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Abstract—We propose a novel semi-supervised learning 
algorithm, called IMCC, designed for co-training classifiers on 
single-view datasets. Our method runs the co-training 
algorithm for a predefined number of times, each time using a 
different random split of features. Thus, a set of diverse co-
training classifiers is created. Each of these classifiers then 
labels each of the examples for which we want to determine the 
class label. In this way, each example for classification is 
assigned multiple labels. We then treat this as a problem of 
learning from inconsistent and unreliable annotators in a 
multi-annotator problem setting and estimate the single hidden 
true label for each example. In experimental results obtained 
on 25 benchmark datasets of various properties IMCC 
outperformed five considered alternative methods for co-
training on single-view datasets, and resulted in a statistical tie 
with a Naive Bayes classifier trained using a much larger set of 
labeled examples. 

Keywords- semi-supervised learning; ensemble methods; co-
training; multiple annotation 

I.  INTRODUCTION 
Semi-supervised learning is a machine learning technique 

that makes use of both labeled and unlabeled data with the 
goal of achieving higher accuracy while demanding less 
human effort. 

A number of semi-supervised learning methods have 
been proposed, but their efficiency tends to depend on 
various circumstances. One of the major semi-supervised 
learning methods is co-training [1]. Successful co-training 
application is ensured when the dataset has a natural 
partitioning of the features in two disjoint subsets (views) 
where each view is sufficient for learning and conditionally 
independent of the other view given the class label. Co-
training exploits the two views in order to train two 
classifiers using the available training examples. Then, 
iteratively, each classifier selects and labels some unlabeled 
examples in order to improve the accuracy of the other 
classifier by providing it with unknown information. 
However, in practice, co-training application is limited 
because the needed optimal feature split is usually unknown. 

In this paper, we propose a novel semi-supervised 
learning algorithm based on Integration of Multiple Co-
trained Classifiers, which we call IMCC, designed for co-

training on single-view datasets. Our method runs the co-
training algorithm for a predefined number of times, each 
time using a different random split of features. Thus, a set of 
diverse co-training classifiers is created. Each of these 
classifiers then labels each of the examples for which we 
want to determine the class label. In this fashion, each 
example for classification is assigned multiple labels. We 
then treat this as a problem of learning from inconsistent and 
unreliable annotators, and use GMM-MAPML [2], an 
unsupervised method designed for estimation of true labels 
when given only multi-annotator situations. 

This paper is organized as follows. Section II presents the 
related work. Section III describes our IMCC algorithm. 
Section IV presents the conducted experiment and the 
achieved results. Finally, section V concludes the paper. 

II. RELATED WORK 
One approach to solving the problem of co-training on 

single view datasets is by designing a methodology for 
developing a good approximation of the optimal feature split. 
Some promising results have been achieved in this field [3-7], 
but this proved to be a difficult task, as the relation between 
the characteristics of the views and the performance of co-
training has not been sufficiently understood. Moreover, 
research [4] indicates that given a small training dataset as in 
real-world situations where co-training is called for, the 
sufficiency and independence assumptions cannot be reliably 
verified, making the split methods unreliable and application 
of co-training uncertain. 

Another approach to this problem is based on 
methodologies that combine co-training with ensemble 
learning. Such an approach is mainly focused on exploiting 
an ensemble of classifiers instead of two single classifiers in 
the co-training algorithm [8-10]. These methods can 
significantly boost the performance of co-training, but 
usually require a relatively large initial training set in order 
to build the initial ensemble of diverse and accurate 
classifiers. 

In this paper, we compare our proposed method to a 
method called MaxInd [3], designed for approximation of an 
optimal feature split for co-training. MaxInd is designed to 
create two maximally independent views given the class 
label, based on the conditional independence requirement [1]. 
Also, we compare our method to a recently proposed 
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Random Split Statistic Algorithm (RSSalg) for co-training 
on single view datasets [11]. In RSSalg, co-training is 
applied for a predefined number of times, each time using a 
different random split of features. Each run of co-training 
produces a different enlarged training set, consisting of 
initial labeled data and data labeled in the co-training process. 
Examples from enlarged training sets are combined in a final 
training set, and pruned in order to keep only the most 
confidently labeled ones. The final classifier in RSSalg is 
obtained by training the base learner on a set created in this 
way. Pruning of the examples is done by selection of the 
most reliable and most informative cases. RSSalg has 
achieved some promising results [11], but its disadvantage 
was the introduction of threshold parameters to the co-
training setting, which highly affect the performance of 
RSSalg and need to be carefully tuned for its successful 
application. To experiment with an alternative method of 
combining the co-training classifiers gained in the first step 
of RSSalg, we used a majority voting method (named MV in 
the experiment of this paper) to integrate the co-training 
classifiers. However, if most of the classifiers in the 
ensemble perform poorly, majority voting will perform badly 
as well. 

In this paper, unlike in all of the previous studies, we 
combined co-training and multiple-annotation settings, and 
used an unsupervised algorithm to integrate multiple co-
training based classifiers. We also performed systematic 
comparisons of the accuracy of 6 co-training methods as well 
as 2 additional Naive Bayes classifiers trained by different 
number of examples on 25 benchmark datasets of various 
properties. 

III. METHOD 
In this section we first briefly review the GMM-MAPML 

algorithm as it forms the basis of our method. Then we 
introduce our proposed IMCC method. 

A. Review of the GMM-MAPML Algorithm 
The GMM-MAPML algorithm [2] is developed to 

estimate the true labels for learning from multiple annotators 
of unknown quality. The algorithm takes into account that 
the annotators are not only unreliable, but may also be 
inconsistently accurate depending on the data. Given a 
dataset D={xi, yi

1, …, yi
R} (where xi is an instance, yi

j��0,1� 
is the corresponding binary label assigned to the instance xi 
by the j-th annotator and R is the number of the annotators), 
GMM-MAPML algorithm uses EM algorithm and Bayesian 
information criterion (BIC) to get parameters of the fittest 
Gaussian mixture model (GMM) and its mixture 
components’ responsibilities (�ik) for each instance. Based on 
the intuition that real world annotators have different 
sensitivity and specificity for different groups of instances, 
the sensitivity j

k� and specificity j
k� are defined as: 

Pr( 1| 1j j
k i iy y� � � � , k-th Gaussian component generates xi) 

Pr( 0 | 0j j
k i iy y� � � � , k-th Gaussian component generates xi) 

where j=1,…,R; k=1,…,K. Therefore, the algorithm models 
the annotators to generate labels as follows: given an 
instance xi to label, the annotators find the Gaussian mixture 

component which most probably generates that instance. 
Then the annotators generate labels with their sensitivities 
and specificities at the most probable component. 

By following the annotator model, GMM-MAPML uses 
majority voting to initialize the probabilistic labels zi (i.e., the 
probability when the hidden true label is 1). Then, the 
algorithm alternately carries out the maximum-likelihood 
(ML) estimation and the maximum a posterior (MAP) 
estimation: given the current estimates of probabilistic labels 
zi, the ML estimation measures annotators’ performance (i.e., 
their sensitivity � and specificity �) at each mixture 
component and learns a classifier with parameter w; given 
the estimated sensitivity �, specificity �, and the prior 
probability which is provided by the learned classifier, the 
MAP estimation gets the updated probabilistic labels zi based 
on the Bayesian rule. After the two estimations converge, the 
GMM-MAPML algorithm outputs both the probabilistic 
labels zi and the model parameters � ={w,�,�}. The GMM-
MAPML estimations of the hidden true labels depend both 
on observations and on the labels from all annotators. A brief 
summary of the GMM-MAPML algorithm is shown at 
algorithm 1. For details please refer to [2]. 
 

Algorithm 1: GMM-MAPML Algorithm 
1. Find the fittest K-mixture-component GMM for the 
instances, and get the corresponding GMM parameters 
and components responsibilities �ik for each instance. 
2. Initialize

1
(1 / ) R j

i ij
z R y

�
� 	 based on majority voting. 

3. (ML estimation) Given zi, estimate the sensitivity and 
specificity of j-th annotator at k-th component as follows.
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Also learn a logistic regression classifier by the Newton-
Raphson update for optimizing w. Then we can calculate 
the prior probability pi for the positive class as  

       Pr[ 1 | , ] ( )T

i i i i
p y �� � �x w w x .               

4. (MAP estimation) Given the sensitivity and specificity 
of each annotator at each component and the classifier 
parameter, update zi as follows. 

(1 )
i i

i

i i i i

a p
z

a p b p
�


 �
                     

where 

1

1

1

1

1,...,

Pr[ 1 | , ] ( )

[ ] [1 ]

[1 ] [ ]

arg max( )

j j

i i

j j

i i

T

i i i i

R
y yj j

i q q

j

R
y yj j

q q

j

ik
k K

i

p y

a

b

q

�

� �

� �




�

�

�

�

�

� � �

� �

� �

�

�

�

x w w x

 

Iterate steps 3 and 4 till convergence.  
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The GMM-MAPML algorithm can also be extended to 
multi-class data. Suppose that there are C � 2 classes. Let 
yi

j��1,…,C� be the label assigned to the i-th instance by the 
j-th annotator, and let yi��1,…,C� be the hidden true label. 
We model each annotator at the k-th component by the 
multinomial parameters ( ) ( ) ( )

1( ,..., )
k k kj j j

t t tC� ��� , where 
Pr[ | ]j j

tc i iy c y t� � � � , 
1

1C j
tcc
�

�
�	 . 

The term j
tc� denotes that the probability that annotator j 

assigns class c to an instance given the true class is t. Then, 
algorithm 1 can be applied to the multi-class label settings. 

B. The IMCC Algorithm 
Given a small dataset of labeled examples L = ��xi, yi��, 

where xi is an instance and yi � �1,…,C� is the 
corresponding label of the instance xi, and a sufficiently large 
set of unlabeled examples U = �ui�, we want to estimate the 
unknown true labels of the instances in the given test set T = 
�ti�. 

The first step in our IMCC algorithm is to create a 
committee of m diverse co-training classifiers �CL�m

i. This is 
achieved by running m iterations of co-training 
independently until they terminate for a given dataset. For 
each co-training run, a different random feature split is used. 
The random feature split is created by random selection of 
half of the features as the first view, and using the remaining 
half of the features as the second view. 

In each run of the co-training algorithm, a different pair 
of base classifiers is trained (because each time a different 
feature split is used). Based on their confidence, each pair of 
base classifiers selects and labels diverse instances from the 
set of unlabeled instances. Thus, it may happen that in 
different runs of co-training different instances are selected 
for labeling, and it may also happen that different co-training 
classifiers label the same instance differently. Thus, by using 
different random splits we gain a set of diverse co-training 
classifiers. 

Co-training is highly sensitive to the two underlying 
assumptions on views [5, 12], and therefore sensitive to the 
feature split division. Therefore, the classifiers in our 
committee produced by running co-training with different 
splits of features should vary in performance and make errors 
independently of each other, which enable us to treat them as 
independent annotators when applying the GMM-MAPML 
method. 

Each of the m classifiers from the created committee 
predicts a label for each instance from the dataset T. In this 
way, we get a prediction set P consisting of m labels: P = ��t, 
y1

t ,…, ym
t  ��, where yk

t is the label assigned to the instance t by 
the k-th classifier. Finally, we employ the GMM-MAPML 
algorithm in order to estimate the true label of each instance 
in T.  

The original co-training algorithm labels examples with 
respect to their membership in one of two classes: positive 
and negative. We can extend co-training to work with multi-
class data by applying inner classifiers, which can handle 
multi-class data. Also, we allow each inner classifier to label 

a predefined number of most confident examples for each 
class in each iteration. 

The IMCC algorithm is summarized at algorithm 2. 
 

Algorithm 2: IMCC Algorithm 
Given: 
� A small set L of labeled training examples, described by 

feature set X; 
� A much larger set U of unlabeled examples; 
� A set T of instances for which we want to estimate the 

unknown true labels; 
� Co-training parameters: The number of co-training runs m; 

The number of examples c1, c2,…,cC of each class yi � 
�1,…,C� to be added in each iteration of co-training to the 
initial training set; The size of the small unlabeled pool u; 
The number of iterations for co-training algorithm k; 

Training: 
for i=1..m iterations: 
� Create two feature sets (views) X1 and X2 describing the 

examples by randomly splitting feature set X in half. 
� Create a pool U' of examples by choosing u examples at 

random from U. 
� Loop for k iterations: 
o Use L to train a classifier h

i
1 that considers only the X1 

portion of X. 
o Use L to train a classifier h

i
2 that considers only the X2 

portion of X. 
o For each class yj � {1,…,C}: 

� Allow h
i
1 to label cj examples from U' which are 

most confidently predicted as yj. 
� Allow h

i
2 to label cj examples from U' which are 

most confidently predicted as yj. 
o Add these self-labeled examples to L. 
o Randomly choose 2��

C
j=1cj examples from U to 

replenish U’ 
end loop 

end for; 
Classification of new examples: 
� Form a prediction set P from instances from T (P = T). 
� for i=1..m  
� For each instance t from T, compute the probability of 

each possible label by multiplying the probabilities 
output by h

i
1 and h

i
2 for that label and assign the instance 

its most probable label y
i
t. Assign this label to the instance 

t in the prediction set P. 
end for; 

� Apply GMM-MAPML algorithm to the prediction set P = 
��t , y

1
t ,…, y

m
t  �� in order to estimate the true label yt  of each 

instance t. Assign  yt  to instance t in the set T. 

Output: 
�  Set T = {(t, yt)} of instances and their estimated labels. 

 

IV. EXPERIMENTS 
In this section we report the experimental procedures and 

the validation results of the proposed method versus 
alternatives obtained on 25 datasets. 
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A. Datasets and Configuration 
We have evaluated our method on 3 natural language 

datasets used in previous studies to test the performance of 
co-training: the WebKB-Course dataset [1, 5], News2x2 [3] 
and LingSpam corpus [3, 7]. In addition, we performed 
experiments on 14 binary and 8 multi-class UCI datasets also 
previously used for evaluating co-training [4, 8, 13]. The 
benchmark datasets of various properties were selected to 
give us a better insight of how effective our method is on 
datasets of various dimensionality, size and redundancy. For 
natural language datasets we have adopted the preprocessing 
technique used in [3] in order to compare our methodology 
to the performance of co-training run with the MaxInd 
feature split. For the dimensionality reduction, document 
frequency was used in order to choose the 200 most 
important features for each view. After dimensionality 
reduction, the dataset is represented using the bag-of-words 
model with tf-idf measurement [14]. Both document 
frequency and tf-idf measurement are class-independent and 
therefore do not violate the co-training setting, where labels 
are available for just a few training examples. 

For evaluation, we have adopted the stratified 10-fold-
cross validation described in [3]. Data is divided into 10 
stratified folds. In each round of the 10-fold-cross validation 
process, a different fold is selected for random selection of 
the required number of labeled training examples. The 
remaining data from that fold, as well as from 5 adjacent 
folds, are used as unlabeled training examples, and finally, 
the remaining 4 folds are used as testing examples. In this 
way, in each round, 60% of the data is used for training and 
the remaining 40% is used for testing. Each fold is used 
exactly once for the selection of labeled data, five times as 
unlabeled data and four times as a part of the testing set. In 
the experiment, we used accuracy as the measure of 
performance.  

For co-training configuration, the number of examples 
for each class in the initial training set L was proportional to 
the class distribution in the dataset (except for the LingSpam 
dataset, where we use the same settings as in [3]). The 
numbers of examples per each class labeled by co-training 
inner classifiers at each iteration (i.e., the parameters c1, 
c2,…,cC in algorithm 2) were also chosen proportionally to 
the class distribution and the dataset size. By following [3], 
the size of the unlabeled pool u was 50 and the number of 
iterations used in the co-training algorithm (in each of the 
settings) was 20. The number of co-training classifiers in the 
ensemble m, used by the IMCC algorithm, was 50 for the 
natural language datasets and 30 for the UCI datasets. Other 
than the MaxIndbest discussed in the section IV.B, the base 
classifier used in the co-training algorithms was Naive Bayes. 
This classifier was chosen both for its speed and for the high 
accuracy it achieves on benchmark datasets. 

The datasets and their basic properties are listed in Table 
I. In this table, the first three datasets  (WebKB, LingSpam, 
and News2x2) are natural language datasets, rows 4-17 are 
binary UCI datasets (Hepatitis to Diabetes) and the 
remaining 8 are multi-class UCI datasets. All groups are 
sorted by the parameter Gap. 

TABLE I.  A SUMMARY OF THE DATASETS USED IN THE EXPERIMENT 

Datasets Dim |L| Lacc |All| Allacc Gap

WebKB (2) 400 10 78.6 630 96.4 17.8

LingSpam (2) 400 10 80.1 1735 88.9 8.8

News2x2 (2) 400 10 81.1 1200 89.6 8.5

Hepatitis (2) 19 2 61.7 92 84.8 23.1

Kr-vs-kp (2) 36 11 65.6 1917 87.2 21.6

Credit-g (2) 20 2 53.6 600 74.1 20.5

Heart-statlog (2) 13 5 65.7 162 80.5 14.8

Cylinder-bands (2) 39 5 58.4 323 72.9 14.5

Sonar (2) 60 2 55.5 124 68.8 13.3

Ionosphere (2) 34 8 70.1 210 83.1 13.0

Breast-cancer (2) 9 2 59.0 171 71.7 12.7

Credit-a (2) 15 9 69.3 413 81.5 12.2

Tic-tac-toe (2) 9 9 58.8 574 70.7 11.9

Spambase (2) 57 3 67.7 2759 79.6 11.9

Breast-w (2) 9 3 86.3 418 97.4 11.1

Mushroom (2) 22 6 84.7 4873 95.3 10.6

Diabetes (2) 8 3 64.8 460 75.0 10.2

Splice (3) 62 24 66.2 1914 95.3 29.1

Wine (3) 14 3 71.9 107 96.2 24.3

OptDigits (10) 65 60 72.6 3372 91.7 19.1

SyntheticControl (6) 62 24 76.8 360 94.1 17.3

Waveform5000 (3) 41 15 64.1 3000 80.0 15.9

Dermatology (6) 35 19 81.8 219 97.1 15.3

Segment (7) 20 21 67.2 1386 80.8 13.6

CMC (3) 10 5 41.1 884 48.8 7.7
 
Notation - Dataset: the number in parentheses following the dataset names 
denotes the number of classes; Dim: the number of features describing the 
dataset; |L|: the size of the initial training set L; Lacc: accuracy achieved by a 
supervised Naive Bayes classifier trained on the initial set L; |All|: the size 
of the entire training set All (i.e., the sum of numbers of labeled and 
unlabeled examples); Allacc: accuracy achieved by supervised Naive Bayes 
classifier trained on the entire training set All (i.e., labeled examples and 
unlabeled examples with correct label); Gap: performance gap (also called 
the optimal gain in [4]) computed as Allacc - Lacc. 

B. Experimental Results 
The following co-training methods were considered in 

our experiments: 
1. Co-training using a natural feature split (in datasets 
WebKB, News2x2, and LingSpam the natural feature split is 
known), hereinafter referred to as Natural. 
2. Co-training using a random feature split, hereinafter 
referred to as Random. 
3. The classifier obtained by a majority voting of the 
classifiers created in the same way as the committee of 
classifiers in IMCC, hereinafter referred to as MV. 
4. Co-training using a MaxInd feature split introduced in 
[3]. In [3] it is reported that MaxInd is not always successful 
in combination with Naive Bayes while it might be more 
successful when using other base classifiers, such as RBF 
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Nets and SVM. Because of this, we report the best 
performance of MaxInd achieved when using one of these 
three classifiers for each dataset. Hereinafter we refer to such 
a co-training method as MaxIndbest. 
5. The RSSalg method introduced in section II always 
selects the most reliable and most informative cases in the 
co-training process. Hereinafter we refer it as RSSalg. 
6. The new IMCC method proposed in this paper. 

In table II we report the accuracies obtained by each co-
training method on all datasets. In most datasets (19 out of 
25), our IMCC method was the most accurate. 

To further characterize the proposed IMCC algorithm, 
we also conducted a Friedman test in order to detect whether 
there are differences considering the global set of classi�ers,  
followed by post-hoc Bergmann-Hommel's test in order to 
�nd the concrete pairwise comparisons that produce the 
differences as recommended in [15, 16]. The significance 
level of �=0.05 is used for all tests. Using Friedman’s test, 
we compared 5 co-training methods (Natural was not 
included in the tests as there are too few datasets on which 

we can measure its performance) as well as NB_L (i.e., 
Naive Bayes classifier trained on the initial set L) and 
NB_All (i.e., Naive Bayes classifier trained on the entire 
training set All by using labeled examples and unlabeled 
examples with correct labels) on all datasets (for lack of 
space, results are reported in a supplement found at  
http://astro.temple.edu/~tua87106/ICMLA_Suppl.pdf). 

In our conducted experiments and statistical tests, the 
proposed method IMCC was more accurate than all 
alternative co-training methods and the difference was 
statistically significant versus all alternatives except for 
RSSalg. It should be noted that the reported accuracy of 
RSSalg is optimistic (it only represents the upper bound for 
that method) as its thresholds are tuned manually according 
to its performance on the test set. In co-training applications, 
we lack the labels of the test data needed for tuning of these 
thresholds. Thus, the results presented here for RSSalg only 
reflect its upper bound performance on this particular test set. 
Finally, IMCC resulted in a statistical tie with Naive Bayes 
classifier trained using a much larger set of labeled data All. .

 

TABLE II.  COMPARISONS OF IMCC VS. FIVE ALTERNATIVE CO-TRAINING METHODS. THE PERCENT ACCURACY AND STANDARD DEVIATION ARE 
REPORTED BASED ON 10-FOLD STRATIFIED CROSS-VALIDATION ON EACH DATASET. NATURAL IS APPLICABLE ONLY ON THE FIRST THREE DATASETS (WEBKB, 
LINGSPAM, AND NEWS2X2) THAT HAVE KNOWN NATURAL FEATURE SPLITS. THE HIGHEST ACCURACIES IN EACH DATASET ARE BOLDED. 

Datasets Natural Random MV MaxIndbest RSSalg IMCC 

WebKB 87.2±6.7 84.2±7.6 87.7±3.5 78.3±9.1  90.7±3.3 88.6±1.0 

LingSpam 70.3±13.3 76.6±8.5  81.1±7.4  83.9±1.1  91.1±5.9  95.3±0.5 

News2x2 82.9±4.6 80.0±7.0  86.3±2.4 76.2±12.8  90.6±1.8  85.7±0.7 

Hepatitis  80.3±8.0  83.3±4.3 80.8±7.9 86.5±3.4 85.8±5.1 

Kr-vs-kp  54.4±5.0  55.3±4.5  60.1±6.2  67.1±4.2  79.1±1.0 

Credit-g  62.0±5.5  64.4±5.5  68.1±1.8  70.2±0.7 70.7±1.8 

Heart-statlog  79.4±8.2  81.8±2.0  80.8±4.5  83.3±2.2 85.2±2.6 

Cylinder-bands  52.5±5.2  52.9±6.5  56.3±5.7  61.6±2.5  65.9±1.9 

Sonar  54.9±6.0  56.5±5.5  56.7±9.1 61.2±5.8 62.4±3.8 

Ionosphere  69.4±12.6 73.1±4.9 78.3±7.7 79.6±5.8 75.2±3.0 

Breast-cancer  66.7±6.1  68.2±4.5  67.5±5.4  70.4±5.3 73.9±2.2 

Credit-a  69.2±15.0  73.4±11.0 76.1±2.6  77.6±4.8 79.6±1.2 

Tic-tac-toe  61.5±3.2  63.2±2.5  62.0±1.7  64.1±2.9  70.5±1.5 

Spambase  67.8±15.8  78.4±4.6  68.9±8.2  81.5±4.1 81.5±0.5 

Breast-w  96.8±0.8  96.9±0.7  96.7±0.7  97.5±0.4 97.6±0.4 

Mushroom  88.2±3.2 89.1±1.0 88.4±1.3  89.2±0.9 89.9±0.7 

Diabetes  61.4±7.3  64.1±3.3  65.3±1.1  67.7±1.8  71.7±2.1 

Splice  81.1±6.9 84.1±3.0 77.3±8.5 86.2±3.2 93.1±0.3 

Wine  92.5±6.8 94.5±2.6 92.3±3.5 96.8±1.9 97.8±0.9 

OptDigits  77.4±3.2 82.3±2.0 88.3±1.7 83.4±1.7 87.9±0.3 

SyntheticControl  84.5±4.1 85.0±2.3 87.8±4.1 87.9±2.8 86.7±1.1 

Waveform5000  63.0±7.6 67.1±6.8 64.0±4.4 72.0±6.1 79.8±0.6 

Dermatology  86.9±4.3 87.1±4.2 83.6±2.2 87.6±3.9 97.3±1.7 

Segment  59.6±4.7 63.2±4.1 62.6±3.9 72.6±2.9 76.6±1.7 

CMC  37.3±3.5 38.2±3.1 38.6±3.0 45.0±3.3 47.5±1.4 

462462462



V. CONCLUSION 
In this paper we have proposed an IMCC algorithm 

designed to boost the performance of co-training and to 
enable its successful application on single-view datasets of 
varying size, dimensionality and redundancy. In each 
iteration of IMCC, a different random split of features is 
used for co-training to create a set of diverse classifiers. The 
predictions of those classifiers on the test data are treated as 
noisy labels and the GMM-MAPML method, designed for 
estimation of true labels in a multi-annotator problem setting, 
is applied to estimate the true labels. 

The experiments were performed on 3 natural language 
datasets, as well on 22 UCI datasets, using a 10-fold-cross 
validation procedure. In all experiments, the proposed 
algorithm succeeded in improving the accuracy of the initial 
Naive Bayes classifier trained on the same small-labeled set, 
and it outperformed all five alternative co-training methods 
considered in our study. Also, IMCC resulted in a statistical 
tie with Naive Bayes classifier trained using a much larger 
set of labeled examples.  

We are in the process of integrating our IMCC algorithm 
into the information system for monitoring the scientific 
research activity of the University of Novi Sad (CRIS UNS). 
The newly proposed algorithm is an additional support of the 
system for automatic extraction of metadata from scientific 
publications, with the goal to overcome the problem of 
manual annotation of a large number of scientific papers [17]. 
Finally, we are working on overcoming the bottleneck of 
manual annotation in the case of automatically mining 
methodologies from scientific articles [18]. 
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