
E�cient Learning through Cooperation�R. Venkateswaran Zoran Obradovi�crvenkate@eecs.wsu.edu zoran@eecs.wsu.eduSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman WA 99164-2752AbstractA new algorithm has been proposed which uses cooperative e�orts of several identical neuralnetworks for e�cient gradient descent learning. In contrast to the sequential gradient descent,in this algorithm it is easy to select learning rates such that the number of epochs for convergenceis minimized. This algorithm is suitable for implementation on a parallel or distributed environ-ment. It has been implemented on a network of heterogeneous workstations using p4. Resultsare presented where few learners cooperate and learn much faster than if they learn individually.1 IntroductionThe goal of supervised learning from examples is generalization using some preclassi�ed inputs(training set). Learning in neural networks is achieved by adjusting the connection strengths(weights) among processors, so that the outputs re
ect the class of the input patterns. One pop-ular method of adjusting the weights is gradient descent learning through back-propagation [8].Unfortunately, in the back-propagation algorithm, a number of parameters have to be appropri-ately speci�ed. If parameters are not appropriate, the algorithm can take a long time to convergeor may not converge at all [7]. Due to local minimum problem, an appropriate learning ratesigni�cantly a�ects the quality of the generalization and the number of epochs for convergence [2].Selection of an appropriate learning rate is a computationally expensive experimental problem thatcan be solved satisfactorily for small networks only [5].The goal of this paper is to speed-up learning with improved accuracy using systems composed ofseveral neural networks of the same topology that concurrently run the standard back-propagationalgorithm. Our approach is di�erent from the approach in [6] where each network learns a subsetof training examples. In our system, the various networks periodically communicate with eachother and cooperate in learning the entire training set. If any of the processes gets stuck in a localminimum site, the rest of the processes help in moving it out of this predicament. The algorithmalso works well if any process gets stuck in a plateau or a ridge.In Section 2, we propose this new cooperative learning algorithm, followed by experimentalresults in Section 3 and analysis in Section 4.2 Cooperative Learning AlgorithmIn our algorithm, several processes run the standard back-propagation algorithm concurrently. Allprocesses work on neural networks of identical topology, each using a local copy of the training set.These processes are called the slave processes. A master process initiates these slaves and controlsthem. The slaves communicate only with the master. The master initializes its hypothesis (theweights and the bias values of the neurons) and broadcasts it to the slaves. The slaves adjust thishypothesis using back-propagation. Each slave uses its own learning rate that is di�erent from thelearning rates of other slaves and hence, the adjusted hypothesis in each of the slaves is di�erent.�Research sponsored in part by the NSF research grant NSF-IRI-9308523.

SLAVE 1

MASTER

SLAVE nFigure 1: Communication Network Topology for Cooperative Learning AlgorithmPeriodically, the slaves cooperate by exchanging information. The period between two cooperationsis called an era.The algorithm is suitable for implementation on a distributed platform since the communicationgraph is simple and the total number of communications is small (Figure 1). Our implementationuses p4 which supports parallel programming for both distributed environments and highly parallelcomputers [1]. It helps to create the master and the slave processes and provides easy means ofcommunication between them. Another advantage of using p4 for neural networks implementationis its ability to port directly from a distributed to a highly parallel platform [4].2.1 Epoch-based CooperationIn epoch-based cooperation, the slaves communicate their learned weights back to the master after aspeci�ed number of epochs (one era). Since all slaves use the identical topology, the master formsa new hypothesis after each era by averaging these weights. For each link between neurons, thenew weight is the average of the weights of that link as computed by the slaves. This hypothesis isbroadcast to the slaves and they proceed with back-propagation for the next era starting from thisnew hypothesis. When any of the slaves has learned the training set to satisfaction, the hypothesislearned by this slave is output and learning is completed.2.2 Time-based CooperationOne disadvantage of the epoch-based cooperation is that the slaves on faster machines �nish theirera earlier but they have to wait for the slowest slave to �nish its era. So, in a heterogeneousenvironment, the slowest machine is a bottle-neck and one cannot take advantage of faster ma-chines. For such heterogeneous environments, we propose another approach called the time-basedcooperation. Here, the era is speci�ed as a duration of time rather than number of epochs. Sinceall slaves run for the same duration, no machine will be idle.2.3 Cooperation with Dynamic Learning RatesIn this approach, we start with the cooperative algorithm (epoch or time based) using initiallearning rates spread uniformly in (0,1) range. After few eras, the range of the learning rates isreduced. New values for the learning rates are chosen uniformly around the value of the learning

Problem : To classify `A', `I' and `O'.Dimensionality : 2 Number of Classes : 3Architecture : 2-9-3 Size of Training Set : 16Percentage Learned : 100% Era : 50 epochsOne � 0.01 0.05 0.1 0.125 0.15 0.175 0.2Node Epochs 8708 1819 1295 1179 1419 >10000 >10000Two �1 , �2 0.05 , 0.15 0.1 , 0.15 0.01 , 0.15 0.05 , 0.175Nodes Epochs 1099 1040 1374 985Three �1,�2,�3 0.05 , 0.10 , 0.15 0.01 , 0.1 , 0.2Nodes Epochs 1149 1148Four �1 , �2 , �3 , �4 0.05 , 0.1 , 0.15 , 0.2Nodes Epochs 946Figure 2: Epoch-based Cooperation for Pattern Classi�cation Problemrate of the slave which currently generalizes the best. The advantage of this approach is that theselection of an optimal learning rate becomes completely automatic.3 ResultsTwo benchmark problems are used for experimentation. The experiments are performed by varyingthe number of slaves from one to four. Both the epoch-based and the time-based cooperation aretested.3.1 Pattern Classi�cation ProblemThe problem is to classify three patterns, `A', `I' and `O', formed in a 4-by-4 grid, using a feedforwardnetwork. Figure 2 gives the results of the epoch-based cooperation for this problem. In this �gure,One Node table gives the number of epochs required to learn the training set using sequential back-propagation algorithm with various learning rates. The number of epochs to learn the trainingset using the cooperative system of two slaves with various pairs of learning rates is given in TwoNodes table. Here, one slave uses the learning rate �1 and the other uses �2. Similarly, other tablesshow results for cooperative systems of three and four slaves respectively.3.2 Two-Spirals ProblemThis hard benchmark problem consists of two classes of points arranged in two interlocking spiralsthat go around the origin [3]. The goal is to develop a feed forward network that classi�es allthe training points correctly. The results of the epoch-based cooperative learning algorithm on atraining set of 40 points are given in Figure 3.Figure 4 gives results of the time-based cooperative algorithm. In one experiment, the coop-erative algorithm using two slaves is run on a homogeneous system consisting of two DEC3100

Problem : Two-Spirals Problem.Dimensionality : 2 Number of Classes : 2Architecture : 2-5-1 Size of Training Set : 40Percentage Learned : 100% Era : 100 epochsOne � 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5Node Epochs >30000 8799 3683 2593 2238 1727 >30000 >30000 >30000Two �1 , �2 0.05 , 0.35 0.15 , 0.35 0.25 , 0.35 0.05 , 0.5Nodes Epochs 2691 2122 1777 1920Three �1,�2,�3 0.1 , 0.3 , 0.5 0.15 , 0.25 , 0.35Nodes Epochs 1775 2103Four �1 , �2 , �3 , �4 0.1 , 0.2 , 0.3 , 0.4Nodes Epochs 2498Figure 3: Epoch-based Cooperation for Two-Spirals ProblemProblem : Two-Spirals Problem.Dimensionality : 2 Number of Classes : 2Architecture : 2-5-1 Size of Training Set : 40Percentage Learned : 100% Era : 400 msecTwo �DEC1 , �DEC2 0.05 , 0.35 0.15 , 0.35 0.25 , 0.35 0.05 , 0.5Nodes Cooperations 40 34 28 27(a)Two �DEC , �HP 0.05 , 0.35 0.15 , 0.35 0.25 , 0.35 0.05 , 0.5Nodes Cooperations 6 6 6 5(b)Two �HP , �DEC 0.05 , 0.35 0.15 , 0.35 0.25 , 0.35 0.05 , 0.5Nodes Cooperations 22 6 7 21(c)Figure 4: (a) Homogeneous and (b,c) Heterogeneous System for Cooperative Learning

workstations. The slave on one of the workstations uses learning rate �DEC1 while the other slaveon the other workstation uses �DEC2. The number of cooperations required for convergence usingvarious pairs of learning rates are given in Figure 4 (a). In the other experiment two slaves are runon a heterogeneous system consisting of the faster HP9000/735 and the slower DEC3100 worksta-tion. In the pair of learning rates given in Figure 4 (b) the left value is used by the slave on theDEC3100 and the right value by the slave on the HP9000/735.Similar results are obtained for training set of 80 points. Here, the range of good learning ratesfor the sequential algorithm is smaller than for 40 points.4 Analysis of Experimental Results4.1 Epoch-based experimentsLet �min be the learning rate that minimizes the number of epochs for convergence in standardback-propagation. From the experiments it can be observed that if the learning rates for the slavesin the cooperative algorithm are chosen such that � < �min for some slaves, and � > �min for theremaining slaves, then, in general, the cooperative algorithm needs signi�cantly smaller number ofepochs to converge. For instance, suppose that there are two slaves using learning rates �1 and �2.In order to get a performance better than the sequential algorithm, we choose the learning rates �1and �2 so that �1 < �min < �2. For the pattern classi�cation problem, it is easy to see from OneNode table in Figure 2 that the fastest convergence for the sequential algorithm takes 1179 epochswith � = 0.125. By setting �1 = 0.05 and �2 = 0.175, the cooperative learning algorithm takesonly 985 epochs for convergence. Without any cooperation, the algorithm takes 1819 and 10000epochs for convergence for � = 0.05 and � = 0.175 respectively. Similarly, in Figure 3, the fastestconvergence for the sequential algorithm takes 1727 epochs for � = 0.3. With the learning rateset to 0.25 and 0.35 the non-cooperative algorithm takes 2238 and 30000 epochs respectively. But,with cooperation, the convergence takes 1777 epochs, which is very close to the fastest sequentialconvergence.In sequential back-propagation, learning rates less than and greater than �min exist if the numberof epochs for convergence is a non-monotonic function of the learning rate, which is true for manyreal-life problems. For these problems, cooperative algorithm will work better, provided appropriatelearning rates are selected. The XOR problem is an example where the number of epochs is amonotone decreasing function of the learning rate. So, for this problem, cooperative learning doesnot give a better performance.4.2 Time-based experimentsHere, the time between two cooperations (one era is 400ms in our experiments) is �xed. So, thetotal time for convergence of the time-based cooperation is proportional to the product of thenumber of cooperations and the execution time of one era. From the Figure 4, it can be observedthat the time-based cooperation executed on a heterogeneous system with one fast and one slowermachine converges much faster than on a homogeneous system with two slower machines. Also, thealgorithm is more e�cient if the slave with the higher learning rate is assigned to the faster machine(see Figure 4 b,c). It is clear that the slave on the faster machine executes more epochs per erathan the slave on the slower machine. So, if the slave with the smaller learning rate is assigned tothe faster machine, the weights computed by the two slaves are not very far apart. Consequently,averaging is not so bene�cial in this case.

5 ConclusionThe cooperative learning algorithm proposed here has given promising results. In general, for theback-propagation algorithm, it is very hard to �nd learning rates for which the algorithm convergesin minimum number of epochs. In our algorithm, we can easily select the learning rates such thatthe number of epochs for convergence is close to this minimum or even better. This approach canbe used to improve any gradient descent algorithm. It can be easily implemented on a parallelmachine or a network of heterogeneous workstations using p4.The experimentation using cooperation with dynamic learning rates is still under investigationwith promising preliminary results. We are also experimenting with a more sophisticated way ofcombining slave hypotheses (instead of averaging), which might further improve the performance.References[1] R.Butler and E.Lusk,\User's Guide to the p4 Parallel Programming System," Argonne NationalLab., November, 1992.[2] J.P.Cater, \Successfully Using Peak Learning Rates of 10 (and greater) in Back-PropagationNetworks with the Heuristic Learning Algorithm," IEEE First Int. Conference on Neural Net-works, vol. 2, pp. 645-651, 1987.[3] S.Fahlman and C. Labiere, \The Cascade Correlation Learning Architecture," Advances inNeural Information Processing Systems, vol. 2, Morgan Kaufmann, pp. 524-532, 1990.[4] J. Fletcher and Z. Obradovic, \Parallel and Distributed Systems for Constructive Neural Net-work Learning," IEEE Second Intl. Sym. on High Performance Distributed Computing, pp.174-178, 1993.[5] J.Hertz et al, \Introduction to the Theory of Neural Computation," Addison Wesley, 1991.[6] R.Jacobs et al, \Adaptive Mixture of Local Experts," Neural Computation, vol. 3, no. 1, pp.79-87, 1991.[7] S.J.Orfanidis, \Gram-Schmidt Neural Nets," Neural Computation,vol.2, pp. 116-126, 1990.[8] D.E.Rumelhart, G.E.Hilton and R.J.Williams, \Learning Internal Representations by ErrorPropagation," Parallel and Distributed Processing, Eds. D.E.Rumelhart and J.L.McClelland,Cambridge, MA, MIT Press, 1986.

