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Abstract—We propose a novel semi-supervised learning
algorithm, called IMCC, designed for co-training classifiers on
single-view datasets. Our method runs the co-training
algorithm for a predefined number of times, each time using a
different random split of features. Thus, a set of diverse co-
training classifiers is created. Each of these classifiers then
labels each of the examples for which we want to determine the
class label. In this way, each example for classification is
assigned multiple labels. We then treat this as a problem of
learning from inconsistent and unreliable annotators in a
multi-annotator problem setting and estimate the single hidden
true label for each example. In experimental results obtained
on 25 benchmark datasets of various properties IMCC
outperformed five considered alternative methods for co-
training on single-view datasets, and resulted in a statistical tie
with a Naive Bayes classifier trained using a much larger set of
labeled examples.

Keywords- semi-supervised learning; ensemble methods; co-
training; multiple annotation

I

Semi-supervised learning is a machine learning technique
that makes use of both labeled and unlabeled data with the
goal of achieving higher accuracy while demanding less
human effort.

A number of semi-supervised learning methods have
been proposed, but their efficiency tends to depend on
various circumstances. One of the major semi-supervised
learning methods is co-training [1]. Successful co-training
application is ensured when the dataset has a natural
partitioning of the features in two disjoint subsets (views)
where each view is sufficient for learning and conditionally
independent of the other view given the class label. Co-
training exploits the two views in order to train two
classifiers using the available training examples. Then,
iteratively, each classifier selects and labels some unlabeled
examples in order to improve the accuracy of the other
classifier by providing it with unknown information.
However, in practice, co-training application is limited
because the needed optimal feature split is usually unknown.

In this paper, we propose a novel semi-supervised
learning algorithm based on Integration of Multiple Co-
trained Classifiers, which we call IMCC, designed for co-
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training on single-view datasets. Our method runs the co-
training algorithm for a predefined number of times, each
time using a different random split of features. Thus, a set of
diverse co-training classifiers is created. Each of these
classifiers then labels each of the examples for which we
want to determine the class label. In this fashion, each
example for classification is assigned multiple labels. We
then treat this as a problem of learning from inconsistent and
unreliable annotators, and use GMM-MAPML [2], an
unsupervised method designed for estimation of true labels
when given only multi-annotator situations.

This paper is organized as follows. Section II presents the
related work. Section III describes our IMCC algorithm.
Section IV presents the conducted experiment and the
achieved results. Finally, section V concludes the paper.

II.

One approach to solving the problem of co-training on
single view datasets is by designing a methodology for
developing a good approximation of the optimal feature split.
Some promising results have been achieved in this field [3-7],
but this proved to be a difficult task, as the relation between
the characteristics of the views and the performance of co-
training has not been sufficiently understood. Moreover,
research [4] indicates that given a small training dataset as in
real-world situations where co-training is called for, the
sufficiency and independence assumptions cannot be reliably
verified, making the split methods unreliable and application
of co-training uncertain.

Another approach to this problem is based on
methodologies that combine co-training with ensemble
learning. Such an approach is mainly focused on exploiting
an ensemble of classifiers instead of two single classifiers in
the co-training algorithm [8-10]. These methods can
significantly boost the performance of co-training, but
usually require a relatively large initial training set in order
to build the initial ensemble of diverse and accurate
classifiers.

In this paper, we compare our proposed method to a
method called MaxInd [3], designed for approximation of an
optimal feature split for co-training. MaxInd is designed to
create two maximally independent views given the class
label, based on the conditional independence requirement [1].
Also, we compare our method to a recently proposed
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Random Split Statistic Algorithm (RSSalg) for co-training
on single view datasets [11]. In RSSalg, co-training is
applied for a predefined number of times, each time using a
different random split of features. Each run of co-training
produces a different enlarged training set, consisting of

initial labeled data and data labeled in the co-training process.

Examples from enlarged training sets are combined in a final
training set, and pruned in order to keep only the most
confidently labeled ones. The final classifier in RSSalg is
obtained by training the base learner on a set created in this
way. Pruning of the examples is done by selection of the
most reliable and most informative cases. RSSalg has
achieved some promising results [11], but its disadvantage
was the introduction of threshold parameters to the co-
training setting, which highly affect the performance of
RSSalg and need to be carefully tuned for its successful
application. To experiment with an alternative method of
combining the co-training classifiers gained in the first step
of RSSalg, we used a majority voting method (named MV in
the experiment of this paper) to integrate the co-training
classifiers. However, if most of the classifiers in the
ensemble perform poorly, majority voting will perform badly
as well.

In this paper, unlike in all of the previous studies, we
combined co-training and multiple-annotation settings, and
used an unsupervised algorithm to integrate multiple co-
training based classifiers. We also performed systematic
comparisons of the accuracy of 6 co-training methods as well
as 2 additional Naive Bayes classifiers trained by different
number of examples on 25 benchmark datasets of various
properties.

III. METHOD

In this section we first briefly review the GMM-MAPML
algorithm as it forms the basis of our method. Then we
introduce our proposed IMCC method.

A. Review of the GMM-MAPML Algorithm

The GMM-MAPML algorithm [2] is developed to
estimate the true labels for learning from multiple annotators
of unknown quality. The algorithm takes into account that
the annotators are not only unreliable, but may also be
inconsistently accurate depending on the data. Given a
dataset D={x;, y,-] Y s y,-R} (where x; is an instance, y/ €{0,1}
is the corresponding binary label assigned to the instance x;
by the j-th annotator and R is the number of the annotators),
GMM-MAPML algorithm uses EM algorithm and Bayesian
information criterion (BIC) to get parameters of the fittest
Gaussian mixture model (GMM) and its mixture
components’ responsibilities (t;) for each instance. Based on
the intuition that real world annotators have different
sensitivity and specificity for different groups of instances,
the sensitivity «] and specificity g/ are defined as:

al =Pr(y/ =1]y, =1, k-th Gaussian component generates x;)
B! =Pr(y/ =0]y, =0, k-th Gaussian component generates x;)

where j=1,...,R; k=1,...,K. Therefore, the algorithm models
the annotators to generate labels as follows: given an
instance x; to label, the annotators find the Gaussian mixture

component which most probably generates that instance.
Then the annotators generate labels with their sensitivities
and specificities at the most probable component.

By following the annotator model, GMM-MAPML uses
majority voting to initialize the probabilistic labels z; (i.e., the
probability when the hidden true label is 1). Then, the
algorithm alternately carries out the maximum-likelihood
(ML) estimation and the maximum a posterior (MAP)
estimation: given the current estimates of probabilistic labels
z;, the ML estimation measures annotators’ performance (i.e.,
their sensitivity o and specificity f) at each mixture
component and learns a classifier with parameter w; given
the estimated sensitivity a, specificity f, and the prior
probability which is provided by the learned classifier, the
MAP estimation gets the updated probabilistic labels z; based
on the Bayesian rule. After the two estimations converge, the
GMM-MAPML algorithm outputs both the probabilistic
labels z; and the model parameters ¢ ={w,a,f}. The GMM-
MAPML estimations of the hidden true labels depend both
on observations and on the labels from all annotators. A brief
summary of the GMM-MAPML algorithm is shown at
algorithm 1. For details please refer to [2].

Algorithm 1: GMM-MAPML Algorithm

1. Find the fittest K-mixture-component GMM for the
instances, and get the corresponding GMM parameters
and components responsibilities T for each instance.

2. Initialize z, = (1/ R)Z];:1 ¥/ based on majority voting.

3. (ML estimation) Given z;, estimate the sensitivity and
specificity of j-th annotator at k-th component as follows.

N N
Jo_ Z J Z
o, = )i Zy

i=1 i=1

N N
Bl =2, —2)0=y)) [ 2 (5, ~2,)
i=1 i=1
Also learn a logistic regression classifier by the Newton-
Raphson update for optimizing w. Then we can calculate
the prior probability p; for the positive class as
p, =Py =1|x,w]= U(w'x’).

4. (MAP estimation) Given the sensitivity and specificity
of each annotator at each component and the classifier
parameter, update z; as follows.

a.p,
z =

ap, +b,(1—p,)
where

p, =Py =1|x,w]= 0'(wa’)

a=[lla11-a1"

b=11o-81181"

g = arg max(z, )

Iterate stepé 3 and 4 till convergence.




The GMM-MAPML algorithm can also be extended to
multi-class data. Suppose that there are C> 2 classes. Let
yle{l,...,C} be the label assigned to the i-th instance by the
j-th annotator, and let y;e{1,...,C} be the hidden true label.
We model each annotator at the k-th component by the

i) (k)
=(a) ,..,ap ), where

0!/ :Pr[yij =cly, =t], ZC Ian =1.
The term ] denotes that the probability that annotator j

assigns class ¢ to an instance given the true class is 7. Then,
algorithm 1 can be applied to the multi-class label settings.

B.  The IMCC Algorithm

Given a small dataset of labeled examples L = {(x;, »))},
where x; is an instance and y; € {l1,...,.C} is the
corresponding label of the instance x;, and a sufficiently large
set of unlabeled examples U = {u;}, we want to estimate the
unknown true labels of the instances in the given test set 7 =
{6}

The first step in our IMCC algorithm is to create a
committee of m diverse co-training classifiers { CL}";. This is
achieved by running m iterations of co-training
independently until they terminate for a given dataset. For
each co-training run, a different random feature split is used.
The random feature split is created by random selection of
half of the features as the first view, and using the remaining
half of the features as the second view.

In each run of the co-training algorithm, a different pair
of base classifiers is trained (because each time a different
feature split is used). Based on their confidence, each pair of
base classifiers selects and labels diverse instances from the
set of unlabeled instances. Thus, it may happen that in
different runs of co-training different instances are selected
for labeling, and it may also happen that different co-training
classifiers label the same instance differently. Thus, by using
different random splits we gain a set of diverse co-training
classifiers.

Co-training is highly sensitive to the two underlying
assumptions on views [5, 12], and therefore sensitive to the
feature split division. Therefore, the classifiers in our
committee produced by running co-training with different
splits of features should vary in performance and make errors
independently of each other, which enable us to treat them as
independent annotators when applying the GMM-MAPML
method.

Each of the m classifiers from the created committee
predicts a label for each instance from the dataset 7. In this
way, we get a prediction set P consisting of m labels: P = {(z,

m k. . .
Vi,---» Y1 )}, Where y, is the label assigned to the instance ¢ by
the k-th classifier. Finally, we employ the GMM-MAPML
algorithm in order to estimate the true label of each instance
inT.

The original co-training algorithm labels examples with
respect to their membership in one of two classes: positive
and negative. We can extend co-training to work with multi-
class data by applying inner classifiers, which can handle
multi-class data. Also, we allow each inner classifier to label

. . j(k)
multinomial parameters a;
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a predefined number of most confident examples for each
class in each iteration.
The IMCC algorithm is summarized at algorithm 2.

Algorithm 2: IMCC Algorithm
Given:
e A small set L of labeled training examples, described by
feature set .X;

e A much larger set U of unlabeled examples;

e A set T of instances for which we want to estimate the
unknown true labels;
Co-training parameters: The number of co-training runs m;
The number of examples ¢, ¢s,...,cc of each class y; €
{1,...,C} to be added in each iteration of co-training to the
initial training set; The size of the small unlabeled pool u;
The number of iterations for co-training algorithm k;

Training:
for i=1..m iterations:

o Create two feature sets (views) X; and X, describing the
examples by randomly splitting feature set X in half.
Create a pool U’ of examples by choosing u examples at
random from U.

Loop for k iterations:
o Use L to train a classifier h that considers only the X;

portion of X.

o Use L to train a classifier hz that considers only the X,

portion of X.

o For each class i€ {1,...,C}:
o Allow /; to label ¢; examples from U’ which are
most conﬁdently predicted as ;.
o Allow hz to label ¢; examples from U’ which are
most confidently predicted as y;.
o Add these self-labeled examples to L.
o Randomly choose 2-Xiic; examples from U to
replenish U’
end loop
end for;
Classification of new examples:
e Form a prediction set P from instances from 7 (P = 7).
e for i=1..m
e For each instance ¢ from 7, compute the probability of

each possible label by multiplying the probabilities
output by hll and hlz for that label and assign the instance
its most probable label y;. Assign this label to the instance
¢ in the prediction set P.

end for;

. Apply GMM MAPML algorithm to the prediction set P =

{(z, y,, sV )} in order to estimate the true label y, of each

instance £. Assign y, to instance 7 in the set 7.

Output:
e Set 7= {(¢, y,)} of instances and their estimated labels.

IV. EXPERIMENTS

In this section we report the experimental procedures and
the validation results of the proposed method versus
alternatives obtained on 25 datasets.



A. Datasets and Configuration

We have evaluated our method on 3 natural language
datasets used in previous studies to test the performance of
co-training: the WebKB-Course dataset [1, 5], News2x2 [3]
and LingSpam corpus [3, 7]. In addition, we performed
experiments on 14 binary and 8 multi-class UCI datasets also
previously used for evaluating co-training [4, 8, 13]. The
benchmark datasets of various properties were selected to
give us a better insight of how effective our method is on
datasets of various dimensionality, size and redundancy. For
natural language datasets we have adopted the preprocessing
technique used in [3] in order to compare our methodology
to the performance of co-training run with the MaxInd
feature split. For the dimensionality reduction, document
frequency was used in order to choose the 200 most
important features for each view. After dimensionality
reduction, the dataset is represented using the bag-of-words
model with tf-idf measurement [14]. Both document
frequency and tf-idf measurement are class-independent and
therefore do not violate the co-training setting, where labels
are available for just a few training examples.

For evaluation, we have adopted the stratified 10-fold-
cross validation described in [3]. Data is divided into 10
stratified folds. In each round of the 10-fold-cross validation
process, a different fold is selected for random selection of
the required number of labeled training examples. The
remaining data from that fold, as well as from 5 adjacent
folds, are used as unlabeled training examples, and finally,
the remaining 4 folds are used as testing examples. In this
way, in each round, 60% of the data is used for training and
the remaining 40% is used for testing. Each fold is used
exactly once for the selection of labeled data, five times as
unlabeled data and four times as a part of the testing set. In
the experiment, we used accuracy as the measure of
performance.

For co-training configuration, the number of examples
for each class in the initial training set L was proportional to
the class distribution in the dataset (except for the LingSpam
dataset, where we use the same settings as in [3]). The
numbers of examples per each class labeled by co-training
inner classifiers at each iteration (i.e., the parameters c;,
Cs,...,cc in algorithm 2) were also chosen proportionally to
the class distribution and the dataset size. By following [3],
the size of the unlabeled pool # was 50 and the number of
iterations used in the co-training algorithm (in each of the
settings) was 20. The number of co-training classifiers in the
ensemble m, used by the IMCC algorithm, was 50 for the
natural language datasets and 30 for the UCI datasets. Other
than the MaxInd. discussed in the section IV.B, the base

classifier used in the co-training algorithms was Naive Bayes.

This classifier was chosen both for its speed and for the high
accuracy it achieves on benchmark datasets.

The datasets and their basic properties are listed in Table
I. In this table, the first three datasets (WebKB, LingSpam,
and News2x2) are natural language datasets, rows 4-17 are
binary UCI datasets (Hepatitis to Diabetes) and the
remaining 8 are multi-class UCI datasets. All groups are
sorted by the parameter Gap.
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TABLE L. A SUMMARY OF THE DATASETS USED IN THE EXPERIMENT

Datasets Dim L Lace |Aanp - All,e Gap
WebKB (2) 400 10 786 630 964 178
LingSpam (2) 400 10 80.1 1735 889 8.8
News2x2 (2) 400 10 8L.1 1200 89.6 8.5
Hepatitis (2) 19 2 61.7 92 84.8 23.1
Kr-vs-kp (2) 36 11 656 1917 872 216
Credit-g (2) 20 2 53.6 600 741 205
Heart-statlog (2) 13 5 65.7 162 80.5 148
Cylinder-bands (2) 39 5 584 323 729 145
Sonar (2) 60 2 555 124 688 133
Ionosphere (2) 34 8 70.1 210  83.1 13.0
Breast-cancer (2) 9 2 59.0 171 71.7 12.7
Credit-a (2) 15 9 69.3 413 815 122
Tic-tac-toe (2) 9 9 588 574 707 119
Spambase (2) 57 3 67.7 2759 796 119
Breast-w (2) 9 3 86.3 418 974 111
Mushroom (2) 22 6 84.7 4873 953  10.6
Diabetes (2) 8 3 648 460 750 102
Splice (3) 62 24 662 1914 953  29.1
Wine (3) 14 3 719 107 962 243
OptDigits (10) 65 60 72,6 3372 91.7 19.1
SyntheticControl (6) 62 24 768 360 94.1 17.3
Waveform5000 (3) 41 15 641 3000 80.0 159
Dermatology (6) 35 19 818 219 971 153
Segment (7) 20 21 672 1386 80.8 13.6
CMC (3) 10 5 41.1 884 488 7.7

Notation - Dataset: the number in parentheses following the dataset names
denotes the number of classes; Dim: the number of features describing the
dataset; |L|: the size of the initial training set L; L,c: accuracy achieved by a
supervised Naive Bayes classifier trained on the initial set L; |All|: the size
of the entire training set A/l (i.e., the sum of numbers of labeled and
unlabeled examples); All,..: accuracy achieved by supervised Naive Bayes
classifier trained on the entire training set A// (i.e., labeled examples and
unlabeled examples with correct label); Gap: performance gap (also called
the optimal gain in [4]) computed as All,e - Loc.

B.  Experimental Results

The following co-training methods were considered in
our experiments:
1. Co-training using a natural feature split (in datasets
WebKB, News2x2, and LingSpam the natural feature split is
known), hereinafter referred to as Natural.
2. Co-training using a random feature split, hereinafter
referred to as Random.
3. The classifier obtained by a majority voting of the
classifiers created in the same way as the committee of
classifiers in IMCC, hereinafter referred to as MV.
4. Co-training using a MaxInd feature split introduced in
[3]. In [3] it is reported that MaxInd is not always successful
in combination with Naive Bayes while it might be more
successful when using other base classifiers, such as RBF



Nets and SVM. Because of this, we report the best
performance of MaxInd achieved when using one of these
three classifiers for each dataset. Hereinafter we refer to such
a co-training method as MaxIndy,..

5. The RSSalg method introduced in section II always
selects the most reliable and most informative cases in the
co-training process. Hereinafter we refer it as RSSalg.

6. The new IMCC method proposed in this paper.

In table II we report the accuracies obtained by each co-
training method on all datasets. In most datasets (19 out of
25), our IMCC method was the most accurate.

To further characterize the proposed IMCC algorithm,
we also conducted a Friedman test in order to detect whether
there are differences considering the global set of classifiers,
followed by post-hoc Bergmann-Hommel's test in order to
find the concrete pairwise comparisons that produce the
differences as recommended in [15, 16]. The significance
level of a=0.05 is used for all tests. Using Friedman’s test,
we compared 5 co-training methods (Natural was not
included in the tests as there are too few datasets on which

TABLE II.

we can measure its performance) as well as NB L (i.e.,
Naive Bayes classifier trained on the initial set L) and
NB_AIll (i.e., Naive Bayes classifier trained on the entire
training set A/l by using labeled examples and unlabeled
examples with correct labels) on all datasets (for lack of
space, results are reported in a supplement found at
http://astro.temple.edu/~tua87106/ICMLA_Suppl.pdf).

In our conducted experiments and statistical tests, the
proposed method IMCC was more accurate than all
alternative co-training methods and the difference was
statistically significant versus all alternatives except for
RSSalg. It should be noted that the reported accuracy of
RSSalg is optimistic (it only represents the upper bound for
that method) as its thresholds are tuned manually according
to its performance on the test set. In co-training applications,
we lack the labels of the test data needed for tuning of these
thresholds. Thus, the results presented here for RSSalg only
reflect its upper bound performance on this particular test set.
Finally, IMCC resulted in a statistical tie with Naive Bayes
classifier trained using a much larger set of labeled data A//.

COMPARISONS OF IMCC VS. FIVE ALTERNATIVE CO-TRAINING METHODS. THE PERCENT ACCURACY AND STANDARD DEVIATION ARE

REPORTED BASED ON 10-FOLD STRATIFIED CROSS-VALIDATION ON EACH DATASET. NATURAL IS APPLICABLE ONLY ON THE FIRST THREE DATASETS (WEBKB,
LINGSPAM, AND NEWS2X2) THAT HAVE KNOWN NATURAL FEATURE SPLITS. THE HIGHEST ACCURACIES IN EACH DATASET ARE BOLDED.

Datasets Natural Random MV MaxIndp,s RSSalg IMCC

WebKB 87.2+6.7 84.2+7.6 87.7£3.5 78.349.1 90.7+3.3 88.6+1.0
LingSpam 70.3+13.3 76.6+8.5 81.1+7.4 83.9+1.1 91.1£5.9 95.3+0.5
News2x2 82.9+4.6 80.0+7.0 86.3+2.4 76.2+12.8 90.6+1.8 85.7+0.7
Hepatitis 80.3+8.0 83.3+4.3 80.8+7.9 86.5+£3.4 85.8+5.1
Kr-vs-kp 54.4+5.0 55.3+4.5 60.1+6.2 67.1+4.2 79.1£1.0
Credit-g 62.0+5.5 64.4+5.5 68.1+1.8 70.2+0.7 70.7+1.8
Heart-statlog 79.4£8.2 81.8+2.0 80.8+4.5 83.3x2.2 85.2+2.6
Cylinder-bands 52.5+5.2 52.9+6.5 56.3+5.7 61.6+2.5 65.9+1.9
Sonar 54.9+6.0 56.5+5.5 56.7+9.1 61.2+5.8 62.4+3.8
Ionosphere 69.4+12.6 73.1+4.9 78.3£7.7 79.6+5.8 75.243.0
Breast-cancer 66.7+6.1 68.2+4.5 67.5+5.4 70.4£5.3 73.9+2.2
Credit-a 69.2+15.0 73.4+11.0 76.1£2.6 77.6x4.8 79.6+1.2
Tic-tac-toe 61.5+3.2 63.2+2.5 62.0+1.7 64.1£2.9 70.5£1.5
Spambase 67.8£15.8 78.4+4.6 68.9+8.2 81.5+4.1 81.5+0.5
Breast-w 96.8+0.8 96.9+0.7 96.7+0.7 97.5+0.4 97.6+0.4
Mushroom 88.2+3.2 89.1x1.0 88.4x1.3 89.2+0.9 89.9+0.7
Diabetes 61.4+7.3 64.1+3.3 65.3£1.1 67.7£1.8 71.7£2.1
Splice 81.1+6.9 84.1+3.0 77.3£8.5 86.2+3.2 93.1+0.3
Wine 92.5+6.8 94.5+2.6 92.34£3.5 96.8+1.9 97.8+0.9
OptDigits 77.4+3.2 82.3£2.0 88.3+1.7 83.4£1.7  87.90.3
SyntheticControl 84.5+4.1 85.0+2.3 87.8+4.1 87.9+2.8 86.7+1.1
Waveform5000 63.0+7.6 67.1+6.8 64.0+4.4 72.0+6.1 79.8+0.6
Dermatology 86.9+4.3 87.1+4.2 83.6+2.2 87.6+3.9 97.3+1.7
Segment 59.6+4.7 63.2+4.1 62.6£3.9 72.6£2.9 76.6x1.7
CMC 37.3+3.5 38.2+3.1 38.6+3.0 45.0£3.3 47.5+1.4
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V.

In this paper we have proposed an IMCC algorithm
designed to boost the performance of co-training and to
enable its successful application on single-view datasets of
varying size, dimensionality and redundancy. In each
iteration of IMCC, a different random split of features is
used for co-training to create a set of diverse classifiers. The
predictions of those classifiers on the test data are treated as
noisy labels and the GMM-MAPML method, designed for
estimation of true labels in a multi-annotator problem setting,
is applied to estimate the true labels.

The experiments were performed on 3 natural language
datasets, as well on 22 UCI datasets, using a 10-fold-cross
validation procedure. In all experiments, the proposed
algorithm succeeded in improving the accuracy of the initial
Naive Bayes classifier trained on the same small-labeled set,
and it outperformed all five alternative co-training methods
considered in our study. Also, IMCC resulted in a statistical
tie with Naive Bayes classifier trained using a much larger
set of labeled examples.

We are in the process of integrating our IMCC algorithm
into the information system for monitoring the scientific
research activity of the University of Novi Sad (CRIS UNS).
The newly proposed algorithm is an additional support of the
system for automatic extraction of metadata from scientific
publications, with the goal to overcome the problem of

CONCLUSION

manual annotation of a large number of scientific papers [17].

Finally, we are working on overcoming the bottleneck of
manual annotation in the case of automatically mining
methodologies from scientific articles [18].
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