
Comput Stat
DOI 10.1007/s00180-011-0242-8

ORIGINAL PAPER

Reusable components in decision tree induction
algorithms

Milija Suknovic · Boris Delibasic ·
Milos Jovanovic · Milan Vukicevic ·
Dragana Becejski-Vujaklija · Zoran Obradovic

Received: 18 February 2009 / Accepted: 5 February 2011
© Springer-Verlag 2011

Abstract We propose a generic decision tree framework that supports reusable
components design. The proposed generic decision tree framework consists of several
sub-problems which were recognized by analyzing well-known decision tree induc-
tion algorithms, namely ID3, C4.5, CART, CHAID, QUEST, GUIDE, CRUISE, and
CTREE. We identified reusable components in these algorithms as well as in several
of their partial improvements that can be used as solutions for sub-problems in the
generic decision tree framework. The identified components can now be used outside
the algorithm they originate from. Combining reusable components allows the repli-
cation of original algorithms, their modification but also the creation of new decision
tree induction algorithms. Every original algorithm can outperform other algorithms
under specific conditions but can also perform poorly when these conditions change.
Reusable components allow exchanging of solutions from various algorithms and
fast design of new algorithms. We offer a generic framework for component-based
algorithms design that enhances understanding, testing and usability of decision tree
algorithm parts.

Keywords Decision tree · Algorithm · Framework · Reusable components ·
Generic · Design

M. Suknovic · B. Delibasic (B) · M. Jovanovic · M. Vukicevic · D. Becejski-Vujaklija
Faculty of Organizational Sciences, University of Belgrade,
Jove Ilica 154, Belgrade, Serbia
e-mail: boris.delibasic@fon.bg.ac.rs

Z. Obradovic
Information Science and Technology Center, Temple University, Philadelphia, PA 19122, USA

123

M. Suknovic et al.

1 Introduction

The research presented in this paper deals with design of decision tree algorithms based
on reusable components (RCs) and their identification in some popular algorithms
and some of their partial improvements. RCs are solutions for typical sub-problems in
design. Several decision tree algorithms and their partial improvements were analyzed
throughout this paper. We analyzed decision tree algorithms ID3 (Quinlan 1986), C4.5
(Quinlan 1993), CART (Breiman et al. 1984), CHAID (Kass 1980), QUEST (Loh and
Shih 1997), CRUISE (Kim and Loh 2001), GUIDE (Loh 2002), and CTREE (Hothorn
et al. 2006).

The choice of these algorithms was based on availability in popular open source
software (e.g. (R Development Core Team 2008), Weka (Witten and Frank 2005),
RapidMiner (Mierswa et al. 2006)), the number of citations (e.g. on Google Scholar
algorithms and corresponding number of citations for analyzed algorithms are: C4.5
15327, CART 14434, ID3 8599, CHAID 909, QUEST 420, CRUISE 142, GUIDE 131,
CTREE 115) as well as design issues the algorithms propose. We also analyzed some
partial improvements of these algorithms (e.g. Mantaras 1991). Finally, we identified
RCs that can be used to construct inductive decision tree algorithms.

We propose a generic decision tree algorithm, with a structure consisting of sub-
problems with predefined inputs and outputs. To build a decision tree algorithm sev-
eral sub-problems should be solved. RCs with the same input-output structure can be
applied to resolve each of the sub-problems. Some sub-problems are crucial for an
algorithm, and some are optional.

The need for reusable components that can be interchanged between algorithms
is emphasized in Sonnenburg et al. (2007). Our research supports the call for stan-
dardization, exchange and fair testing of algorithms and their parts as suggested in
Sonnenburg et al. (2007). The aforementioned study reports that benefits from open
source frameworks design include:

– Combining advantages of various algorithms,
– Easier reproduction of scientific results,
– Comparing algorithms in more details,
– Building on existing resources with less re-implementation,
– Faster adaptation in other disciplines and industry,
– Collaborative emergence of standards.

The paper is structured as follows. The related work in this area of research is sum-
marized in Sect. 2. Section 3 contains description and brief analysis of the decision
tree algorithms we considered. The process of identifying RCs and description of
RCs considered in this study are contained in Sect. 4. In Sect. 5 the generic decision
tree framework is proposed followed by discussion and further research directions
contained in Sect. 6.

2 Related work

Some comparison of decision tree algorithm designs can be found in Murthy (1998),
Safavian and Landgrebe (1991). Key topics of decision tree design are discussed in

123

Reusable components in decision tree induction algorithms

these papers. Combining of advantages between decision tree algorithms is, however,
mostly done with hybrid algorithms. There are many hybrid decision tree algorithms
in the literature that combine various machine learning algorithms (e.g. Siddique et al.
2007).

Combining of whole, already implemented decision tree components is, on the
other hand, found rare in the literature. In Delibasic et al. (2010) experimental evi-
dences of advantages of generic tree design are presented. A generic decision tree is
also proposed in Hothorn et al. (2006), Zeileis et al. (2008). Hothorn states that the
separation of variable selection and splitting procedure in the algorithm is “the key for
the construction of interpretable tree structures not suffering a systematic tendency
towards covariates with many possible splits or many missing values” (Hothorn et al.
2006, p 4). Another research in decision-tree design can be also found in Drossos et al.
(2000).

We believe that most authors of decision tree classifiers are well aware of the nature
of design. Quinlan’s C4.5 (Quinlan 1993) presents not only a more efficient algorithm
compared to ID3 (Quinlan 1986), but also has some design improvements, that will
be discussed further in this paper.

An interesting development of decision tree algorithms is conducted under Loh
et al. In their algorithms FACT (Loh and Vanichsetakul 1988), QUEST (Loh and Shih
1997), CRUISE (Kim and Loh 2001) many statistical and machine learning com-
ponents are tied together. GUIDE (Loh 2002) is a regression tree learner that uses
well established ideas for building classification trees. Most of the work done by now
suggests incremental improvement of algorithms. Our research supports that way of
design improvements, but allows even more.

Many authors discuss reusable-components design. According to Freeman (1983),
reusable components are usually source code fragments, but they can also include
design structures, module-level implementation structures, specifications, documen-
tation or transformations. Sommerville (2004) identifies several widely applied design
reuse approaches, e.g. design pattern, application frameworks or program libraries.
Moreover, reuse is possible at a range of levels from simple functions to complete
systems and from more abstract descriptions to concrete applications.

Another popular theory that deals with reusable components design is the pattern
theory. Originally it was introduced by architect Christopher Alexander (1979). Since
then, it has been successfully applied to software engineering (Coplien and Schmidt
1995; Gamma et al. 1995), organizational design (Coplien and Harrison 2005), tele-
communication design (Adams et al. 1991), avionics control system design (Lea 1994).
The pattern approach has earned its popularity over the years and is being accepted in
many areas of human creative activity. There are also first papers discussing RCs in
data mining (e.g. Delibasic et al. 2008, 2009).

Winn and Calder (2002) proposed an open list of reusable components features that
can be used for RC identification. But even with the help of this list, it is difficult to
decide whether a component is a RC or not because the process of identifying reusable
components is not formalized.

For the description of RCs, Tracz’s definition (Tracz 1990) is helpful. He defines
RCs as triplets consisting of concept, content and context. The concept is the descrip-
tion of what a component does; it describes the interface and the semantics represented

123

M. Suknovic et al.

by pre and post conditions. The content describes how the component is realized, which
is hidden from the casual user. The context describes the application domain of the
component, which helps to find the appropriate component for a specific problem.
Every reusable component is well-documented, and describes where the component
can be applied, but it also includes a solution for the problem it solves. A reusable
component is abstract in a sense that it can have many areas of usage, but it is also
specific because it offers a concrete solution.

3 Decision tree based classifiers

The following notations will be used throughout this paper. A dataset S consist of n
cases with m input attributes X and one output (dependent) attribute Y (numerical
or categorical). The goal of decision tree algorithms is to find a decision tree model
that, based on the values of X , classifies cases into Y classes (classification model),
or estimates the value of Y (regression model). A decision tree model consists of
nodes, branches, and leaves. Leaves define the prediction of Y , and a rule that can be
obtained by descending the tree from the root to the leaf. The number of leaves defines
the number of rules that can be extracted from a decision tree. Trees are suitable for
obtaining IF-THEN rules in a hierarchical tree-like structure.

Decision trees can be grown in various ways. Our paper analyzes how C4.5-like
algorithms grow trees (ID3, CART, CHAID). These algorithms generally follow three
steps:

1. Generate for a given dataset S possible splitting candidates, i.e. for all attributes
Xi (i ∈ 1, . . . , m) define possible splits (potential nodes branches which are ob-
tained by defining possible cut points for numerical attributes, and possible group-
ings of categories for categorical attributes).

2. Evaluate the generated splits with a split evaluation measure and choose the best
split. Implement the split, i.e. grow the tree with the chosen split as a node in the
tree. The dataset S is then divided into disjoint subsets S j (j ∈ 1, . . . , k), where k
defines number of branches of the chosen split, having S = ∩S j .

3. Repeat steps 1 and 2 recursively for all branches
(
S j

)
of the tree until tree is

grown completely (i.e. all leaves of the decision tree are “pure”) or until another
user-defined stopping criteria has been fulfilled (e.g. maximal tree depth, node
significance threshold, etc.).

After the tree model has been grown, pruning of trees can be performed additionally
to resolve the decision tree model’s overfitting problem.

We stress out that these steps are not applicable for all decision tree algorithms, since
there are many decision tree algorithms that don’t follow these steps. E.g. FACT-like
algorithms (e.g. QUEST, CRUISE, GUIDE, CTREE) have different algorithm steps:

1. Find the most appropriate attribute Xi(i ∈ 1, . . . , m) for splitting with respect to
Y . This attribute will present the node of a tree.

2. Find the attribute’s most appropriate split with respect to Y . The split will form
branches of the node.

123

Reusable components in decision tree induction algorithms

3. Repeat steps 1 and 2 until tree is grown completely or until another user-defined
stopping criteria has been reached.

We have only analyzed parts of the algorithms related to the growth and pruning phase.
A short overview of the analyzed parts of the algorithms is further presented.

3.1 ID3

The “Iterative Dichotomiser Tree” (ID3) works only with categorical input and output
data. ID3 grows trees splitting on all categories of an attribute, thus producing shallow
and wide trees. It grows tree classifiers in three steps:

1. Splits creation in form of multiway splits, i.e. for every attribute a single split is
created where attributes’ categories are branches of the proposed split.

2. Evaluation of best split for tree branching based on information gain measure,
and

3. Checking of the stop criteria, and recursively applying the steps to new branches.

These three steps are iterating and are executed in all nodes of the decision tree clas-
sifier. The information gain measure (3) is based on the well-known Shannon entropy
measure (Shannon 1948) shown in (1).

E(S) = −
C∑

i=1

(pi log2 pi) (1)

where C represents the number of classes of the output variable, and pi the probability
of the i-th class. S represents the dataset.

ID3 uses information gain (3) as a measure of split quality.

E (X, S) =
K∑

j=1

(∣∣S j
∣∣

|S| · E
(
S j

)
)

(2)

I (X, S) = E (S) − E (X, S) (3)

where E(X, S) is the expected entropy of an input attribute X that has K categories,
E

(
S j

)
is the entropy of an attribute’s category with respect to the output attribute, and∣∣S j

∣∣ / |S| is the probability of the j-th category in the attribute. Information gain of
an attribute is the difference between entropy of the system, or node, and the entropy
of an attribute. It represents the amount of information an attribute holds for the class
disambiguation.

3.2 C4.5

This algorithm is an improvement of ID3. It can work with numerical input attributes
as well. It follows three steps during tree growth:

123

M. Suknovic et al.

1. Splits creation for categorical attributes is the same as in ID3. For numerical attri-
butes all possible binary splits have to be considered. Numerical attributes splits
are always binary.

2. Evaluation of best split for tree branching based on gain ratio measure, and
3. Checking of the stop criteria, and recursively applying the steps to new branches.

This algorithm introduces a new, less biased, split evaluation measure (Gain ratio).
The algorithm can work with missing values, has pruning option, grouping attribute
values, rules generating etc.

The Gain ratio selection criterion (4) is a measure that is less biased towards select-
ing attributes with more categories.

G(X, S) = I (X, S)

SI (X, S)
(4)

SI (X, S) = −
K∑

j=1

(∣∣S j
∣∣

|S| log

∣∣S j
∣∣

|S|

)

(5)

Gain ratio divides the attribute information gain with the split info SI (X, S), defined
by (5), a measure that is dependent on the number of categories K in an attribute.

C4.5 can work with categorical and numerical attributes. Categorical attributes can
produce multiway splits, and numerical attributes binary splits. C4.5 includes three
pruning algorithms, namely reduced error pruning, pessimistic error pruning and error
based pruning.

3.3 CART

The “Classification and Regression Tree” (CART) can produce classifiers and regres-
sors. CART grows trees only with binary splits, thus producing deep and narrow trees.
CART follows the following three steps:

1. Generate all possible splitting candidates. Numerical attributes splits are generated
as in C4.5. For categorical attributes all possible binary groupings of attributes
should be generated.

2. Evaluate the generated splits based on a chosen evaluation measure.
3. Steps 1 and 2 are repeated recursively as in all other trees until stopping criteria

has been reached.

CART uses several measures for split evaluation for classification: Gini, Twoing and
Ordered Twoing. We analyzed the Gini evaluation measure only. Split evaluation is
based on node impurity (6). The Gini evaluation measures is shown in (7).

G(X, S) = i(S) − pL ∗ i(SL) − pR ∗ i(SR) (6)

i(S) =
∑

i, j

p (i |S) p (j |S), i �= j (7)

123

Reusable components in decision tree induction algorithms

where i(S) is calculated as the sum of products of all pairwise combination of class
probabilities in a node. Probability p(i |S) is the probability of class i in node S, pL

the probability of a case being sent to the left branch, pR the probability of sending
a case to the right branch, i (SL) the impurity of the left child node, and i (SR) the
impurity of the right child node.

When applied as a regression tree, the mean-square error (MSE) is used to evaluate
the split.

CART includes one pruning algorithm, i.e. cost complexity pruning. It can work
with missing values after tree growth. CART generates surrogate splits during tree
growth that can be used when cases with missing values are classified. If during
classification at a tree node a case value is missing, a surrogate split is used so the
classification process could go on.

3.4 CHAID

The “Chi-Squared Automatic Interaction Detector” (CHAID) decision tree algorithm
with categorical data only. While creating splits, CHAID has the ability to group and
ungroup attribute categories, based on chi-squared statistics, with the goal of finding
the most significant splits.

CHAID has the following steps in decision tree growth:

1. Generate the most significant split for each attribute in the following way:
1.1 Generate 2 × C contingency tables (C number of classes in Y) for every pair

of categories for each attribute, and perform a chi-square test for each table.
For pairs of categories that do not reach a significance level threshold, merge
the two least significantly different categories in a compound category and
repeat this step.

1.2 Within each compound category, which was made of three or more original
categories, try to find more significant subcategories by dividing the com-
pound category into all possible two categories divisions and find the most
significant one. If the significance is beyond a defined level, implement the
division and return to step 1.1.

2. Find and implement the most significant split among all attributes using chi-
squared statistics and the Bonferroni multiplier for compound categories.

3. Repeat steps 1 and 2 until a user-defined stopping criteria has been reached.

Using the steps 1 and 2 CHAID can find splits that are neither binary nor multiway. It
is an interesting procedure that can be used independently from CHAID in decision
tree induction.

3.5 QUEST

The “Quick, Unbiased Efficient Statistical Tree” is a classification tree that works with
numerical and categorical input attributes. It consists of several steps:

1. Find the most appropriate attribute Xi(i ∈ 1, . . . , m) for splitting with respect
to Y . This is done by performing anova f -tests for numerical variables and

123

M. Suknovic et al.

chi-square tests for categorical variables with respect to Y . Levene’s F-test for un-
equal variances is computed for each ordered variable when no variable achieves
a significance smaller than a predefined threshold corrected via the Bonferroni
adjustment. The Bonferroni adjustment ensures that the bias is practically negli-
gible (Loh and Shih 1997, p 826).

2. Transform all categorical variables to numerical variables with the CRIMCOORD
transformation (Gnanadesikan 1977)

3. Find the split point in the selected numerical attribute X*. To ensure only binary
splits, 2-means(Hartigan and Wong 1979) is applied to form two super classes.
Afterwards, quadratic discriminant analysis is applied to find the split point.

4. Repeat steps 1 and 2 until tree is grown completely or until another user-defined
stopping criteria has been reached.

QUEST includes pruning from CART, and uses a method for missing data imputation
from FACT (Loh and Vanichsetakul 1988).

3.6 CRUISE

The “Classication Rule With Unbiased Interaction Detection” algorithm is an improve-
ment of the QUEST algorithm. It consists of several steps:

1. Find the most appropriate attribute Xi(i ∈ 1, . . . , m) for splitting with respect to
Y . The attribute selection step is done with a proposed chi-square testing frame-
work. Five types of contingency tables for measuring chi-square statistics are
used. All chi-squared statistics are afterwards normalized with the Peizer-Pratt
transformation. A bootstrapping procedure is also used to eliminate the selection
bias towards categorical variables. The best attribute is chosen based on the maxi-
mal normalized value from the Peizer-Pratt transformation corrected with a factor
received from bootstrapping for numerical values. The five types of contingency
tables are:
a. C × 4 tables for each numerical attribute where the numerical attribute is

discretized in four quartiles.
b. C × K tables for each categorical attribute.
c. C × 4 tables for each pair of numerical attributes. The four columns of the

table are formed around the medians of the chosen two numerical attributes.
d. C × (

K ∗
i K j

)
(i �= j) tables for each pair of categorical attributes. The four

columns of the table are formed around the medians of the chosen two numer-
ical attributes.

e. C × (2K) for each pair of numerical and categorical attributes where the
numerical attribute is discretized around their median.

2. Transform all categorical variables to numerical variables with the CRIMCOORD
transformation (Gnanadesikan 1977).

3. Find the split point in the selected numerical attribute X*. CRUISE produces as
many branches, as there are Y classes in the current node. Before applying LDA
for finding the best split point, Box–Cox transformation is used for transforming
X* values to normal distribution, as LDA works best with normally distributed
data.

123

Reusable components in decision tree induction algorithms

4. Repeat steps 1 and 2 until tree is grown completely or until another user-defined
stopping criteria has been reached.

CRUISE uses pruning and surrogate split methods like CART, and includes also miss-
ing values imputation from FACT.

3.7 GUIDE

The “Generalized, Unbiased, Interaction Detection and Estimation” tree is a regression
tree. It is very similar with the CRUISE algorithm. It has the following tree growing
steps:
1. Find the most appropriate attribute Xi(i ∈ 1, . . . , m) for splitting with respect to

Y . The attribute selection step is done with a chi-square testing framework similar
to CRUISE. The Y attribute is discretized into two ranges, i.e. positive valued and
negative valued residuals obtained as distances of Y ′s sample mean. Five types of
contingency tables for measuring chi-square statistics are used. A bootstrapping
procedure is also used to eliminate the selection bias towards categorical variables.
The best attribute is chosen based on the smallest p-value for non-interacting chi-
square tests. If the smallest p-value is form an interaction test, then the choice is
based on minimal sum of squared errors (SSE) or the smallest p-value for inter-
acting tests between numerical and categorical data. The five types of contingency
tables used for chi-square statistics are:
a. 2 × 4 tables for each numerical attribute where the numerical attribute is dis-

cretized in four quartiles.
b. 2 × K tables for each categorical variable.
c. 2 × 4 tables for each pair of numerical attributes. The four columns of the

table are formed around the medians of the chosen two numerical attributes.
d. 2 × (

K ∗
i K j

)
(i �= j) tables for each pair of categorical attributes. The four

columns of the table are formed around the medians of the chosen two numer-
ical attributes.

e. 2 × (2K) tables for all pairs of numerical and categorical attributes where
the numerical attributes are discretized around the median.

2. Find the split point in the selected attribute X*. GUIDE has two evaluation mea-
sures for numerical splits, i.e. greedy search method that tries to finds the smallest
sum of square errors (SSE) on all possible numerical splits, and median that finds
the best split as the median value. Median is computationally less demanding than
the greedy search method. For categorical data, binary splits are evaluated like in
(Breiman et al. 1984, p 101).

3. Repeat steps 1 and 2 until tree is grown completely or until another user-defined
stopping criteria has been reached.

GUIDE includes also pruning options, missing values options, and so on.

3.8 CTREE

The “Conditional Inference Tree” offers a framework for building classification and
regression trees. It can work with numerical and categorical data. It can work with

123

M. Suknovic et al.

multivariate output data, as well. We have only analyzed the classification and regres-
sion trees with univariate output of the framework. CTREE consists of following
steps:

1. The most significant attribute Xi(i ∈ 1, . . . , m) for splitting with respect to Y
is found by first rejecting the H0 hypothesis that there is not any relationship
between input attributes and the output attribute. A permutation test linear statis-
tic is calculated for all Xi s. H0 is rejected when the minimum of the adjusted (e.g.
Bonferroni multiplier) P-values is less than a pre-specified threshold. If H0 is not
rejected the tree stops to grow, otherwise the best attribute X* is suggested.

2. All possible binary splits are created for X*.
3. The best split is chosen with a two-sample linear statistics, which is a special case

of the permutation test linear statistic used in Step 1.
4. Steps 1 through 3 are repeated until tree is grown completely or until another user-

defined stopping criteria has been reached (minimum number of cases in parent
node, minimum sum of cases in both child nodes).

CTREE removes cases with missing values, and can create surrogate splits with the
test statistic used in Step 3.

4 Components identification

There is no formal way to identify RCs. Although the literature is full of proposals
what a RC is (e.g. Winn and Calder 2002), these instructions are not sufficient for
RC identification. We present the sub-problems and RCs, identified in the analyzed
algorithms from Sect. 3 and from several partial algorithm improvements, in Table 1.
RCs belonging to a sub-problem can be used to solve the sub-problem because they
have the same input-output structure. We also give sources from which we identified
RCs.

In addition, we have implemented some of the identified RCs in the white-box
generic decision tree framework named WhiBo that can be found at http://www.whibo.
fon.bg.ac.rs. We use the name WhiBo as white-box to be distinct from the classical
design approach of algorithms as black boxes.

From the analyzed algorithms, we identified the following six characteristic sub-
problems in decision tree classifier induction:

1. Removing insignificant attributes,
2. Creating splits (for numerical and categorical data),
3. Evaluating a split,
4. Creating surrogate splits,
5. Stopping criteria, and
6. Pruning the tree.

These six sub-problems are discussed in the rest of this section. It is important to notice
in Table 1 that some of the RCs are marked with a star (e.g. Chi-square framework for
classification*). The star signifies that this RC is a complex RC consisting of several
low level RCs. This issue will be addressed in the following subsections.

123

http://www.whibo.fon.bg.ac.rs
http://www.whibo.fon.bg.ac.rs

Reusable components in decision tree induction algorithms

Table 1 Several sub-problems and RCs found in the literature

Sub-problems Reusable component Source Available in WhiBo

Remove insignificant ANOVA F test Loh and Shih (1997) X
attributes

Chi-square test Loh and Shih (1997) X

Chi-square framework Kim and Loh (2001)
for classification*

Chi-square framework Loh (2002)
for regression*

Permutation test Hothorn et al. (2006)

Create split Binary Quinlan (1993) X
(numerical)

Median Loh (2002)

QDA* Loh and Shih (1997)

LDA* Kim and Loh (2001)

Create split Binary Breiman et al. (1984) X
(categorical)

Multiway Quinlan (1993) X

Significant Kass (1980) X

Evaluate split Information gain Quinlan (1986) X

Gain ratio Quinlan (1993) X

Gini index Breiman et al. (1984) X

Twoing Breiman et al. (1984)

Ordered towing Breiman et al. (1984)

Distance measure Mantaras (1991) X

Likelihood ratio Attneave (1959)
chi-squared statistic

Chi square test Kass (1980) X

AUC Ferri et al. (2002)

Permutation two-sample test Hothorn et al. (2006)

Mean square error (MSE) Breiman et al. (1984)

Stop criteria Pure node (default) Rokach and Maimon (2008) X

Maximum tree depth Rokach and Maimon (2008) X

Minimum cases in parent node Rokach and Maimon (2008) X

Minimum cases in child node Rokach and Maimon (2008) X

Minimum “evaluate split” Rokach and Maimon (2008)
threshold

Create surrogate split Similarity Breiman et al. (1984)

Permutation two-sample test Hothorn et al. (2006)

Prune tree Reduced error pruning (REP) Quinlan (1993)

Pessimistic error pruning (PEP) Quinlan (1993) X

Error-based pruning (EBP) Quinlan (1993)

Cost complexity pruning (CCP) Breiman et al. (1984)

123

M. Suknovic et al.

4.1 Removing insignificant attributes

There are numerous ways features (attributes) can be selected. An extensive list of
methods can be found in (e.g. Rokach and Maimon 2008). Instead of using feature
selection before the decision tree algorithm is applied on data, it is also possible to
use feature selection at each node during tree growth. Decreasing the number of can-
didate attributes improves computational efficiency of an algorithm. The idea for this
sub-problem was found in QUEST (Loh and Shih 1997) where chi-square test and
ANOVA F test were used for categorical and numerical attributes respectively to
find the most significant attribute which will be split further. Several other algorithms
include this sub-problem to find the most significant attribute (e.g. CRUISE, GUIDE,
and CTREE).

We propose the extension of the usage of RCs “ANOVA F-test” and “Chi-square
test” to opt out attributes that do not satisfy a predefined significance threshold. This
RC is implemented in WhiBo and allows the original usage (like in QUEST) and the
extended usage (remove attributes that do not satisfy a threshold, or remove the defined
percentage of attributes). In Delibasic et al. (2010) experimental evidence is presented
how the usage of these RCs, while improving the computational speed, has effect on
classification accuracy.

CRUISE and GUIDE propose a chi-square test framework where five types of
contingency tables should be evaluated with the chi-square statistic. Also, a bootstrap-
ping procedure is suggested to find a parameter by which statistics for numerical data
should be multiplied to reduce the bias towards categorical data selection. CRUISE and
GUIDE use similar contingency table design, and differences are due to CRUISE
being a classification algorithm, and GUIDE a regression algorithm. Both CRUISE
and GUIDE propose selection of the most significant attribute that include several
procedures on a lower level of granulation. These procedures, if seen as RCs, could
be easily exchanged with other RCs solving the same sub-problem on a lower level
of decomposition. Five RCs can easily be identified within the complex (starred) RC
“Chi-square framework for classification”. These are: “Create bootstrap samples”,
“Design contingency tables”, “Chi-square test”, “Peizer-Pratt transformation”, and
“Calculate bias correction”. For gaining full advantages of component-based design,
a generic structure should be defined that could allow exchange of RCs on a lower
level of decomposition. Currently Whibo does not support this. The complex RC “Chi-
square framework for classification” can, however, be used as a black-box within the
proposed framework.

Component-based design could, in the aforementioned RC, allow better analysis of
the RCs on the lower level. It could give an answer whether the design of contingency
tables is optimal, and whether there is a better way to propose bias correction than
with the bootstrapping procedure proposed inside this RC. We will show an example
of the decomposition on a lower lever of granulation in Sect. 4.2.

An important idea of component-based design is to identify atomic RCs that
have a much wider area of application, than complex RCs. Following is an exam-
ple of how the atomic “ANOVA F-test” RC can be described with Tracz (1990)
definition.

123

Reusable components in decision tree induction algorithms

Component Name: “ANOVA F test”

1. Concept:
Description: Measures if there are significant differences in values of a numerical
attribute on categories of a categorical attribute.
Input: Dataset with one or more numerical attributes and one categorical output
attribute, significance threshold.
Output: Significance levels for numerical attributes, Selected numerical attributes.

2. Context:
Application: Tests if values of the numerical attributes are significantly different
when compared to other attribute categories. It does not test whether a significant
attribute includes a significant split. It is merely a heuristic that can help to reduce
the number of attributes that will be used for finding the best split.

3. Content:
Uses the ANOVA F-test to measure the significance of an attribute like in (Wu
and Flach 2002).

4.2 Creating a split

The problem of choosing how to grow a tree is important (Kim and Loh 2001;Utgoff
et al. 1997). There is, in general, no best way to split a tree (Kim and Loh 2001). The
same study reports that on some datasets multiway splits can be beneficial, where they
can provide more interpretable results than binary splits. Binary splits are computa-
tionally more demanding than multiway splits, produce trees with more depth but can
produce, on some datasets, more accurate classifiers. It is not easy to determine the
right way of splitting attributes.

We analyzed splits for categorical and numerical attributes. In ID3 and C4.5 this
process is done by making all attribute categories branches of a split, i.e there is one
possible split for each categorical attribute. If a categorical attribute consists of K
categories, it can be split binary in (2K−1 −1) ways, multiway in one way, but there is
also the possibility to group similar categories producing neither binary nor multiway
splits, like in CHAID, or, on the other hand, use several ways to produce splits (e.g.
generate multiway and binary splits at the same time as candidate splits).

In the decision tree algorithms we’ve analyzed, we identified several RCs for split-
ting categorical attributes. We found “Binary” splits (CART, GUIDE, and CTREE),
“Multiway” splits (ID3, C4.5) or “Significant” splits (CHAID).

Numerical attributes are usually splitted binary, although there are differences how
binary splits are produced. Algorithms like C4.5 and CART generate binary splits only
on points where optimal splits can exist, as proved in Fayyad and Irani (1992). On the
other hand, algorithms like QUEST, and CRUISE generate splits directly. QUEST uses
quadratic discriminant analysis (QDA) to generate the best split. Because QDA pro-
duces as many splits as there are classes in Y , the Y attribute is beforehand transformed
into two super-classes with 2-means (Hartigan and Wong 1979). CRUISE generates
splits with linear discriminant analysis, thus producing as many splits as there are clas-
ses in Y at the current node. Although both QUEST and CRUISE propose procedures
for splits creation, we see them as non-atomic, complex RCs that can theoretically fit

123

M. Suknovic et al.

the proposed generic decision tree framework. Still, these procedures consist of several
atomic procedures that could, on a lower level of granulation, easily be exchanged with
other RCs having the same functionality. E.g. The complex RC “QDA*” consists of
three RCs: “CRIMCOORD transformation” (transforms all numerical attributes to
categorical attributes), “2-means” (groups Y classes into 2 super-classes), and “QDA”
(is used to find the best split). Three sub-problems can be identified in this procedure:
“Transform categorical to numerical attribute”, “Group classes”, and “Create discrim-
inant splits”. The RCs currently used for solving these sub-problems could be easily
exchanged with other RCs providing the same functionality within a component-based
framework.

Following is an example of how the “Significant” RC from CHAID can be described
with Tracz (1990) definition.

Component Name: “Significant”

1. Concept:
Description: Groups similar categories into mergers that can produce significant
splits.
Input: Categorical input attributes and categorical output attribute.
Output: Merged categories within input attributes.

2. Context:
Application: Can be used when it is important to join similar categories into a
merger category. For categorical attributes with large number of categories this
way of grouping categories can produce more interpretable results.

3. Content:
Uses a method for grouping categorical attributes categories into merged catego-
ries as described in Kass (1980).

4.3 Evaluating a split

Every split has to be evaluated using some evaluation measures. Various split evalu-
ation measures can be found in literature. ID3 uses “Information gain”, C4.5 “Gain
ratio”, CART uses “Gini”, and “Twoing” for classification, and “Mean square error”
(MSE) for regression. CHAID uses “Chi-square test”. GUIDE uses also MSE for split
evaluation for regression trees. CTREE uses “Permutation two-sample test” for both
regression and classification split evaluation. After a split is created it can be evaluated
with one of these measures.

Some properties of splitting measures were discussed by Breiman (1996), Mingers
(1989), Fayyad and Irani (1992), Loh and Shih (1997), Shih (1999), Lim et al. (2000)
etc. E.g. “Gini” does not try to balance the size of the child nodes, while “Twoing”
and entropy measures do (Breiman 1996). “Information gain” is biased towards the
number of categories in an input attribute. “Gain ratio”, on the other hand, is a less
biased evaluation measure that is based on information gain (Quinlan 1993).

We analyzed also partial algorithm improvements. In Mantaras (1991) the “Distance
measure” is proposed. It is unbiased towards the number of categories in an attribute
and shows, in general, better results than “Information gain”. The “Likelihood ratio
chi-squared statistic” is found in Attneave (1959) where it is used to measure statis-

123

Reusable components in decision tree induction algorithms

tical significance of the “Information gain” measure. The AUC (Area under curve)
measure is found in Ferri et al. (2002) and outperforms “Gain ratio” and “Gini” on
some datasets.

It is difficult to find the best evaluation split, however one can find evaluation
measures that behave better on certain datasets than others.

4.4 Stopping criteria

A decision tree grows by implementing new splits in the existing tree. Trees grow,
in general, until all nodes become pure. However, there are also other possibilities to
stop tree growth. In fact, there are many ways a tree can be forced to stop growing.
The methods for preventing further tree growth are also called pre-pruning methods.

Every decision tree algorithm we analyzed had stopping criteria. The stopping
criteria should guarantee that a split is, in some way, significant.

In most decision trees the following stopping criteria can be found (Rokach and
Maimon 2008):

1. All cases in a node have the same class value of the output attribute. (“Pure node”
from Table 1),

2. A maximum predefined tree depth has been reached (“Maximum tree depth”),
3. A minimum of cases in the parent node has been reached (“Minimum cases in

parent node”),
4. A minimum of cases in the child node has been reached (“Minimum cases in child

node”), and
5. A minimum evaluation measure threshold has been reached (Minimum “evaluate

split” threshold).

Breiman et al. (1984) and Quinlan (1993) suggest that is not appropriate to use stop-
ping, i.e. prepruning, criteria during tree growth because this influences the quality of
a classifier. Instead, they recommend first growing the tree, and afterwards pruning
the tree. On the other hand Hothorn et al. (2006), suggest that using significance tests
as stopping criteria (i.e. prepruning) could generate trees that are similar to optimally
pruned trees.

4.5 Creating a surrogate split

After the classifier is built, it can happen that it should be applied on cases with missing
values. If the original node can’t be used for classification, a surrogate node has to be
used. We identified in CART (Breiman et al. 1984) a way of creating surrogate splits
during tree growth that we named “Similarity”. This RC finds one or more splits that
should be used when the original value is missing in a case during classification. For
every node several surrogate splits can be created, and they are ordered with respect
to how they are similar with the original split.

In CTREE we identified a RC for creating surrogate splits “Permutation two-sample
test”.

123

M. Suknovic et al.

Fig. 1 The generic decision tree

Create split
(Numerical)

Evaluate split

Create split
(Categorical)

Prune tree

Remove insignificant
attributes

Stop criteria

For every node

Create surrogate split

4.6 Pruning the tree

Grown trees are often pruned, so their complexity is reduced while maintaining accu-
racy within certain borders. “Prune tree” algorithms can find a sub-tree of the grown
tree that achieves the best compromise between the quality of the tree and the com-
plexity of the tree. Less complex trees are desired for two reasons, their greater inter-
pretability, and their better generalizations.

There are a lot of pruning techniques: reduced error pruning, pessimistic error prun-
ing and error-based pruning (Quinlan 1987), cost-complexity pruning (Breiman et al.
1984) etc. Generally, pruning techniques can improve accuracy, but the effects depend
on domain (Malerba et al. 1996). All pruning algorithms can be used on all decision
trees, so they are independent of the algorithm they originate from.

5 Generic decision tree

The components we’ve described can be shown in a form of a generic decision tree.
The generic tree we propose is shown in Fig. 1. The generic tree is shown in a form
that looks like an algorithm; however it isn’t. The elements of the generic decision
tree are structural in a sense that they define the building blocks of an algorithm. They

123

Reusable components in decision tree induction algorithms

Table 2 The generic decision tree algorithm

Input: Dataset

Output: Decision tree model

Step 1. Optionally, use “Remove insignificant attributes”

to eliminate uninformative attributes in current

tree node.

Step 2. Use “Create split” to create candidate tree split in

current tree node.

Step 3. Use “Evaluate split” to measure “goodness” of

candidate split.

Step 4. If candidate split is better than best split,

remember new candidate split as best.

Step 5. Repeat steps 2–4 until no more candidate splits

are produced by “Create split”.

Step 6. Optionally, use “Create surrogate split” to create

n surrogate splits for the current node.

Step 7. If “Stop criteria” is met, create leaf node and add

it to the tree model.

Otherwise split the dataset according to the best

split, and recursively return to step 1 for each

new branch of the node.

Step 8. Optionally, after the tree model is built use “Prune

tree” to shorten branches which are

uninformative according to prune criteria.

are identified as important sub-problems in decision tree induction. The RCs, on the
other hand, define the solution for a sub-problem.

The generic tree proposed in Fig. 1 has crucial and optional sub-problems for a type
of algorithm. To build a C4.5-like classifier it is necessary to define RCs for “Create
split”, “Evaluate split”, and “Stop criteria” (“Pure node” is always used). It is optional
to use “Remove insignificant attributes”, “Create surrogate split”, and “Prune tree”.

To build an algorithm from the selected RCs it is necessary to define a generic
decision tree algorithm that couples RCs together. We propose a generic decision tree
algorithm in Table 2.

We will show further how original algorithms can be reproduced, how they can be
modified or extended, and how new decision tree algorithms for classification can be
built with the proposed generic tree.

In Fig. 2 the C4.5 decision tree algorithm is composed using following RCs for
sub-problems:

“Remove insignificant attributes” = none
“Create split (Numerical)” = “Binary”
“Create split (Categorical)” = “Multiway”

123

M. Suknovic et al.

Fig. 2 C4.5 in the generic
decision tree

Create split
(Numerical)

BINARY

Evaluate split
GAIN RATIO

Create split
(Categorical)
MULTIWAY

Prune tree
REP, PEP, EBP

Create surrogate split
NONE

Remove insignificant
attributes

NONE

Stop criteria
NONE

For every node

“Evaluate split” = “Gain ratio”
“Stop criteria” = none (“Pure node” is used by default)
“Create surrogate split” = none
“Prune tree” = “REP”, “PEP” or “EBP” (only one can be used at a time)

All algorithms can be extended in some way. For example, ID3 can be easily extended
by including “Create surrogate split” (Fig. 3). New algorithms can be created by com-
bining the analyzed components. Including “Remove insignificant attributes” could
improve all the original algorithms.

We can easily imagine an algorithm that uses “Remove insignificant attributes” RCs
“ANOVA F test” and “Chi-square test”, uses for “Create split (numerical)” “Binary”,
for “Create split (Categorical)” “Significant”, for “Evaluate split” “Gain ratio”, and
uses “Stop criteria” “Maximum tree depth” and “Minimum cases in child node”,
“Error-based pruning” for “Pruning”, and “Significant” for “Create surrogate split”
(Fig. 4).

These new algorithms are not intended to replace the well-known algorithms, be-
cause they can not outperform them on every dataset. Component-based design, as
stated in Delibasic et al. (2010), suggests that “for a specific dataset we should search
for the optimal component interplay instead of looking for the optimal among prede-
fined algorithms”.

123

Reusable components in decision tree induction algorithms

Fig. 3 ID3 with “Create
surrogate split” in the generic
decision tree

Create split
(Numerical)

NONE

Evaluate split
INFORMATION GAIN

Create split
(Categorical)
MULTIWAY

Prune tree
NONE

Create surrogate split
SIGNIFICANT

Remove insignificant
attributes

NONE

Stop criteria
NONE

For every node

All of the analyzed algorithms can be implemented within this framework. This
way of algorithms design allows fast creation of new algorithms, that otherwise would
need more time to implement. Some component-based algorithms and their perfor-
mances are presented in Delibasic et al. (2010). There are a lot of RCs that are tied to
their algorithms, but could otherwise be used smartly in decision trees. One of them
is certainly the “Significant” RC from CHAID that is an interesting, yet somehow
forgotten way to generate splits.

6 Conclusion and further research

In this paper we outlined our ongoing study aimed at improving design of decision tree
algorithms. Although only a few decision tree algorithms were discussed, the approach
is applicable to other decision tree based algorithms and the idea of component-based
design can be also extended to other machine learning algorithms (e.g. partitioning
clustering (Delibasic et al. 2009).

The main contribution of the proposed investigation is in:

1. An improved characterization of decision tree algorithms that allows easier anal-
ysis of their advantages and disadvantages. This kind of lower resolution analysis,

123

M. Suknovic et al.

Fig. 4 A new algorithm in the
generic decision tree

Create split
(Numerical)

BINARY

Evaluate split
GAIN RATIO

Create split
(Categorical)
SIGNIFICANT

Prune tree
EBP

Create surrogate split
SIGNIFICANT

Remove insignificant
attributes

CHI SQUARE,
ANOVA F TEST

Stop criteria
TREE DEPTH,

MINIMUM CASES IN
CHILD NODE

For every node

we believe, is especially useful when aimed at developing new decision tree based
classifiers tailored for certain application types.

2. Easier development of new decision tree based algorithms that are constructed
using RCs found in existing and well known algorithms. It can happen that none
of existing algorithms is fully appropriate for solving a particular problem. How-
ever, perhaps appropriate components can be found in different algorithms. The
proposed framework provides a fairly general and simple environment for com-
ponents exchange to better adapt to new demands.

To allow a community-wide evaluation of the proposed approach for designing data
mining algorithms based on reusable components we have implemented the pro-
posed decision tree and some of the RCs presented in this paper as a plug-in in
the open-source machine learning platform RapidMiner. Our proposed generic tree,
named WhiBo, and instruction of how to install, use, and extend it are available at
http://www.whibo.fon.bg.ac.rs.

The idea is to enable testing of individual contributions (RCs) in a more controlled
environment, as well to enable creating tightly tailored algorithms for a specific need.

In further research we plan to use WhiBo software for more thorough analysis of
the identified components as to improve current understanding of RCs behavior under
various conditions. We hope that our further and a community-wide evaluation can

123

http://www.whibo.fon.bg.ac.rs

Reusable components in decision tree induction algorithms

lead towards more automatized selection of RCs based on inherent properties of data
(e.g. type, distribution, attribute correlation, quality of data etc.) and user constraints.

Acknowledgments This research was supported by a grant from the Serbian Ministry of Science, TR
12013.

References

Adams M, Coplien J, Gamoke R et al (1991) Fault-tolerant telecommunication system patterns. In: Rising L
(ed) The pattern handbook: techniques, strategies, and applications. Cambridge University Press, New
York, pp 189–202

Alexander C (1979) The timeless way of building. Oxford University Press, New York
Attneave F (1959) Application of information theory to psychology. Holt, Rinehart and Winston, New York
Breiman L, Friedman J, Stone CJ et al (1984) Classification and regression trees. CRC Press, Boca Raton
Breiman L (1996) Technical note some properties of splitting criteria. Mach Learn 24:41–47
Coplien JO, Schmidt DC (1995) Pattern languages of program design. Addison-Wesley Professional,

Reading
Coplien JO, Harrison NB (2005) Organizational patterns of agile software development. Prentice Hall PTR,

Upper Saddle River
Delibasic B, Kirchner K, Ruhland J (2008) A pattern-based data mining approach. In: Preisach C,

Burckhardt H, Schmidt-Thieme L et al (eds) Data analysis, machine learning and applications.
Springer, Berlin, pp 327–334

Delibasic B, Kirchner K, Ruhland J, Jovanovic M, Vukicevic M (2009) Reusable components for partition-
ing clustering algorithms. Art Int Rev 32:59–75

Delibasic B, Jovanovic M, Vukicevic M, Suknovic M, Obradovic Z (2010) Component-based decision trees
for classification. Intell Data Anal 15(5): accepted for publication

Drossos N, Papagelis A, Kalles D (2000) Decision tree toolkit: a component-based library of decision tree
algorithms. In: Zighed DZ, Komorowski J, Zytkow J (eds) Principles of data mining and knowledge
discovery. Springer, Berlin, pp 121–150

Fayyad UM, Irani KB (1992) On the handling of continuous-valued attributes in decision tree generation.
Mach Learn 8:87–102

Ferri C, Flach P, Hernandez-Orallo J (2002) Learning decision trees using the area under the ROC curve. In:
Sammut C, Hoffmann A (eds), Proceedings of the 19th international conference on machine learning,
Morgan Kaufmann, pp 139–146

Freeman P (1983) Reusable software engineering: Concepts and research directions. In: Workshop on
reusability in programming, ITT Programming, Stratford, Conn., pp 2–16

Gamma E, Helm R, Johnson R et al (1995) Design patterns: elements of reusable object-oriented software.
Addison, Reading

Gnanadesikan R (1977) Methods for statistical data analysis of multivariate observations. Wiley, New York
Hartigan JA, Wong MA (1979) Algorithm 136. A k-means clustering algorithm. Appl Stat 28:100
Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework.

J Comput Gr Stat 15(3):651–674
Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat

29:119–127
Kim H, Loh WY (2001) Classification trees with unbiased multiway splits. J Am Stat Assoc 96:598–604
Lea D (1994) acs.pdf. In: Design patterns for avionics control systems. http://gee.cs.oswego.edu/dl/acs/

acs.pdf
Lim TS, Loh WY, Shih YS (2000) A comparison of prediction accuracy, complexity, and training time of

thirty-three old and new algorithms. Mach Learn 40:203–228
Loh WY, Vanichsetakul N (1988) Tree-structured classification via generalized discriminant analysis (with

discussion). J Am Stat Assoc 83:715–728
Loh WY, Shih YS (1997) Split selection methods for classification trees. Stat Sin 7:815–840
Loh WY (2002) Regression trees with unbiased variable selection and interaction detection. Stat Sin

12:361–386

123

http://gee.cs.oswego.edu/dl/acs/acs.pdf
http://gee.cs.oswego.edu/dl/acs/acs.pdf

M. Suknovic et al.

Malerba D, Esposito F, Semeraro G (1996) A further comparison of simplification methods for
decision tree induction. In: Fisher D, Lenz HJ (eds) Learning from data: AI and statistics V. Springer,
Berlin, pp 365–374

Mantaras RL (1991) A distance-based attribute selection measure for decision tree induction. Mach Learn
6:81–92

Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE: Rapid Prototyping for Complex
Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge
discovery and data mining, ACM, New York, pp 935–940

Mingers J (1989) An empirical comparison of pruning methods for decision tree induction. Mach Learn
4:227–243

Murthy SK (1998) Automatic construction of decision trees from data: A multi-disciplinary survey. Data
Min Knowl Discov. doi:10.1023/A:1009744630224

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Quinlan JR (1987) Simplifying decision trees. Int J Man Mach Stud 27:221–234
Quinlan JR (1993) C4.5 Programs for machine learning. Morgan Kaufmann
R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna
Rokach L, Maimon O (2008) Data mining with decision trees—theory and application. World Scientific

Publishing, London
Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man

Cybern 21:660–674
Shannon CE (1948) shannon1948.pdf. A mathematical theory of communication. http://cm.bell-labs.com/

cm/ms/what/shannonday/shannon1948.pdf
Shih L (1999) Families of splitting criteria for decision trees. Stat Comput 9:309–315
Siddique NH, Amavasai BP, Ikuta A (eds) (2007) Special issue on hybrid techniques in AI. Artificial

Intelligence Revue 27
Sommerville I (2004) Software engineering. Pearson, Boston
Sonnenburg S, Braun ML, Ong CS, Bengio S, Bottou L, Holmes G, Le Cun Y, Mueller KR, Pereira F,

Rasmussen CE, Raetsch G, Schoelkopf B, Smola A (2007) The need for open source software in
machine learning. J Mach Learn Res 8:2443–2466

Tracz W (1990) Where does reuse start? ACM SIGSOFT Softw Eng Notes 15:42–46
Utgoff PE et al (1997) Decision tree induction based on efficient tree restructuring. Mach Learn 29:5–44
Winn T, Calder P (2002) Is this a pattern? IEEE Softw 19:59–66
Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. 2. Morgan Kauf-

mann, San Francisco
Wu S, Flach PA (2002) Feature selection with labeled and unlabeled data. In: Proceedings of ECML/PKDD

workshop on integration and collaboration aspects of data mining, decision support and meta-learning,
IDDM 2002, Helsinki

Zeileis A, Hothorn T, Hornik K (2008) Model-based recursive partitioning. J Comput Gr Stat 17(2):492–
514

123

http://dx.doi.org/10.1023/A:1009744630224
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

	Reusable components in decision tree induction algorithms
	Abstract
	1 Introduction
	2 Related work
	3 Decision tree based classifiers
	3.1 ID3
	3.2 C4.5
	3.3 CART
	3.4 CHAID
	3.5 QUEST
	3.6 CRUISE
	3.7 GUIDE
	3.8 CTREE

	4 Components identification
	4.1 Removing insignificant attributes
	4.2 Creating a split
	4.3 Evaluating a split
	4.4 Stopping criteria
	4.5 Creating a surrogate split
	4.6 Pruning the tree

	5 Generic decision tree
	6 Conclusion and further research
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

