Cooperative Genetic Algorithm for Optimization
Problems in Distributed Computer Systems*

R. Venkateswaran, Zoran Obradovié¢, C.S.Raghavendra

School of EECS
Washington State University
Pullman, WA, 99164-2752
{rvenkate,zoran,raghu}@eecs.wsu.edu

ABSTRACT

In the proposed algorithm, several single population ge-
netic algorithms with different cross-over end mutation pa-
rameters are run as a set of processes that cooperate peri-
odically and exchange information to solve the problem ef-
ficiently. The algorithm is less stochastic than the standard
genetic algorithm and o distributed implementation is ap-
propriate for application to large scale problems. In partic-
uwlar, we apply it to the static task assignment problem and
suggest modifications to solve other optimization problems
in distributed computer systems. Preliminary ezperiments
with fairly large-sized problems of allocating 50 tasks among
16 processors indicate that the cooperative algorithm imple-
mented on o network of workstations quickly finds better so-
lutions than those obiained by a standard genetic algorithm.
To conclusively show that better solutions are obtained, ez-
tensive experiments have to be performed. A distributed
implementation of the algorithm is highly suited for such
experimentation.

I. INTRODUCTION

Current literature discusses three levels in the paral-
lelization of genetic algorithms[2], cellular, global and in-
land. Cellular level is a subclass of cellular automata. The
global level approach uses several processors to efficiently
create the next generation and compute the fitness values
of the strings in the population. This speeds up the com-
putation, but does not improve the quality of the solution
obtained. Our technique, cooperative genetic algorithm,
belongs to an inland level parallelization. In this algo-
rithm category, where several single population genetic al-
gorithms are run in parallel, the processors explore different
areas in the solution space, which enhances the chances of
finding better solutions. In addition, the processors cooper-
ate with other processors periodically to solve the problem
efficiently. Our algorithm can also incorporate the global
level approach to exploit the advantages of both levels of
parallelization. Another related inland level parallelization
called the Parallel Genetic Algorithm (PGA) is proposed
in [4]. In PGA, each processor cooperates with others,
maintaining only a part of the population. All processors
use identical values for the cross-over and mutation proba-
bility. On the other hand, in our approach, each processor
maintains the entire population and operates on it using its
own cross-over and mutation probabilities (different from
other slaves). This makes the algorithm less sensitive to
selection of these parameters.

The cooperative algorithm is implemented on a network
of work-stations. For a large class of problems, a dis-
tributed implementation is much more efficient than a se-
quential implementation. We have successfully used this
technique for the static task assignment to processors in a
distributed computer system, which is a well-known NP-
complete optimization problem. The problem assumes that
the execution time for a given task varies for different pro-
cessors. Also, the tasks communicate with each other and
this contributes to the communication cost. Given some
tasks to be assigned to a set of processors, the problem
is to find an optimal assignment such that the total cost,
which is a function of the total execution time and the total
communication cost, is minimized.

To find suboptimal task assignment, Stone formulated
this problem using a network flow model and used maxi-
mal flow techniques to find optimal solutions for the two-
processor problem[5]. He also proposed extensions to find
suboptimal solutions for an n-processor problem. Various
heuristic solutions using different cost functions were pro-
posed by Lo[3].

In our approach, we assume that the tasks to be as-
signed are independent, that is, they can be executed in
any order. The execution times for a particular task are
different on different processors. It is assumed that the
communication times between tasks assigned to the same
processor is negligible, while communication times between
tasks assigned to different processors can be significant.
It is also assumed that the communication time between
any two tasks is much smaller than the execution times of
each of the tasks. Here, we address the static task assign-
ment problem, that is, the task execution times on different
processors and communication costs between tasks are as-
sumed to be available before the algorithm is run. It is
easy to extend our approach to solve the dynamic task as-
signment problem.

II. COOPERATIVE (GENETIC ALGORITHM

Reliable results using standard genetic algorithm neces-
sitates repeating the experiment with different cross-over
and mutation probabilities because the algorithm depends
significantly on these parameters. To enhance the perfor-
mance, we propose a new approach called the Cooperative
Genetic Algorithm. One of the main advantages of this
algorithm is that it is relatively insensitive to the cross-
over and mutation probabilities. So, reliable results can
be obtained with just one experiment. Another advantage

of this algorithm is that it is appropriate for distributed
systems implementation. Our implementation is on a net-
work of work-stations having a master-slave scenario with
a single master and several slave processes. The slaves can
communicate with each other and also with the master.

In the cooperative genetic algorithm, the slave processes
communicate only with the master process. Each slave
process 1s assigned an initial population and uses the basic
genetic operations of selection, cross-over and mutation to
produce the next generation. Each slave uses a different
value for the cross-over and mutation probability and con-
sequently each creates a different new population. After
each generation, the slaves pass on their created popula-
tion to the master. The master then identifies the globally
best solutions from all the slaves and the previous gener-
ation strings. This globally best set, which is of the same
size as the previous population, forms the new population
for the subsequent generation. For example, if there are 5
slaves with a population size of 10 each, the master picks
the 10 best solutions from the set of 50 solutions to create
the population for the next generation. All the slaves use
this new population to produce the next generation. The
process repeats for the specified number of generations. In
this algorithm, the best solution of the previous generation
is always present in a given population. Thus, the solu-
tion produced can never deteriorate from one generation to
the next. Observe also that in this algorithm, every slave
benefits from the solutions produced by other slaves. The
slaves, thus, cooperate with the master to produce highly
fit strings in every generation.

To further improve the algorithm, the heuristic solution
is incorporated in the initial population. This guarantees
that the solution produced by the genetic algorithm is no
worse than the heuristic solution. In all the examples we
experimented with, the cooperative genetic algorithm so-
lution was always better than the heuristic solution.

III. PERFORMANCE ANALYSIS

Here, we compare the performance of the cooperative
algorithm using e slaves versus the performance of the se-
quential algorithm repeated e times. As the sequential al-
gorithm is stochastic, we have to repeat the experiments
several times with different parameters to get reliable re-
sults. Since this repetition is not necessary in the cooper-
ative algorithm of e slaves, the comparison is appropriate
if the sequential experiment is repeated e times.

Let t.ze. be the execution time for one generation of the
genetic algorithm and ¢ the specified number of generations
for one experiment. Then the total computation time for
the e experiments of the sequential algorithm is

ts =exg*tlegec

In contrast, the computation time for the cooperative al-
gorithm implemented on a sequential machine is

t. = g*(e*temec+tr)

where ¢, is the time to recombine the populations obtained
for the e parameter values at every generation. The com-

putation time for the cooperative algorithm using e slave
processors is

tpa = ting + g * (temec + (6 + 1) * beomm + tr)

where t;,;: 1s the time to initialize the slaves and t.omm 18
the communication time to transfer a population from one
processor to another. The term (e+ 1) #tcomm is the result
of one communication from all the slaves to the master
and e communications from the master to the slaves per
generation.

We can neglect ¢;,;; because the second term is domi-
nant in genetic algorithms. We can also neglect ¢, in the
expressions for ¢, and tp4 since the recombination step just
picks the best strings from the e sorted populations. Now,

~1 and

~

lps _ l (1 n (e-l—l)tcamm)
t, e

oS

tezec

This shows that, for problems where the communication to
execution ratio is small, the cooperative algorithm using e
slaves performs much better than the single node imple-
mentation.

IV. TAsK ASSIGNMENT HEURISTICS

An assignment of tasks to processors can be formally
described as a function f : T — P from the set of tasks T
to the set of processors P. Given n tasks T1,T5...T,, to be
assigned to p processors Py, P,...Fp, it is possible to assign
them in p™ ways. Each assignment has a cost associated
with it. The cost of an assignment is a function of the
total execution time and the total communication time.
The problem is to find an optimal assignment, that is, an
assignment which minimizes this cost function.

For a given assignment, the total ezecution time is de-
fined as the maximum of the sum of the execution times of
the tasks on each processor. Similarly, the totel communi-
cation time is defined as the maximum of the sum of the
communication costs for the tasks on each processor. The
total cost of the assignment is defined as the sum of the
total execution time and the total communication cost.

A. A Global Greedy Heuristic

Consider the following greedy heuristic for the task as-
signment problem : Assign tasks one by one to processors,
so as to minimize the total ezecution time computed so far.

The heuristic gives different results based on the order
in which the tasks are assigned. Here, we assign tasks ac-
cording to the increasing order of the task number. Several
modifications can be made to the heuristic to give different
task assignments. Experiments indicate that for small ex-
amples this heuristic usually finds a solution very close to
the optimal, but for larger problems, it does not work so
well. However, for large problems, we can use this heuris-
tic and its modifications to initialize the population for the
genetic algorithm to a better starting population.

B. A Local Perturbation Heuristic

After executing the genetic algorithm, the final popula-
tion set consists of good solutions which may cover a large

section of the solution space. To further improve the qual-
ity of the solution, a local perturbation heuristic is applied
on each member of the population set. For a given task
assignment, our perturbation heuristic moves tasks from a
heavily loaded processor to a lightly loaded processor, pro-
vided it does not increase the cost of the assignment. The
best of these solutions is the new suboptimal solution, if
it is better than the suboptimal solution computed by the
genetic algorithm.

V. EXPERIMENTAL RESULTS

To be able to use the genetic algorithm approach, the
solutions in the solution space have to be represented as
strings. In our problem, for assigning n tasks to p proces-
sors, we encode each task assignment as a binary string
of length nlogp. Thus, each of the p™ different assign-
ments can be represented by one string. The correspon-
dence between a string and the assignment it represents
can be deduced as follows. The decimal representation of
the most significant logp bits represent the processor to
which task Ty is assigned. The next significant logp bits
represent the processor to which task 73 is assigned and
so on. Finally, the least significant log p bits represent the
processor to which task 7, is assigned. Since there are
2n 18P that is, p™ possible strings of length nlogp, there
is a 1-1 correspondence between the encoded strings and
the set of solutions to the task assignment problem. This
encoding assumes that the number of processors is a power
of 2. This is not a major limitation because most real-life
problems satisfy this criterion. For problems where this is
not the case, additional processors can be added to satisfy
this criterion and the execution times of the tasks on these
additional processors can be made very large so that any
assignment of tasks to these extra processors results in ex-
orbitant costs. The genetic algorithm would automatically
weed out such assignments from the population.

For this encoding, the communication to execution ratio
in the cooperative algorithm is small. In fact, the commu-
nication time to transfer a population from one node to
another (tcomm) is of the order 8(nlogp), while the execu-
tion time for one generation on a given node (tegec) is of the
order f(np). Consequently, based on the performance anal-
ysis in section III, the task assignment problem is suited
for distributed implementation.

Experiments were performed on several task assignment
problems, each with randomly generated task execution
times for processors and communication costs between
tasks such that the execution costs are much larger than
the communication costs. The heuristic solution from Sec-
tion IV.A is incorporated in the initial population for both,
the standard and cooperative genetic algorithm. The re-
sults of the standard and cooperative genetic algorithm for
the different problem sizes varying from small to medium
and large are given in Figures 1, 2 and 3 respectively. In
these figures, p. and p,, are the cross-over and mutation
probabilities respectively. The cooperative algorithm with
k slaves uses the parameters from standard experiments 1
... k. The minimum known cost of Figures 2 and 3 is found

Problem Size : 10 tasks, 4 processors
Number of Generations : 20

Greedy Heuristic Cost 179
Optimal cost 163
Population Size : 30
Standard Genetic Algorithm Results
Exptl | Expt 2 | Expt 3 | Expt 4 | Expt 5 | Avg.
Pe 0.95 0.85 0.75 0.90 0.80
Pm 0.001 0.005 0.01 0.025 0.01
Seed 0.543 0.124 0.912 0.302 0.712
Cost 163 163 179 172 172 170
Cooperative Genetic Algorithm Results
Slaves 2 3 4 5 6 10 Avg.
Cost 163 | 163 | 163 | 163 | 163 | 163 163
(2)
Population Size 100
Standard Genetic Algorithm Results
Exptl | Expt 2 | Expt 3 | Expt 4 | Expt 5 | Avg.
Pe 0.95 0.85 0.75 0.90 0.80
Pm 0.001 0.005 0.01 0.025 0.01
Seed 0.543 0.124 0.912 0.302 0.712
Cost 163 163 163 163 163 163
Cooperative Genetic Algorithm Results
Slaves 2 3 4 5 6 10 Avg.
Cost 163 | 163 | 163 | 163 | 163 | 163 163
(b)

Fig. 1. Experimental results for a small-sized problem

by running the cooperative algorithm for a large number of
generations using 10 slaves. The lower bound in Figures 2
and 3 is obtained by using the algorithm described in [6].
The results indicate that the cooperative genetic algo-
rithm finds the optimal solution for small problems, inde-
pendent of the number of slaves and their probabilities. For
medium sized problems, a near-optimal solution is found
within a small number of generations. For large problems,
there is no way of finding the optimal solution and we can
judge our solutions only by the best solution known so far.
The solution found by our algorithm is about 15-20% better
than the heuristic solution. The solution does not improve
even if we use the heuristics explained in section IV.B for
post-processing. To substantiate the claim that the coop-
erative genetic algorithm indeed finds better solutions than
the standard, we are performing extensive experiments on
many large size problems. Distributed implementation is
appropriate for such extensive experimentation.

VI. CoNcLUsIONS AND FUTURE WORK

In this paper, we presented a new genetic algorithm
approach for optimization problems. The algorithm uses
a set of slaves which cooperate to solve problems effi-
ciently. Analysis shows that the distributed implementa-
tion is much faster than the sequential implementation if
the ratio of the communication time to execution time of
the algorithm for the given optimization problem is small.
If the ratio is not small, we can decrease it by assigning
the work of two or more slaves to a single processor. In the
task assignment problem, this ratio is small and so, the dis-
tributed implementation is computationally efficient. Ex-

Problem Size

Number of Generations : 20

20 tasks, 8 processors

Greedy Heuristic Cost ;340
Minimum known cost 283
Lower bound 192

Population Size

30

Standard Genetic Algorithm Results

Exptl | Expt2 | Expt 3 | Expt 4 | Expt 5 | Avg.
Pe 0.95 0.85 0.75 0.90 0.80
Pm 0.001 0.005 0.01 0.025 0.01
Seed 0.543 0.124 0.912 0.302 0.712
Cost 334 340 321 326 326 329
Cooperative Genetic Algorithm Results
Slaves 2 3 4 5 6 10 | Avg.
Cost 329 | 309 | 322 | 303 | 290 | 308 310
(2)
Population Size 100
Standard Genetic Algorithm Results
Exptl | Expt2 | Expt 3 | Expt 4 | Expt 5 | Avg.
Pe 0.95 0.85 0.75 0.90 0.80
Pm 0.001 0.005 0.01 0.025 0.01
Seed 0.543 0.124 0.912 0.302 0.712
Cost 314 329 321 326 339 326
Cooperative Genetic Algorithm Results
Slaves 2 3 4 5 6 10 | Avg.
Cost 295 | 314 | 297 | 297 | 285 286 295
(b)
Fig. 2. Experimental results for a medium-sized problem
Problem Size : 50 tasks, 16 processors
Number of Generations : 20
Greedy Heuristic Cost 1303
Minimum known cost 1075
Lower bound 798
Population Size 30
Standard Genetic Algorithm Results
Exptl | Expt2 | Expt3 | Expt 4 | Expt 5 | Avg.
Pe 0.95 0.85 0.75 0.90 0.80
Pm 0.001 0.005 0.01 0.025 0.01
Seed 0.543 0.124 0.912 0.302 0.712
Cost 1243 1243 1303 1303 1303 1279
Cooperative Genetic Algorithm Results
Slaves 2 3 4 5 6 10 Avg.
Cost 1235 | 1229 | 1229 | 1192 1217 | 1155 1209
(2)
Population Size 100
Standard Genetic Algorithm Results
Exptl | Expt2 | Expt3 | Expt 4 | Expt 5 | Avg.
Pe 0.95 0.85 0.75 0.90 0.80
Pm 0.001 0.005 0.01 0.025 0.01
Seed 0.543 0.124 0.912 0.302 0.712
Cost 1229 1204 1243 1255 1243 1235
Cooperative Genetic Algorithm Results
Slaves 2 3 4 5 6 10 Avg.
Cost 1229 | 1192 1192 | 1184 | 1192 | 1184 | 1195
(b)

Fig. 3. Experimental results for a large-sized problem

periments indicate that the algorithm is insensitive to se-
lection of cross-over and mutation probability. The co-
operative genetic algorithm finds the optimal solution for
small-sized task assignment problems. For medium and
large-sized problems, the algorithm finds solutions which
are about 15-20% better than the greedy heuristic solution.
Further, post-processing using local perturbation heuristics
does not improve the solution. The algorithm is flexible
and easy to use (coding is minimal and experimentation is
simple) which makes the approach applicable to other op-
timization problems in distributed computer systems. By
changing the objective function and the encoding, the co-
operative genetic algorithm can be used for different op-
timization problems. With slight modifications, the algo-
rithm can be applied to the dynamic task assignment prob-
lem. It can also be modified to solve the task assignment
problem with variable costs. By encoding the dependency
constraints among tasks, this algorithm can be applied to
dependent task assignment problem. From a given depen-
dency graph, one can construct a number of variations of
this graph and solve the multiple optimization problems
to get the best assignment. For such multiple problems,
the ratio of communication to computation can be made
very small and so, the distributed implementation is very
efficient.

Several modifications can be made to the algorithm to
improve it further. A systematic selection of the initial
population can greatly improve the performance. Different
strategies other than Master-Slave strategy can be used by
the slaves to cooperate with other slaves. Instead of glob-
ally selecting the best population, a fraction of the popu-
lation can be selected and passed to the slaves. We believe
that incorporating these different strategies can further en-
hance the proposed algorithm.

REFERENCES

[1] D.E.Goldberg, “Genetic Algorithms in Search, Op-
timization and Machine Learning,” Addison-Wesley,
Mass., 1989.

[2] V.S.Gordon and D.Whitley, “Serial and Parallel Ge-
netic Algorithms as Function Optimizers,” Proc. of
the Fifth Intl. Conf. on Genetic Algorithms, Morgan
Kaufmann Publishers, pp. 177-183, 1993.

[3] V.M.Lo, “Heuristic Algorithms for Task Assignment
in Distributed Systems,” IEEE Trans. on Computers,
vol. 37, pp. 1384-1397, Nov. 1988.

[4] C.S.Pettey et al, “A Parallel Genetic Algorithm,”
Proc. of the Second Intl. Conf. for Genetic Algorithms,
Morgan Kaufmann Publishers, pp. 155-161, 1987.

[5] H.S.Stone, “Multiprocessor Scheduling with the Aid of
Network Flow Algorithms,” IEEE Trans. on Software
Engg., vol. 8, pp. 85-93, Jan. 1977.

[6] R.Venkateswaran, Z.Obradovié¢ and C.S.Raghavendra,
“Cooperative Genetic Algorithm for Optimization
Problems in Distributed Computer Systems,” Techni-
cal Report TR-EECS-93-018, School of EECS, Wash-
ington State University, 1993.

