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Abstract. This paper presents a color-texture descriptor based on the local mapped pattern approach for
color-texture classification under different lighting conditions. The proposed descriptor, namely extended
color local mapped pattern (ECLMP), considers the magnitude of the color vectors inside the RGB cube to
extract color-texture information from the images. These features are combined with texture information
from the luminance image in a multiresolution fashion to get the ECLMP feature vector. The robustness of
the proposed method is evaluated using the RawFooT, KTH-TIPS-2b, and USPtex databases. The experimental
results show that the proposed descriptor is more robust to changes in the illumination condition than
22 alternative commonly used descriptors. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI1.27.1.011008]
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1 Introduction

In recent studies, the importance of incorporating color
information into texture description has been investigated
extensively.'™ The findings demonstrate that combining
color and texture information improves the accuracy of
color—texture classification. This approach has been explored
by a variety of descriptors.’™!?

Color and texture information can be combined in differ-
ent ways. Different taxonomies have been proposed to group
the color—texture descriptors into classes.*!*!* Palm* classi-
fied the approaches into parallel, sequential, and integrative.
The parallel approach measures texture by calculating the
relationship of neighboring pixels intensities ignoring their
color, and color is measured globally ignoring local neigh-
borhood pixels. In the sequential concept, the color image
is quantized to produce a single channel image, which is
subsequently processed as a gray-scale texture. Integrative
methods process color and texture information jointly, con-
sidering either a single channel or a multichannel approach.

Integrative methods have been widely adopted to combine
color and texture features. Bianconi et al.'> combined color
and texture information by computing the ranklet transform
intrachannel and interchannel. The local color contrast
descriptor (LCC)'" captures information from the image
color contrast and associate them with the local binary
patterns (LBP) histogram.'® The opponent color local binary
pattern (OCLBP)® and the improved opponent color local
binary pattern (IOCLBP)'?> combine opponent color and
monochrome features, both extracted from the image
using the LBP approach, to obtain a color—texture descriptor.
Opponent color features were also investigated together
with Gabor wavelets for texture recognition.'” Ledoux et al.'®
proposed the mixed color order LBPs, which uses the vector
information of color.

*Address all correspondence to: Tamiris Trevisan Negri, E-mail: tamirisnegri@
usp.br
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Texture descriptors, designed originally to deal with gray-
scale images, were also extended to be applied to color tex-
tures. For instance, Maenppa and Pietikainen® investigated
the use of concatenated LBP histograms, obtained from
each color channel, as a color—texture descriptor. The same
strategy was performed using Gabor wavelets.’ In both
experiments, different color spaces were considered, such
as RGB, Lab, HSV, and I,1,15.

One of the main challenges in color—texture description
is the robustness to changes in the scene illumination.
Variations in the light intensity, direction, and temperature
can result in changing the color of the observed texture
and further interfering the descriptor capability. One way of
overcoming this issue is to apply preprocessing steps to
normalize the texture color. However, these techniques
require extra computational time and they only improve
the texture description under some particular conditions."”
Therefore, an ideal scenario to deal with varying illumination
is to use color—texture descriptors that are robust to possible
changes in the scene illumination.

In a previous work,”” a color—texture descriptor, namely
color intensity local mapped pattern (CILMP), which incor-
porates color information using the magnitude of the color
vectors inside the RGB cube has been proposed. The method
captures small transitions of the pixels in the image by
comparing the information of a set of sampled pixels in
a local circular neighborhood to the neighborhood central
pixel. We demonstrate that concatenating color and texture
information in a multiresolution fashion improves the
descriptor performance.

In the current paper, we propose an improvement over the
CILMP descriptor. The proposed color—texture descriptor,
namely extended color local mapped pattern (ECLMP),
incorporates color and texture information, from multiple
texture resolutions, in two different ways. First, both color
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and texture (color—texture) features are extracted from the
RGB channels in an integrative approach by considering
the relationship between the neighboring color pixels.
Then, the color—texture information is combined with lumi-
nance texture information in a parallel approach. The contri-
butions of the ECLMP descriptor include a neighborhood
comparison approach, which considers the average of
the neighborhood values, including the central pixel rather
than the central pixel alone. Furthermore, the descriptor
adopts the comparison between pixels located at circular
neighborhoods with different radii, thus capturing subtle
transitions among different resolutions.

The ECLMP was evaluated over three datasets consisting
of images taken under controlled and uncontrolled variations
of illumination conditions. The experimental results indi-
cated that the approach is robust to changes in the light
source, thus increasing the classification accuracy.

The paper is organized as follows: Sec. 2 presents the pro-
posed descriptor, explaining how color—texture and texture
information are combined. The classification set up and
experimental results are described in Sec. 3. Finally, we con-
clude the paper in Sec. 4.

2 Extended Color Local Mapped Pattern

The ECLMP is a parametric LMP-based descriptor’'
designed to be robust to changes in the scene illumination.
The proposed descriptor uses two operators, ECLMP,. and
ECLMP,, to extract color-texture and texture information
from the image. The ECLMP, explores an approach to
extract information from neighboring pixels: the pixels in
a circular neighborhood are compared with the neigh-
borhood pixel average, including the central pixel. The
ECLMP, captures the relationship between pixels from
different neighboring resolutions of an image. The texture
information is extracted from the image luminance and
the color—texture information is incorporated using the
magnitude of the color vectors inside the RGB cube.

In this section, we first explain how the ECLMP incorpo-
rates texture information from the image luminance using
the ECLMP,. and ECLMP, operators. Then, we extend
the method for color textures in the RGB space. Finally, we
present how the ECLMP combines both texture and color—
texture information in a multiresolution fashion.

2.1 Texture Information Extraction

Consider a 5 X 5 local pattern, taken from an image as shown
in Fig. 1. The ECLMP extracts information from such local
pattern by considering the luminance values located in
concentric circular neighborhoods as shown in Fig. 2. Each
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Fig. 1 Local pattern 5 x 5.
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neighborhood is defined by P pixels g,, (p=1,...,P)
equally spaced in a circle of radius r,r > 0. Assuming
the central pixel g. is located at (x,y) = (0,0), the coordi-
nates of the neighboring pixels g, , are given by Eq. (1).
When the pixel coordinates are not integer values, the pixel
gray levels are estimated through interpolation, as suggested
in Ref. 16

(x,y) = [-rsin(2zp/P),rcos(2zp)/P], p=1,...,P.

6]

The ECLMP texture feature extraction is performed by
two operators—ECLMP, and ECLMP,—applied to the
luminance image.

The ECLMP,. operator considers the relationship between
the local pixel average and circular neighborhood with
larger radius ry,; (Fig. 2). This information is captured by
the sigmoid function defined as

1

1 4+ exp [__(»‘in.rﬁ(,:,:—mn)} ’

FGpro) = @

where f. is the steepness of the curve and m is the average
of the gray level values of the pixels in the circular neighbor-
hood, including the central pixel, as presented in

: K ) ) }
m = Iprow ) T 9c]- &)
TP ; P

Then, each local pattern is represented by a code gener-
ated using Eq. (4), where f is the mapping function defined
in Eq. (2). The operator round(.) rounds a noninteger number
to the nearest integer; in the case of a tie, the number is
rounded to the nearest integer greater than it. The image
codes are stored into a matrix named coding map. These
codes are uniformly quantized in Q elements

Ipra)] + f(9c)
P+l

ECLMP, = round{[ ri /1 (0- 1)}.

“)

Inspired by Liu et al.,>*** the ECLMP, operator captures the
relationship between the pixels g, .. located in the circular
neighborhood of smaller radius ri, and the pixels g, ,
located in the circular neighborhood of larger radius 7.
Comparisons are made using the differences between
the gray levels of g, .. and g, . as the input of a sigmoid
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Fig. 2 Concentric circular neighborhoods.
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ECLMP, coding map

Luminance image

ECLMP, coding map

ECLMP joint histogram

Y

Fig. 3 ECLMP feature vector generation of a luminance image, considering P =8, ro =2, rip =1,

Q: 16, and ﬁc1 :ﬁn =0.1.

function as defined in Eq. (5), where f,; is the steepness of
the curve

1
Z(gp,romvgp,ri“) = :| . )

1 +exp [—(gp,r(,/.;—gp.q“)

rl

The differences are then averaged, generating the ECLMP,
codes through Eq. (6), where z is the mapping function
defined in Eq. (5). As in the ECLMP,, the codes are uni-
formly quantized in Q elements and stored in a coding map

ZI;:I Z(gp,r‘,m ’ gp,rin )
P

ECLMP, = roundl (Q- 1)] : (6)

The ECLMP feature vector is generated by combining the
ECLMP, and ECLMP, information into a joint histogram,'
which is built using both feature location and value in the
coding maps, as shown in Fig. 3.

2.2 Color — Texture Information Extraction

The ECLMP, and ECLMP, operators can be easily extended
for color textures using the approach presented in our pre-
vious work.?’ On the RGB color space, each color is repre-
sented as a point (or a vector) by its primary components
red, green, and blue, respectively. So, a local W X W pattern
of a color texture is a three-dimensional (3-D) matrix, where
each pixel is considered as a vector g, = (R,.G,.B),) in
the RGB cube (Fig. 4).

Color—texture features are extracted from the RGB
channels using the integrative concept: color and texture
information are extracted jointly by considering the squared
magnitudes of the vectors in the RGB space.

To incorporate the color—texture information, the ECLMP,.
operator uses the sigmoid function as defined in Eq. (7),
where /.., is the steepness of the curve and m, is the average
of the squared magnitudes of the pixels in the circular neigh-
borhood including the central pixel [presented in Eq. (8)].
The ECLMP, coding map is generated using Eq. (4), and
the codes are uniformly quantized into Q elements
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Fig. 4 Local pattern 3 x 3 of an RGB image.

1

1 + exp |:_(ng.v;ucl2“2_m2)

F(Gpro) = ] : )

—1 - 2 2
TP K; 1957l ) + llgel } ®)

The ECLMP, coding map of the color textures is also
obtained using Eq. (6), following the same procedure as
for the texture information extraction. However, the color—
texture differences between the g,, and g, pixels are
captured by the sigmoid function defined in Eq. (9), where
B, is the steepness of the curve

1

_ 2 n]’
| +exp[ (190 IP~l19p.r, | >}

2Ip.rous Ipra) = ©)

ﬂr2

Figure 5 shows ECLMP,. and ECLMP, coding maps of a
color texture and the corresponding ECLMP joint histogram.
Note that to measure the differences between the pixels
located on circular neighborhoods of different radius, the
number of samples P should be the same. For example,
considering the neighborhood presented in Fig. 2, we can
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ECLMP, coding map

RGB image

ECLMP joint histogram

6000

4000
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Fig. 5 ECLMP feature vector generation of an RGB image, considering P =8, roy =2, rip =1, Q = 16,

and g =0.1.

set 1oy =2, iy, = 1, and P = 8 for both radii. To make
the notation more understandable, we represent such con-
figuration as ECLMP(P, ry, ;) = ECLMP(8.2, 1).

2.3 Combining Texture and Color-Texture
Information

Taking advantage of the multiresolution analysis, we per-
form the feature extraction using different radii (r,y,, 7;,) and
number of neighbors (P). Then, the features from different
configurations of (P, ryy, rin) are concatenated in a parallel
approach to get the image feature vector.

In this work, the ECLMP descriptor uses two configu-
rations, empirically tested and selected, for color—
texture information extraction: (P, roy, rin) = (8,2, 1) and
(P, Fou» Fin) = (16,3,2); the same two configurations for
texture information extraction, totalizing four configurations.

To get the image feature vector, the joint histograms are
reshaped into one-dimensional (1-D) features and concat-
enated as shown in Fig. 6. The parameter Q was set to 16,
so each joint histogram has O X Q = 16 X 16 = 256 bins,
and the image feature vector has 256 x 4 = 1024 features.

3 Experiments

3.1 Datasets

We evaluated the performance of the ECLMP over three
databases: RawFooT (Raw Food Texture database),'” KTH-
TIPS-2b (textures under valc;ying illumination, pose, and
scale),24 and USPtex dataset.

The RawFooT database was specially designed to analyze
the robustness of texture descriptors under several lighting
conditions. The same evaluation protocol, as presented in
Ref. 19, was used to allow the comparison of the results.
The database contains 68 images of raw food textures, such
as different types of fruits, vegetables, fish, cereals, and
meat. Each image was acquired under 46 different lighting
conditions, which differ in light intensity, direction, temper-
ature, color, and combination of these settings, as shown in
Fig. 7.
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The original textures of 800 x 800 pixels were divided
into 16 nonoverlapping samples of 200 x 200 pixels. For
each class, eight samples were assigned for training and
eight for test. So, the dataset has 68 X (8 4+ 8) = 1088 sam-
ples for each one of the 46 lighting conditions. Training and
test images were grouped into subsets as suggested in Ref. 19
to perform the same nine classification tasks proposed by
the authors.

Each task involves the samples taken under certain varia-
tion in the light source; for example, task 2 investigates the
robustness of the descriptor to changes in the light intensity.
So, we form 12 subsets by combining the samples acquired
under four intensity levels (100%, 75%, 50%, and 25%),
where the intensity of the training samples is different from
the intensity of the test samples. The nine tasks are briefly
described below and follow the terminology presented in
Fig. 7.

1. No variation: 46 subsets, each one composed of
training and test samples taken under the same light
conditions.

2. Light intensity: 12 subsets, obtained by combining
samples acquired under four intensity levels (D65,
1 =100%, 75%, 50%, and 25%). For each subset,
training and test samples were taken under different
light intensities.

3. Light direction: 72 subsets. Each subset is composed
of training and test samples taken under different
light directions (D65, 8 = 24 deg, 30 deg, 36 deg,
42 deg, 48 deg, 54 deg, 60 deg, 66 deg, and 90 deg).

4. Daylight temperature: 132 subsets, each one com-
posed of training and test sets with images taken
under different daylight temperatures (D40, D45,
D50, ..., D95).

5. LED temperature: 30 subsets. For each subset, train-
ing and test sets were taken under different LED light
temperatures (L27, 130, L40, L50, L57, and L65).

6. Daylight versus LED: 72 subsets obtained by
combining the twelve daylight temperatures (D40,

Jan/Feb 2018 « Vol. 27(1)
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Color-texture information Texture information

(P, Tout,Tin) = (8,2,1) (P, Toue, Tin) = (16,3,2) (P, Tout, Tin) = (8,2,1) (P, Tout, Tin) = (16,3,2)

T badd LLL% m,;“,;ul“ ,gugh;
N

Fig. 6 ECLMP multiresolution feature vector.

D65 (I=75%) D65 (I=50%) D65 (1I=25%) D65 (8 = 24°) D65 (6 = 30°) D65 (6 = 36°) D65 (6 = 42°) D65 (6 = 48°) D65 (8 = 54°)
D65 (6 = 60°) D65 (8 = 66°) D65 (6 = 90°) D55 D60 D65 D70
L30 L40 L50 L57

D65 (8 = 24°) D95 (8 = 24°) 127 (6 = 24%) D65 (8 = 60°) D95 (8 = 60°) 127 (6 = 60°) D65 (8 = 90°) D95 (6 = 90°) L27 (8 = 90°)

D65 (1=100%)

D80 D85 D90 D95 L27

D65-D95 D65-L27 D95-L27 Red

Fig. 7 Example of one of the textures (lentils) in the raw food texture database imaged under the 46
lighting conditions.
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Fig. 8 One example image from each of four samples of a category in the KTH-TIPS-2b dataset.
The presented samples were imaged at scale 4, frontal pose and frontal illumination.

D45, D50, ..., D95) with the six LED temperatures
(L27, L30, L40, L50, L57, and L65).

7. Temperature or direction: 72 subsets. Each subset is
composed of training and test samples that differ in
color (D65, D95, and L27), or direction (8 = 24 deg,
60 deg, 90 deg), or both, color and direction.

8. Temperature and direction: 36 subsets, each one com-
posed of training and test samples that differ in both
color (D65, D95, and L.27) and direction.

9. Multiple illuminants: six subsets obtained by combin-
ing the three acquisitions with multiple illuminants
(D65 to D95, D65 to L27, and D95 to L27).

The KTH-TIPS-2b database presents controlled varia-
tions of illumination conditions but also viewpoint and
scale. The database includes 11 texture categories and
4 samples per category (Fig. 8). Each sample was acquired
considering nine scales, three poses, and four illumination
conditions, summing up 4742 samples of 200 X 200 pixels.
Because our goal is to investigate the robustness of the
proposed descriptor under different illumination conditions,
we did not use the standard evaluation protocol for KHT-
TIPS-2b. We selected the images taken under the frontal

pose, at the scales 2, 3, 4, 5, and 6 and three illumination
conditions: frontal, 45 deg from the top and 45 deg from
the side. The images at scales 3, 4, and 6 were used as train-
ing set and those at scales 2 and 5 were used as test set.

Note that the image scale acquisition varies between train-
ing and test sets. This approach was necessary due to the low
number of samples (4) at each illumination at a given scale.
As a result, the robustness against changes in illumination is
not being assessed isolated. The results will reflect the
robustness to changes in illumination and scale combined.

The USPtex dataset is composed of natural color textures
such as rice, seeds, fabric, walls, and vegetation. The images
were acquired “in the wild,” therefore, under uncontrolled
illumination and viewing conditions.”> The dataset contains
2292 samples of 128 x 128 pixels, grouped into 191 texture
classes (12 samples per class). The odd samples were used
for training and the even samples for testing. Figure 9 shows
texture examples of the USPtex dataset.

3.2 Experimental Setup

In all experiments, the descriptors were applied to the train-
ing and test images to obtain the feature vectors. The distance
between test and training feature vectors was measured using

Fig. 9 Texture samples of the USPtex dataset.
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the L1 distance [Eq. (10)], where S and M stand for the
feature vectors of training and test samples, respectively,
and B, is the number of bins in the feature vector

B,
D(S. M) =[S, — M,|. (10)
b=1

In this work, our focus is to evaluate the performance of
the color texture descriptors, so we chose the simple nearest
neighbor classifier (1-NN) to estimate the label of the test
samples. The performance of the descriptor is evaluated
using the classification accuracy.

3.3 Parameter Tuning

The sigmoid mapping functions (f and z) used to extract
texture information [Egs. (2) and (5)] or color—texture infor-
mation [Egs. (7) and (9)] are responsible for capturing the
relationship between neighboring pixels. The f parameter

database tuning set contains 11 X 2 =22 images, and the
USPtex database tuning set is composed of 191 x 2 = 382
images.

3.4 Experimental Results for RawFooT Database

To evaluate the proposed descriptor over the RawFooT
database, we reproduced the same nine classification tasks
suggested by Cusano et al."” and described in Sec. 3.1. In
that work, the authors compared the performance of several
methods over the database, including not only traditional
texture descriptors but also descriptors designed for object
recognition and convolutional neural networks. Because
the proposed descriptor belongs to the first category, we

Table 2 Average accuracy over the nine tasks obtained by ECLMP
and other texture descriptors.

presented in those functions define the steepness of the Descriptor Avg. accuracy (%)
curve. . o ECLMP 80.39
As show in Sec. 2.3, the ECLMP descriptor is formed
by two configurations of radii and number of neighbors CILMP20 77.79
for both color—texture and texture information extraction,
totalizing four operators (Fig. 6). Lcciote 65.60
For each one of the four operators, the descriptor uses
two sigmoid functions (f and z) as presented in Sec. 2. OCLBP'6:19 59.05
We choose to make the f parameter the same for both func- 1o
tions, i.e., f.; = fB,; and B, = fB,, since the information LBP lab™ 58.61
extracted by them are related to the same configuration, 1610
and they are merged into a joint histogram. Thus, there are LBP L™ 58.61
four f parameters to be tuned, one for each operator. LBP /. ./.1619 744
These parameters can be tuned separately or simultane- 12’3 57.
ously. Previous works”**® have shown the descriptors based 1616
LBP RGB™ 57.05
on the LMP approach perform better when the parameters
are tuned simultaneously since they influence each other Gabor RGB''® 53.49
when the features are combined in a single feature vector.
In this work, we propose to tune the parameters simulta- Gabor L1419 5295
neously using genetic algorithm. The classification accuracy
is used as the objective of the fitness function, which is maxi- Granulometry'”:1® 51.75
mized. The MATLAB Global Optimization Toolbox was
used for this purpose. For each dataset, a tuning set was gen- Opp Gabor RGB'9%” 46.76
erated by randomly selecting two samples per class from
the total of training images. Thus, the RawFooT database DT-CWT'*1* 46.69
tuning set contains 68 X 2 = 136 images, the KTH-TIPS-2b
Gist RGB™® 45.05
Table 1 Tuned parameters of the CILMP and ELMP descriptors for Hist. H V'° 44.62
the RawFooT database.
Hist. rgb'%28 42.98
ClLMP ECLMP Hist. RGB'® 40.96
Configuration Parameter Configuration Parameter 19.29
Chrom. S 38.05
(P.A) B Prawn) () rom. mom
Color- (8,2) 0.1712 (8,2,1) 0.3401 DT-CWT L'+19 36.67
texture
information (16,3) 0.1386 (16,3,2) 0.9204 HoG 90 32.98
Texture (8,1) 0.0844 (8,2,1) 0.0131 Hist. L® 31.89
information
(16,3) 0.1320 (16,3,2) 0.1176 Coocc. matr.' 14.50
(24,5) 0.9797 — — Coocc. matr. L° 08.77
Journal of Electronic Imaging 011008-7 Jan/Feb 2018 « Vol. 27(1)
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compare the performance obtained by the ECLMP to
the results provided in Ref. 19 using the traditional texture
descriptors. We also compare the ECLMP to our previous
proposed method CILMP.*

Both ECLMP and CILMP descriptors are parametric
models and require a tuning set. The same tuning set was
used for both descriptors. Table 1 shows the tuned parame-
ters for the RawFooT dataset.

Table 2 shows the average accuracy over the nine tasks for
each descriptor. The proposed ECLMP descriptor obtained
the best average accuracy, followed by the CILMP and LCC
descriptors. The ECLMP increases the average accuracy in
2.60 percentage points (pp) over the CILMP and 14.79 pp
over the LCC.

Figure 10 shows a comparison among the best three
descriptors presented in Table 2 considering each one of
the nine tasks proposed in Ref. 19. Because the descriptors

Task 1 - no variations
100 100

Accuracy (%)
Accuracy (%)

Task 2 - light intensity

are evaluated over several image subsets, average accuracy
and minimum accuracy are reported in the charts.

For tasks 1 to 8, the proposed ECLMP descriptor obtained
higher average accuracy than the CILMP and LCC. Only for
task 9, the CILMP performed slightly better than ECLMP.
Considering the minimum accuracy, the ECLMP outper-
forms the other descriptors for tasks 2 to 9.

In task 2, the descriptors are evaluated over image subsets
where training and test samples were taken under different
light intensities. For this specific task, we notice that ECLMP
reaches an improvement of 7.89 pp over CILMP and 27.71
pp over LCC. Furthermore, the minimum accuracy provided
by ECLMP in this task is close to the average accuracy
reported by CILMP and 14.93 pp higher than the average
accuracy obtained using LCC.

From tasks 3, 7, and 8, we notice that changes in the
light source direction are the most challenging variations,

Task 3 - light direction
100

Accuracy (%)

ECLMP  CILMP
Wavg. (%) 98.72 97.98 92.92
B min. (%) 91.18 93.20 88.60

Task 4 - daylight temperature
100

80
60
40
20

0

ECLMP  CILMP
mavg (%) 9751 9727  88.76
mmin. (%) 9467 9412 7371

Accuracy (%)

Task 7 - temperature or direction
100

80
60

40
0
ECLMP  CILMP

mavg (%) 47.26  43.67  31.13
®min. (%) 10.85 9.74 5.15

Accuracy (%)

80 80
60 60
40 40
20 20

0 0

ECLMP  CILMP
mavg (%) 9035 8246  62.64
Emin. (%) 7757 6011 = 26.84

Task 5 - LED temperature
100

80
60
40
20

0

ECLMP  CILMP
Wavg. (%) 9553 9524  74.25
mmin. (%) 864  83.82  46.88

Accuracy (%)

Task 8 - temp. and direction

100
80
g
> 60
e
3 40
Q
<

” L L l—
0
ECLMP  CILMP

mavg (%) 3356 2944  19.85
®min. (%) 10.85 9.74 5.15

80
60
40
20

0

Accuracy (%)

Accuracy (%)

LLL

ECLMP  CILMP
mavg (%) 6971 6401  56.15
mmin. (%) 19.49 1820 = 12.13

Task 6 - daylight vs. LED
100

80
60
40
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Fig. 10 Accuracy of the ECLMP, CILMP, and LCC descriptors over the RawFoot database.
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especially when temperature and direction changes simulta-
neously (task 8). In task 3, which involves changes only in
the light direction, the ECLMP outperforms the average
accuracy reported by CILMP in 5.7 pp. For task 7, which
evaluates the descriptor considering changes in the light
source temperature or direction, the improvement achieved
by ECLMP is of 3.59 pp over CILMP. Although all the
descriptors obtained low classification accuracies for task 8,
ECLMP increased the average accuracy in 4.12 and 13.71 pp
compared with CILMP and LCC, respectively.

The experiments in the RawFooT dataset have shown
that the texture description under variations in the light
source depends on the type of variability. Although changes
in the light source temperate alone do not affect the perfor-
mance of the proposed descriptor, changes in the light direc-
tion cause a significant decrease in accuracy.

3.5 Experimental Results for KTH-TIPS-2b Database

As described in Sec. 3.1, the KTH-TIPS-2b database pro-
vides images taken under three different illumination direc-
tions: frontal, 45 deg from the top (45 deg top), and 45 deg
from the side (45 deg side). We evaluate the robustness of
the descriptor performance to changes in the light direction,
which is the most challenge condition, as shown in Sec. 3.4.
Since ECLMP, CILMP, and LCC provided the best results
for RawFooT database, they were chosen for comparison
using KTH-TIPS-2b database.

It is important to reinforce that the images in the training
and test sets also vary in the acquisition scale. Training set
includes images taken under scales 3, 4, and 6, and test set
includes images taken under scales 2 and 5. Although scale
invariance is not the focus of this work, the experiments per-
formed in KTH-TIPS-2b database also provide some infor-
mation about the robustness of the descriptors to changes
in scale.

Table 3 shows the CILMP and ECLMP tuned parameters
for KTH-TIPS-2b database. Table 4 shows the classification
accuracies performed by ECLMP, CILMP, and LCC over
the combinations of the three illumination conditions.

Table 4 shows that the proposed descriptor achieved
the best classification accuracies for experiments 2 and 3.
In experiment 3, the ECLMP achieved an improvement of
1.7 and 20.45 pp in the average accuracy over CILMP and
LCC, respectively. When the illumination changes between

Table 3 Tuned parameters of the CILMP and ECLMP descriptors for
the KTH-TIPS-2b database.

Table 4 Classification accuracies (%) obtained by ECLMP, CILMP,
and LCC over the KTH-TIPS-2b database.

lllumination direction

Experiment Tr:?;gzsg irr-:—:gsés ECLMP CILMP LCC
1 Frontal 45-degtop  77.27 75.00 82.95
45-deg top Frontal 76.14 79.55 81.82
2 Frontal 45-deg side  71.59 68.18 60.23
45-deg side Frontal 70.45 70.45 61.36
3 45-deg top 45-deg side  75.00 7273 51.14

45-deg side 45-degtop  72.73 7159 55.68

Average accuracy 73.86 7292 65.53

frontal and 45 deg top directions (experiment 1), the LCC
descriptor outperformed the descriptors CILMP and ECLMP.

However, notice that the LCC performance varies greatly
between experiments. The best LCC performance (experi-
ment 1) achieved 82.95% of accuracy, whereas the worst
obtained accuracy was 55.14%, meaning 27.81 pp of varia-
tion. Such variation is of 5.69% for the ECLMP and 11.37%
for the CILMP.

Overall, in conducted experiments ECLMP was more
robust to changes in the light direction than CILMP and
LCC.

3.6 Experimental Results for USPtex Database

The USPtex database contains color textures acquired
“in the wild,” under uncontrolled illumination conditions.
Therefore, the experiments performed on the USPtex data-
base better simulates a real-life application under uncon-
trolled lighting conditions. The ECLMP, CILMP, and LCC
descriptors were compared in the experiments.

Table 5 shows the tuned parameters of the CILMP and
ECLMP descriptors on the USPtex database. The classifica-
tion accuracies are compared in Fig. 11.

Table 5 Tuned parameters of the CILMP and ELMP descriptors for
the USPtex database.

CILMP ECLMP

Configuration Parameter Configuration Parameter

CILMP ECLMP

Configuration Parameter Configuration Parameter

(P! R) (ﬂ) (P, Fout rin) (ﬂ) (P’ H) (ﬂ) (P, Fouts rin) (ﬁ)
Color- (8,2) 0.9502 (8,2,1) 66.7373 Color- (8,2) 0.7266 (8,2,1) 18.3727
texture texture
information (16,3) 0.7537 (16,3,2) 32.5745 information (16,3) 0.7121 (16,3,2) 10.0444
Texture (8,1) 0.8693 (8,2,1) 5.1321 Texture (8,1) 0.0210 (8,2,1) 1.4005
information information

(16,3) 0.1835 (16,3,2) 2.6885 (16,3) 0.1971 (16,3,2) 0.0004

(24,5) 0.2217 — — (24,5) 0.3711 — —
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Classification accuracy (%)

100 91.80 91.62 87 61

20

o

ECLMP CILMP LCC

Fig. 11 Accuracy of the ECLMP, CILMP, and LCC descriptors over
the USPtex database.

Figure 11 shows that the best classification accuracy
was obtained by ECLMP (91.80%), followed by CILMP
(91.62%). Moreover, the proposed descriptor achieved an
improvement of 4.19 pp over the LCC descriptor.

The results obtained over the USPtex database show that
the ECLMP descriptor is more suitable for applications with
uncontrolled illumination than the CILMP and LCC.

4 Discussion and Conclusions

In this study, we proposed a descriptor based on the LMP
approach, namely extended color local mapped pattern
(ECLMP), to address the problem of color—texture classifi-
cation under different illumination conditions. The proposed
descriptor uses two operators, ECLMP, and ECLMP,, to
incorporates color—texture and texture information from the
images to the feature vectors.

The descriptor was evaluated over three databases:
RawFooT and KTH-TIPS-2b, which present images taken
under controlled variations of illumination, and USPtex,
which contains images acquired under uncontrolled illumi-
nation conditions. The experimental results showed that the
ECLMP outperforms other commonly used descriptors in
the three databases. The ECLMP achieved a great improve-
ment in the classification accuracy, especially when the
light intensity varies: 7.89 pp over the second best method.
Our findings also indicate that changes in the light source
direction are the most challenge variations for the texture

descriptors. Nevertheless, the ECLMP obtained the best
classification accuracies for tasks that include these kinds of
variations. The proposed descriptor also proved to be suit-
able for applications, in which the illumination conditions
are not controlled.

In the ECLMP feature vector generation, the codes
mapped by ECLMP, and ECLMP, are quantized into Q ele-
ments. Because the number of features in the ECLMP feature
vector is 92, increasing Q leads to increased processing time.
In this paper, the choice of Q was based on experimental tests
using Q =2",n=3,4,5, 6,7, and 8. The best trade-off
between accuracy and histogram size was obtained with
n =4 (Q = 16). On a further note, the effect of Q on the
accuracy was not too expressive, causing a maximum
difference of 4.33, 2.27, and 6.20 pp between the best
and worse accuracy for the RawFooT, KTH-TIPS-2b, and
USPtex, respectively (see Appendix A).

The choice of the color space used to extract color—texture
features can also influence the descriptors performance. This
topic has been extensively discussed in Refs. 31 and 32.
There is no color space that is well adapted to all databases.
Furthermore, the best color space for a given database also
depends on the texture descriptor adopted to extract the
image features.’ In the current paper, the RGB color space
was used to incorporate color—texture information using the
ECLMP descriptor. However, for future work, we suggest
the evaluation of other color spaces for such task.

Appendix: The Influence of the Quantization
Parameter Q Over the Classification Accuracy

The ECLMP descriptor uses two operators ECLMP,. and
ECLMP, to extract texture or color—texture information.
The codes generated by such operators are uniformly quan-
tized in Q elements and stored in a coding map. Afterward,
the ECLMP feature vector is obtained by building a joint
histogram from the ECLMP, and ECLMP, coding maps.
Therefore, the Q parameter determines the ECLMP histo-
gram size (Q?), which can affect the classification accuracy.
The influence of the Q value over the classification accu-
racy is presented in Tables 68, considering the RawFooT,
KTH-TIPS-2b, and USPtex databases, respectively.

Table 6 Classification accuracies (%) obtained by the ECLMP descriptor on the RawFooT database experiments, considering different values of

Q.
Experiment #

Q 1 2 3 4 5 6 7 8 9 Average
8 98.34 90.85 67.75 96.88 96.09 95.77 48.99 35.39 95.07 80.57
16 98.72 90.35 69.71 97.51 95.53 95.00 47.26 33.56 95.83 80.39
32 98.88 86.41 68.62 97.71 92.44 93.53 42.91 30.33 95.87 78.52
64 98.93 83.49 67.33 97.46 90.89 92.69 39.73 27.80 95.5 77.09
128 98.94 81.74 66.29 97.39 90.63 92.48 39.02 27.12 95.62 76.58
256 98.93 82.40 64.28 97.50 90.55 92.59 38.23 26.05 95.62 76.24
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Table 7 Classification accuracies (%) obtained by the ECLMP
descriptor on the KTH-TIPS-2b database experiments, considering
different values of Q.

Experiment #

Q 1 2 3 Average
8 73.86 71.59 71.59 72.35
16 76.70 71.02 73.86 73.86
32 75.57 72.73 74.43 74.24
64 76.70 71.59 75.00 74.43
128 75.57 73.30 75.00 74.62
256 75.00 71.02 73.30 73.11

Table 8 Classification accuracies (%) obtained by the ECLMP
descriptor on the USPtex database, considering different values of Q.

Q Classification accuracy
8 87.52
16 91.80
32 90.66
64 93.72
128 92.50
256 93.02

For the experiments in the RawFooT database (Table 6),
the best Q value varies between 8 and 32, depending on
the variation in the lighting condition (experiments 2 to 9).
When there are no changes in the illumination scene
(experiment 1), Q = 128 yields the highest classification
accuracy. Considering the average accuracy, Q =8 pre-
sented the best performance, followed by Q = 16.

In the KTH-TIPS-2b experiments (Table 7), the Q value
that leads to the best accuracies varies between 64 and 128,
depending on the experiment. For the USPtex database,
as shown in (Table 8), the highest classification accuracy
was obtained when Q = 64.

Importantly, an improvement of only 4.33, 2.27, and 6.20
pp was achieved when the best Q value was used, compared
with the worse (within the investigated range). Considering
the results presented for all the databases, and since increas-
ing Q leads to increased processing time, we chose to adopt
Q0 =16.
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