 9318 0.70 0.73 0.71 0.73
RealDisp 117 33 318 - 5643 0.67 0.69 0.71 0.78
Wafer3 6 2 126 - 146 0.85 0.91 0.87 0.88
ECG3 3 2 68 - 104 0.73 0.75 0.76 0.76

and Device. We compared PSOD against FS and SSD only,
since LTS is very costly for longer time-series datasets. The
significance test, calculated based on [6], shows that PSOD
is significantly better than FS and SSD at the 5% level (see
Fig 5a). The percentage of improvement of PSOD over FS
and SSD (plotted in Fig. 5b) shows that across 75 datasets
PSOD has significantly improved the classification accuracy.
On average PSOD was 8.9% more accurate than FS and
2.6% better than SSD.

The percentage improvement of PSOD over FS and
SSD for datasets from different categories are shown in
Fig. 5c and Fig. 5d respectively. Clearly, PSOD improved
the classification accuracy for most of the datasets from
different categories, especially from Motion and Device
categories. For the few datasets, that PSOD failed to improve
the accuracy, it is possible that the procedure of randomly
selecting shapelets may have selected bad-quality shapelets
which decreased the performance of PSOD (discussed in
section 5). Table 1 and Fig. 5 clearly indicate the superiority
of PSOD.

Results on multivariate datasets We further assessed the
proposed model on 6 real-world multivariate time-series
datasets. Their characteristics and the average accuracy of 5
trials are shown in Table 2. We compared PSOD with three
multivariate time-series classification techniques namely NS,
SF and SSD. Table 2 shows that PSOD produced higher
or comparable accuracy compared to three baselines on 5
datasets, except Wafer. PSOD achieves higher accuracy
on Wafer dataset compared to NS by 3% and 1% higher
compared to SSD, however SF achieves 3% higher accuracy
than PSOD.

Discussion From the experiments, we noticed that (1) in
most datasets, PSOD is more accurate than SSD and FS.
The quality of the proposed order extraction schemes is de-
pendent on the quality of extracted shapelets. Poor quality
shapelets may lead to poor quality orders and consequently
result in lower classification accuracy. Since in PSOD, sub-
sequence candidates are randomly extracted, the quality of
shapelets may compromise to speedup the shapelet extrac-

3Balanced binary datasets were used.
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tion procedure. (2) PSOD is applicable to both univariate
and multivariate time-series, especially with shorter length,
which is common in many domains. For longer time-series,
the efficiency of PSOD may vary, because the computational
complexity of PSOD increases with the number of poten-
tial candidate shapelets. One future direction is to gener-
ate shapelets of good quality by generalizing subsequences,
as well as, developing more efficient methods for learning
shapelet-orders with smaller time complexity.

6 Conclusion
In this paper, we propose a novel order-generation scheme,
TimeGap-based-orders, to capture temporal dependency
among shapelets, and present a novel model PSOD aimed to
extract both informative shapelets and shapelet-orders. From
the extensive experimental results, we found that (1) the
PSOD model produces more accurate classification results
compared to state-of-the-art alternatives in majority of the
datasets; (2) the proposed order-generation scheme is gen-
eralized, and can identify and extract shapelet-orders from
both univariate and multivariate time-series datasets.
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