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Abstract. This paper investigates the problem of highly imbalanced time-series
classification using shapelets, short patterns that best characterize the target time-
series, which are highly discriminative. The current state-of-the-art approach learns
generalized shapelets along with weights of the classification hyperplane via a
classical cost-insensitive loss function. Cost-insensitive loss functions tend to
treat different misclassification errors equally and thus, models are usually bi-
ased towards examples of majority class. The rare class (which will be referred
to as positive class) is usually the important class and a false negative is always
costlier than a false positive. Traditional 0-1 loss functions fail to differentiate
between these two types of misclassification errors. In this paper, the generalized
shapelets learning framework is extended and a cost-sensitive learning model is
proposed. Instead of incorporating the misclassification cost as a prior knowl-
edge, as was done by other published methods, we formulate a constrained op-
timization problem to learn the unknown misclassification costs along with the
shapelets and their weights. First, we demonstrated the effectiveness of the pro-
posed method on two case studies, with the objective to detect true alarms from
life threatening cardiac arrhythmia dataset from Physionets MIMIC II repository.
The results show improved true alarm detection rates over the current state-of-the-
art method. Next, we compared to the state-of-the-art learning shapelet method
on 16 balanced dataset from UCR time-series repository. The results show evi-
dence that the proposed method outperforms the state-of-the-art method. Finally,
we performed extensive experiments across additional 18 imbalanced time-series
datasets. The results provide evidence that the proposed method achieves com-
parable results with the state-of-the-art sampling/non-sampling based approaches
for highly imbalanced time-series datasets. However, our method is highly inter-
pretable which is an advantage over many other methods.
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1 Introduction

Research on time-series classification has garnered importance among practitioners in
the data mining community. A major reason behind the ever increasing interest among
data-miners is the plethora of time-series data available from a wide range of real-life
domains. Temporal ordered data from areas such as financial forecasting, medical diag-
nosis, weather prediction etc. provide classification challenges more akin to real-world
scenarios. Thus, building more robust time-series classification models is imperative.



One of the key sources of performance degradation in the field of time-series clas-
sification is the class imbalance problem [18] where the minority class (we call it the
positive class) is outnumbered by abundant negative class instances. Models built us-
ing standard classification algorithms on such imbalanced datasets, which generally
have minimum classification error as a criterion for classifier design often, are biased
towards the majority class; and therefore, have higher misclassification error for the
minority class examples. Moreover, in real-world scenarios such as object detection,
medical diagnosis etc., the positive class is usually the more important class and false
negatives are always costlier than false positives. Traditional O - 1 loss function clas-
sifiers fail to differentiate between these two types of errors and final outcomes are
naturally biased towards the abundant negative class. Thus, a cost-sensitive classifier
is preferred when dealing with datasets where examples from different classes carry
different misclassification costs.

Recently, in the realm of time-series classification, Grabocka et al. [10] proposed
a novel framework known as Learning Time-series Shapelets (LTS) to directly learn
generalized short time-series subsequences known as shapelets [23] along with weights
of a classifier hyperplane to differentiate temporal instances in a binary classification
framework. Shapelets are local discriminative patterns (or subsequences) that can be
used to characterize the target class, for determining the time-series class member-
ship. Shapelets have been proven to have high predictive powers as they provide local
variation information within the time-series as well as high interpretability of predic-
tions due to easier visualizations. LTS formulates an optimization problem where a
cost-insensitive 0-1 logistic loss function is minimized in order to learn generalized
shapelets. The minimum Euclidean distances of the learned shapelets to the time-series
can be used to linearly separate the time-series examples from different classes.

However, LTS uses cost-insensitive loss function that treats false positive and false
negative errors equally, which limits its applicability on balanced datasets. In this paper,
we propose a cost-sensitive time-series classification framework (henceforth known as
CS-LTS) by extending the LTS model. A cost-sensitive logistic loss function is mini-
mized to enhance the modeling capability of LTS. The cost-sensitive logistic loss func-
tion uses variable misclassification costs for false positive and false negative errors.
Generally, these misclassification cost values are available from the cost matrix pro-
vided by domain experts which is often a cumbersome procedure. Instead of using fixed
cost parameters, this paper learns the variable misclassification costs from the training
data via a constrained optimization problem. Thus, the main contribution of this paper
is summarized as the following.

1. The proposed method learns the misclassification costs from the training data thus
nullifying the need for predetermination of cost values for misclassification errors.
To the best of our knowledge, the proposed model is the first algorithmic approach
to solve highly imbalanced time-series classification problem.

2. A constrained optimization problem is proposed which jointly learns shapelets
(highly interpretable patterns), their weights, and most importantly misclassifica-
tion costs, while other cost-sensitive approaches mainly consider misclassification
costs are given a priori.
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Fig. 1: An illustration of the proposed CS-LTS model ( 1(c)) compared to LTS (1(b)) using 2
shapelets learned on an imbalanced version of BirdChicken dataset (1(a)).

3. The effectiveness of the method is demonstrated on life-threatening cardiac arrhyth-
mia dataset from Physionets MIMIC II repository showing improved true alarm
detection rates over the current state-of-the-art method for false alarm suppression.

4. Finally, the method is evaluated extensively on 34 real-world time series datasets
with varied degree of imbalances and compared to a large set of baseline methods
previously proposed in the realm of imbalance time-series classification problems.

In Figure (1(a)), we show all time series examples for the blue and red classes. The
blue class has only 3 time series, while the red class has 10 time series. Since LTS does
not handle imbalance dataset, the learned hyperplane is very biased. This is clear from
Figure (1(b)) that shows the distance between the two learned shapelets using LTS and
the training time series. CS-LTS learns a hyperplane that is aware about the imbalance
in the data, as shown in Figure (1(c)).

Next, we present a short literature review for time-series classification using shapelets
and cost-sensitive time-series classification.

2 Related Work

Time-series classification via shapelets. In the field of time-series classification, the
concept of shapelets have received a lot of attention [10, 16,24, 8,23]. Shapelets are
local discriminative patterns (or subsequences) that characterize the target class and
maximally discriminate instances of time-series from various classes. Discovering the
most discriminative subsequences is crucial for the success of time-series classifica-
tion using shapelets. The primary approach, based on search-based techniques, pro-
posed by Ye et al. [23], exhaustively search for all possible subsequences and a de-
cision tree was constructed based on information gain criterion. The information gain
accuracy was ranked based on the minimum distance of the candidate subsequences
to the entire time-series training set. Hills et al. [15] perceived this minimum distance
of the set of shapelets to a time-series dataset as a data transformation to a shapelet-
transformed space where standard classifiers could be used to achieve high classifica-
tion accuracy using the shapelet-transformed data as predictors. Recently, Grabocka et
al. [10] proposed a novel framework known as Learning Time-series Shapelets (LTS)
to jointly learn generalized shapelets along with weights of a logistic regression model



using the minimum Euclidean distances of shapelets to time-series dataset as predictors.
The method discovered optimal shapelets and reported statistically significant improve-
ments in accuracy compared to other shapelet-based time-series classification models.
However, a major drawback is low true positive rate in case of highly imbalanced time-
series datasets. The logistic loss used in the LTS framework is a cost-insensitive loss
function which treats false positive and false negative misclassifications errors equally.
Classification models built using such loss functions suffer from the class imbalance
problem.

Cost-sensitive classification. Classification techniques for handling imbalanced
data-sets can broadly be divided into two kinds of approaches, data-level approaches [2,
13,3,5,12,17,4] and algorithmic-level [22] approaches. Data-level methods are sam-
pling techniques that act as a pre-processing steps prior to the learning algorithm to bal-
ance the imbalanced datasets either through oversampling of the minority class or under
sampling of the majority class or combination of both. Algorithmic-level approaches
directly manipulate the learning algorithm by incorporating a predefined misclassifi-
cation cost for each class to the loss function. These methods have reported excellent
performance with good theoretical guarantees [14]; however, predetermination of opti-
mal class misclassification cost or data-space weighting is required which can vary on
a case-by-case basis among different datasets and also require domain expertise.

In this paper, an algorithmic approach is followed to directly manipulate the learning
procedure by minimizing a cost-sensitive logistic loss function. An additive asymmet-
ric learning function is fitted to the training data. In addition to learning the shapelets
and weight parameters of the classification hyperplane, the cost parameters are also es-
timated from the training data. A constrained optimization problem is formulated that
is optimized to jointly learn shapelets, weights of the classification hyperplane and mis-
classification cost parameters nullifying the need for predetermination of cost values
for misclassification errors.

3 Model Description

Preliminaries: A binary class time-series dataset composed of [ training examples
denoted as T € RI*? is considered where, each T} (1 <4 < 1)is of length @ and
the label for each time-series instance is a nominal variable Y € {0,1}!. Candidate
shapelets are segments of length L from a time-series starting from j—th time point
inside the i*" time-series. The objective is to learn k shapelets S, each of length L,
that are most discriminative in order to characterize the target class. The shapelets are
denoted as S € RE*L,

The minimum distance M, j between the it" series T} and the k" shapelet S, is
the distance between the segment and time-series. This is defined as

L
o1
My = min ;(Ti,j+l,1 ~ Sk)? M

Given a set of I time-series training examples and K shapelets, a shapelet-transformed
matrix [15] M € R7*¥ can be constructed which is composed of minimum distances



M; ;. between the it" series T; and the k" shapelet S).. The minimum distance M ma-
trix is a representation in the shapelet transformed space and acts as predictors for each
target time-series. However, the function in equation (3) is not continuous and thus non-
differentiable. Grabocka et al. [10] defined a soft-minimum function (shown in equation
(2)), which is an approximation for M; j.

Z}le D; k.j exp(aD; k ;)
7
25 exp(ab; i 5)

where D; ;, ; is defined as the distance between the j** segment of series i and the k'"
shapelet given by the formula

My =~ My, = )

1 L

D= I Z(Ti,jﬂq — Ska)? 3)
=1

Learning model: A linear learning model (shown in equation (4)) was proposed by
[10] using the minimum distances M as predictors in the transformed shapelet space.

K
Yi:WO‘FZMi,ka Vi e {1""71} S
k=1

The learning function (equation (4)) is extended by incorporating Cry and C'rp for
false negative and false positive misclassifications cost respectively. The new asymmet-
ric learning model is defined as equation (5).

1 c(Y)Crn 1 3 Crn
Z; = l = = —— Y +1
Crn +Crp nl-U(Y)OFP CFN+CFP( nCFp)

®)

o() is the logistic function and o'(Y’) represents the posterior probability of P(Y =
11 X).

Additionally, a cost-sensitive loss function (equation (6)) is proposed which is a
differential cost-weighted logistic loss between the actual targets Y and the estimated
targets Z.

LIV, Z) = ~YIno(CanZ) — (1 = V)in(1l = 0(CrpZ) ©)

A regularized cost-sensitive logistic loss function defined by equation (7) is the regular-
ized objective function denoted by F.

I

argmin F(S, W, C) = argminZﬁ(K-, Z) + Aw||[W? (7
S,W,C Sw.C =

where C' € {Crn,Crp}. The problem is formulated as a constrained optimization
problem since the misclassification costs should always be positive. The misclassifi-
cation cost denotes the loss incurred when a wrong prediction occurs. The constraints



ensure both costs are positive and also the fact that cost of false negative is at least
times greater than cost of false positive. These conditions ensure the loss function to be
penalized more in the event of an error in the positive class than an error in the negative
class.
argmin F(S, W, C)
S,w.,C
subjectto Cry > 0, Crpp >0 (®)

Crn > 0CFp

Similar to [10], a Stochastic gradient descent (henceforth SGD) approach is adopted
to solve the optimization problem. The SGD algorithm optimizes the parameters to
minimize the loss function by updating through per instance of the training data. Thus,
the per-instance decomposed objective function F; (denoted by equation (9)) shows the
division of equation (7) into per-instance losses for each time-series.

K
Fi=L(Y:, Z)+ =Y W} ©)
k=1

The objective of the learning algorithm is to learn the optimal shapelet Sy, the
weights W for the hyperplane and the misclassification costs C' which minimizes the
loss function (equation (7)).

The SGD algorithm requires definitions of gradients of the objective function with
respect to shapelets, hyperplane weights and misclassification costs. Equation (10) shows
the point gradient of objective function for the i*" time-series with respect to shapelet
Sk.

OF,  OL(Y:, 7)) 0Z; 9Yi <~ 0Ny 0Dy,
08k, 0Zi  9Y; OM; . “= ODik; O0Ski

(10)

Furthermore, the gradient of the cost-sensitive loss function with respect to the
learning function Z; is defined in equation (11). Also the gradient of the cost-sensitive
learning function with respect to the estimated target variable Y; is shown in equation

12)

0L(Y;, Z;)

0z = (1 = Y)o(CrpZ;)Crp — Yi(l — o(CrnZ;))Crn  (11)

0z; 1
oY; Crn+Crp

12)

Equation (13) shows the gradient of the estimated target variable with respect to the
minimum distance. The gradient of the over all minimum distance with respect to the
segment distance and the gradient of the segment distance with respect to a shapelet



point is defined by equation (14) and equation (15) respectively.

oY;
W, (13)
OM,
OM; _exp(aDig;(1+a(Dik; — M) (14)
OD; 1 ; j’]:I exp (aD, ;. 5)
— o — (S, — Tl T 15
5h L( k.l 1) (15)

The hyperplane weights W are learned by minimizing the objective function 7 via
SGD. The gradients for updating the weights W}, is shown in equation (16) and equation
(17) shows the gradient for update of the bias term Wj.

OF,  0CL(Yi.Z)0Z . 2w
oW, oz, ?ﬁMl’k 7 Wy (16)
: \AAY: VA
OF; _ 0L(Y:, Zi) 0Z; a7

The learning procedure for estimating the misclassification cost values in the proposed
framework is a constrained optimization problem because we need to guarantee that
Crny > 0,Crp > 0and Crpy > 0CEp, where 6 € Z. However, Stochastic Gradient
Descent algorithm can only be applied to solve unconstrained optimization problems.
Thus, we convert the constrained optimization into an unconstrained optimization sim-
ilar to [19] and apply SGD algorithm to solve the optimization problem for learning the
optimal misclassification costs.

Cpny =0CErp +D (18)

The false negative misclassification cost (Cpp) is first written in terms of false
positive misclassification cost as shown in equation (18) and replaced in equation (6)
changing the optimization problem to equation (19).

argmin F(S,W,Cpgp, D)
S,W,Crp,D (19)

subject to Cpp > 0

D is a regularization term for the misclassification cost. The objective function is then
minimized with respect to log C'rp instead of Crp. As a result, the new optimiza-
tion problem becomes unconstrained. Derivatives of objective function with respect to
log C'rp and D in gradient descent are computed as:

oF; oL(Y;, Z;)
8log Crpp - ore 8CFP (20)
OLY:, Zi) _ OL(Y:, Zi) 07, @1

Jdcpp 0Z;  Ocrp



Algorithm 1 Cost-sensitive learning time-series shapelets

1: procedure CS-LTS

2: Input: T € R'*?, Number of shapelets K, length of a shapelet L, Regularization parameter
Aw, Learning rate 7, maxIter

3: Initialize: Shapelets S € R *Z, classification hyperplane weights W € R, Bias Wy € R,
Misclassification cost Crp € R,0 € Z, D € R

4 for iterations = N7* !t do

5 fori=1,....,1do

6: fork=1,..., K do

7 Wpew «— wokd —p g;;;

8: fori=1,...,Ldo

9 S S —n

10: W« We't — s

11: log O3 < log Ctg — naloz%
. new old OF;

Return S, W, Wy, Crp

OL(Y;, Z;)  0L(Y;,Z;) 0Z;
oD 9%, oD

The steps of the proposed cost-sensitive time-series classification method (CS-LTS,
henceforth) are shown in Algorithm 1. The pseudocode shows that the procedure up-
dates all K shapelets and the weights W, W), false positive cost C'rp and parameter D
by a learning rate 7.

(22)

4 Experimental Evaluation

In this section, we evaluate the effectiveness of the proposed method on different setting
represented by different datasets. The objective function in Equation (7) is a non-convex
function with respect to parameters and solving it via SGD requires a good initializa-
tion of the parameters. The initialization step is very important in this scenario as it
influences whether the optimization reaches the region of global minimum.

Model parameter initializations: Shapelets were initialized using K-means centroids
of all segments similar to [10]. First we set the minimum length (L,,;,) of a shapelet to
be 10 % of the length of the time-series examples. Then the total number of shapelets
was computed as L,,;, multiplied by number of training time series. The number
of shapelets used as input for the optimization function was determined using K =
log(total number of segments). Three scales { Lyin,2 X Lmin, 3 X Lymin} of sub-
sequence lengths were investigated.

The weight parameters W, and W, were initialized randomly around 0. Cpp was
initially set to 1. The values for # and initial value of D were determined through a grid
search approach using internal cross-validations over the training data. The values for 6



were searched from the set {1, 5, 10, 25, 50, 100} and the initial values for D was cho-
sen from {0.001,0.01, 0.1, 10, 100, 1000}. The best parameter value was identified via
internal cross-validation on training data. Once the best parameter value was identified,
the methods were trained on the entire training set using the best chosen parameters,
and the learned model was tested on the test set which was completely separate from
the training procedure. The learning rate 1 was initialized to a small value of 0.01. The
maxIter for the optimization was set to 5000 iterations.

Evaluation measures: We report Fig score for 5 € {1, 2, 3} since this is a commonly
used performance metric for imbalanced learning. These are simple functions of the
precision and recall. The traditional F-score or F} score is the harmonic mean of pre-
cision and recall that is considered a balanced measure between precision and recall.
For 3 > 1 the evaluation metric rewards higher true positive rates. We also consider the
sensitivity and specificity evaluation metrics, as the objective is to achieve lower false
negative with minimum increase in false positive rates.

4.1 Cost Sensitive Cardiac Arrhythmia Alarms Detection

In this set of experiments, we demonstrate the effectiveness of the proposed method on
two cost-sensitive applications from PhysioNets MIMIC 1II version 3 repository [9, 21].
The objective is to detect true alarms while suppressing false alarms, where missing
true alarms (positive class) is more severe than missing false alarms (negative class),
since missing true alarm could lead to serious consequences and risk patients’ lives.

The database is a multi-parameter ICU repository containing patients’ records of up
to eight signals from bedside monitors in Intensive Care Units (ICU). The extracted
datasets contain human-annotated true and false cardiac arrhythmia alarms. We ex-
tracted a subset of patients’ records that contained signal from lead ECG II, because
it was identified as the sensor that contained the least number of missing values across
the patients. For each alarm event, a 20-second window prior to the alarm event was
extracted similar to [20].

We partition the dataset into four distinct cross-validation datasets, where we train
the model on 3 folds and test on the fourth one. In addition to the cross validation
experiment, we repeat the entire process of cross-validation for 10 independent trials
(each trial has 4 distinct partitions on true alarm instances) which results in 40 different
combination of training data. The mean and standard deviation of the evaluation metrics
is then reported.

The two datasets selected are VTACH and CHALLENGE. VTACH consists of
true and false Ventricular Tachycardia alarms from the ICU patients. CHALLENGE
dataset is a mixture of different true and false arrhythmia alarms. The alarms categories
are Asystole, Extreme Bradycardia, Extreme Tachycardia, Ventricular Tachycardia and
Ventricular Flutter/Fibrillation. This dataset was presented at a competition in 2015
organized by PhysioNet to encourage the development of algorithms to reduce the in-
cidence of false alarms in the Intensive Care Unit (ICU).

Achieving high true alarm detection rate (TAD) or high sensitivity is important
when suppressing high false alarm rates from bedside monitors in ICU. High false alarm
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Fig.2: CS-LTS[e] vs. LTS[#] vs. BEHAR[%] in terms of true alarm detection (TAD) and false
alarm suppression (FAS) rates over 2 critical alarm datasets. CS-LTS achieves higher TAD on
both datasets compared to LTS and BEHAR.
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Fig. 3: Comparison of CS-LTS vs. LTS in terms F, F> and F5 scores over 2 false alarm suppres-
sion datasets.
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rates cause desensitization among care providers, thus risking patients’ lives [7]. The
objective of the prediction task is to provide high false alarms suppression (FAS) rates
(achieve high specificity) while keeping TAD (sensitivity) high. In the two datasets,
(Figure 2) CS-LTS (circle) achieves higher TAD (Y-axis) than LTS (diamond) and the
current state-of-the-art baseline BEHAR [1] (star) in the field of critical alarm detec-
tion. FAS (X-axis) is better for LTS (diamond) on both datasets compared to CS-LTS
(circle). However, improving TAD by decreasing FAS is acceptable as missing true
alarms may result in patient fatality. CS-LTS (circle) beats BEHAR (star) in terms of
true alarm detection rate on both the datasets. In terms of false alarm suppression, CS-
LTS achieves comparable performance on VTACH dataset. BEHAR (star) achieves 100
% FAS for CHALLENGE dataset, however, true alarm detection rate is 0%. Figure (3)
shows the comparison of Fg scores for VTACH and CHALLENGE datasets. In both
datasets CS-LTS outperforms LTS with respect to 5 = 2 and 5 = 3. This proves that
CS-LTS improves the TAD score on both datasets when compared to LTS.
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Fig. 4: F5 and F3 scores between CS-LTS and LTS for 16 balanced time-series datasets. (Left)
In terms of F» score CS-LTS outperforms or is comparable to LTS in all 16 datasets. (Right) In
terms of F3 score CS-LTS outperforms or is comparable to LTS in all 16 datasets.

4.2 Balanced Time Series Datasets

In this set of experiments, we highlight that the proposed model attains comparable
or better classification accuracy when compared to state-of-the-art LTS on balanced
datasets. So, incorporating cost sensitive learning does not hurt the optimization algo-
rithm because it automatically learns the cost sensitive parameters. This is very useful
if the intrinsic sensitivity of the data is not known a priori.

Sixteen binary-class datasets were selected from UCR time-series repository [6]. In
order to ensure fair comparison with LTS, the default train and test splits were used.
Ten independent runs (with different initialization for both LTS and CS-LTS) were con-
ducted and the average and standard deviation of the evaluation metric are reported.

The results of comparing CS-LTS to LTS on the 16 datasets are shown in Figure (4).
It is observed that CS-LTS outperforms or comparable to LTS on all 16 datasets. This
set of experiments highlights the fact that the CS-LTS model provides a good alternative
to LTS as it can handle balanced datasets quite effectively. The proposed method attains
higher sensitivity with little loss of specificity when compared to LTS.

4.3 Imbalanced Time Series Datasets

In order to highlight the advantage of cost-sensitive learning over cost-insensitive learn-
ing, in this set of experiments, we extensively evaluate the model on 18 highly im-
balanced datasets and compare it with LTS and different over-sampling and under-
sampling methods. The imbalanced time series datasets were constructed by Cao et
al. [4] from 5 multi-class datasets from the UCR time-series repository and the details
are shown in Table(1).
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Table 1: Imbalanced datasets constructed from UCR Repository [6]
where * is the index of the original class that is assumed as the positive class
Dataset Training Test Length
#Positive #Negative IM Ratio #Positive #Negative
FaceAll* | 80-150 1000 6.7-12.5 91-123 977-1079 | 131

SLeaf* 35 450 12.9 40 600 128
TwoPatterns®| 200 180 9 1001 - 1106 1894 - 1999| 128
Wafer* 200  380-3000 1.9-15 562 - 6220 392 -3402 | 152
Yoga* 200 800-900 4-4.5 1300 - 1570 730-870 | 426
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Fig.5: Fy and F5 score between CS-LTS and LTS for 18 imbalanced time-series datasets. (Left)
In terms of Fi score CS-LTS achieves very high accuracy compared to LTS on 15 datasets and
is comparable to LTS in 3. (Right) In terms of F» score CS-LTS outperforms or is comparable to
LTS in all 18 datasets.

The main advantage of CS-LTS over LTS is its superior performance in case of
imbalanced datasets. In Figure (5), it is shown that CS-LTS comfortably outperforms
LTS on all 18 imbalanced datasets in terms of both F; and F5 scores.

Moreover, in comparison to the state-of-the-art methods for imbalanced time-series
classification, CS-LTS is very competitive. As shown in Table (2) in terms of F} score.
The best method per dataset is shown in bold. The proposed CS-LTS method attains the
highest number of absolute wins (5.86 wins) where a point is awarded to a method if it
attains the highest F; score among the rest of the baseline methods for that particular
dataset. In case of draws, the point is split into equal fractions and awarded to each
method having the highest F for a particular dataset.
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Fig. 6: Critical difference diagram showing average rank of CS-LTS against all baseline methods
on 18 imbalanced datasets.

5 Discussion

Amongst the baselines, SPO [2], SMOTE [5], BORSMOTE [12], ADASYN [13], DB
[11] and MoGT [4] are over-sampling techniques which mostly act as a preprocessing
technique to over sample the rare class examples in order to construct balanced datasets.
Easy [17] and Balanced [17] are under-sampling methods which reduces the number of
examples from the majority class via under-sampling the majority class to balance the
datasets.

From table (2), we can infer that CS-LTS beats LTS and Easy across all datasets
except 1 dataset (TwoPatterns3) in case of LTS which is a draw. Comparing with other
baseline methods we see that CS-LTS has achieved similar accuracy as baseline meth-
ods on more than one datasets (such as wafer0O and wafer1l). CS-LTS achieves compara-
ble results with almost all of the over-sampling methods except for sleafl and TwoPat-
terns3 dataset. Results of CS-LTS on Sleafl and TwoPatterns3 certainly outperform
LTS by huge margins; however, due to overlapping data-points in the feature space, it
is hard for a linear model to achieve high classification accuracy in these two datasets.
Compared to under-sampling methods (Easy and Balanced), CS-LTS is better than these
baseline methods on most of the datasets. Another comparable method is the 1-Nearest
Neighbor method (1-NN) which is known to be a good classifier for time-series clas-
sification problems. However, 1-NN computationally suffers from high dimensionality,
hence it is time consuming compared to our method. Moreover, CS-LTS is an easier-
to-interpret method as compared to 1-NN which makes it more desirable to domain
experts. CS-LTS is an algorithmic approach to solve the imbalanced time-series classi-
fication problem whereas the state-of-the-art methods in this field are data manipulation
methods that use over-sampling and under-sampling techniques, which act as a prepro-
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cessing step to solve the high imbalance time-series classification problem. Figure (6)
shows the critical difference diagram amongst all the baseline methods and CS-LTS.

6 Conclusion

In this paper, we adapt the novel perspective of learning generalized shapelets for time-
series classification via a logistic loss minimization, and extend the time-series clas-
sification framework to a cost-sensitive framework that can handle highly imbalanced
time-series datasets. In contrast to the baseline model, whose prediction accuracy is bi-
ased towards the abundant negative class, the proposed CS-LTS does not suffer from
class imbalance problem. Extensive experiments on 36 real-world time-series datasets
reveal the proposed method is a good alternative to the baseline model. It can handle
both balanced and imbalanced time-series datasets and achieve better or comparable re-
sults against the current state-of-the-art methods. In future, we plan to extend the cost-
sensitive learning framework for multivariate time-series datasets in order to improve
the performance of the model.
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