
Cooperative Genetic Algorithm for OptimizationProblems in Distributed Computer Systems�R. Venkateswaran, Zoran Obradovi�c, C.S.RaghavendraSchool of EECSWashington State UniversityPullman, WA, 99164-2752frvenkate,zoran,raghug@eecs.wsu.eduAbstractIn the proposed algorithm, several single population ge-netic algorithms with di�erent cross-over and mutation pa-rameters are run as a set of processes that cooperate peri-odically and exchange information to solve the problem ef-�ciently. The algorithm is less stochastic than the standardgenetic algorithm and a distributed implementation is ap-propriate for application to large scale problems. In partic-ular, we apply it to the static task assignment problem andsuggest modi�cations to solve other optimization problemsin distributed computer systems. Preliminary experimentswith fairly large-sized problems of allocating 50 tasks among16 processors indicate that the cooperative algorithm imple-mented on a network of workstations quickly �nds better so-lutions than those obtained by a standard genetic algorithm.To conclusively show that better solutions are obtained, ex-tensive experiments have to be performed. A distributedimplementation of the algorithm is highly suited for suchexperimentation. I. IntroductionCurrent literature discusses three levels in the paral-lelization of genetic algorithms[2], cellular, global and in-land. Cellular level is a subclass of cellular automata. Theglobal level approach uses several processors to e�cientlycreate the next generation and compute the �tness valuesof the strings in the population. This speeds up the com-putation, but does not improve the quality of the solutionobtained. Our technique, cooperative genetic algorithm,belongs to an inland level parallelization. In this algo-rithm category, where several single population genetic al-gorithms are run in parallel, the processors explore di�erentareas in the solution space, which enhances the chances of�nding better solutions. In addition, the processors cooper-ate with other processors periodically to solve the probleme�ciently. Our algorithm can also incorporate the globallevel approach to exploit the advantages of both levels ofparallelization. Another related inland level parallelizationcalled the Parallel Genetic Algorithm (PGA) is proposedin [4]. In PGA, each processor cooperates with others,maintaining only a part of the population. All processorsuse identical values for the cross-over and mutation proba-bility. On the other hand, in our approach, each processormaintains the entire population and operates on it using itsown cross-over and mutation probabilities (di�erent fromother slaves). This makes the algorithm less sensitive toselection of these parameters.

The cooperative algorithm is implemented on a networkof work-stations. For a large class of problems, a dis-tributed implementation is much more e�cient than a se-quential implementation. We have successfully used thistechnique for the static task assignment to processors in adistributed computer system, which is a well-known NP-complete optimization problem. The problem assumes thatthe execution time for a given task varies for di�erent pro-cessors. Also, the tasks communicate with each other andthis contributes to the communication cost. Given sometasks to be assigned to a set of processors, the problemis to �nd an optimal assignment such that the total cost,which is a function of the total execution time and the totalcommunication cost, is minimized.To �nd suboptimal task assignment, Stone formulatedthis problem using a network 
ow model and used maxi-mal 
ow techniques to �nd optimal solutions for the two-processor problem[5]. He also proposed extensions to �ndsuboptimal solutions for an n-processor problem. Variousheuristic solutions using di�erent cost functions were pro-posed by Lo[3].In our approach, we assume that the tasks to be as-signed are independent, that is, they can be executed inany order. The execution times for a particular task aredi�erent on di�erent processors. It is assumed that thecommunication times between tasks assigned to the sameprocessor is negligible, while communication times betweentasks assigned to di�erent processors can be signi�cant.It is also assumed that the communication time betweenany two tasks is much smaller than the execution times ofeach of the tasks. Here, we address the static task assign-ment problem, that is, the task execution times on di�erentprocessors and communication costs between tasks are as-sumed to be available before the algorithm is run. It iseasy to extend our approach to solve the dynamic task as-signment problem.II. Cooperative Genetic AlgorithmReliable results using standard genetic algorithm neces-sitates repeating the experiment with di�erent cross-overand mutation probabilities because the algorithm dependssigni�cantly on these parameters. To enhance the perfor-mance, we propose a new approach called the CooperativeGenetic Algorithm. One of the main advantages of thisalgorithm is that it is relatively insensitive to the cross-over and mutation probabilities. So, reliable results canbe obtained with just one experiment. Another advantage1



of this algorithm is that it is appropriate for distributedsystems implementation. Our implementation is on a net-work of work-stations having a master-slave scenario witha single master and several slave processes. The slaves cancommunicate with each other and also with the master.In the cooperative genetic algorithm, the slave processescommunicate only with the master process. Each slaveprocess is assigned an initial population and uses the basicgenetic operations of selection, cross-over and mutation toproduce the next generation. Each slave uses a di�erentvalue for the cross-over and mutation probability and con-sequently each creates a di�erent new population. Aftereach generation, the slaves pass on their created popula-tion to the master. The master then identi�es the globallybest solutions from all the slaves and the previous gener-ation strings. This globally best set, which is of the samesize as the previous population, forms the new populationfor the subsequent generation. For example, if there are 5slaves with a population size of 10 each, the master picksthe 10 best solutions from the set of 50 solutions to createthe population for the next generation. All the slaves usethis new population to produce the next generation. Theprocess repeats for the speci�ed number of generations. Inthis algorithm, the best solution of the previous generationis always present in a given population. Thus, the solu-tion produced can never deteriorate from one generation tothe next. Observe also that in this algorithm, every slavebene�ts from the solutions produced by other slaves. Theslaves, thus, cooperate with the master to produce highly�t strings in every generation.To further improve the algorithm, the heuristic solutionis incorporated in the initial population. This guaranteesthat the solution produced by the genetic algorithm is noworse than the heuristic solution. In all the examples weexperimented with, the cooperative genetic algorithm so-lution was always better than the heuristic solution.III. Performance AnalysisHere, we compare the performance of the cooperativealgorithm using e slaves versus the performance of the se-quential algorithm repeated e times. As the sequential al-gorithm is stochastic, we have to repeat the experimentsseveral times with di�erent parameters to get reliable re-sults. Since this repetition is not necessary in the cooper-ative algorithm of e slaves, the comparison is appropriateif the sequential experiment is repeated e times.Let texec be the execution time for one generation of thegenetic algorithmand g the speci�ed number of generationsfor one experiment. Then the total computation time forthe e experiments of the sequential algorithm ists = e � g � texecIn contrast, the computation time for the cooperative al-gorithm implemented on a sequential machine istc = g � (e � texec + tr)where tr is the time to recombine the populations obtainedfor the e parameter values at every generation. The com-

putation time for the cooperative algorithm using e slaveprocessors istP4 = tinit + g � (texec + (e + 1) � tcomm + tr)where tinit is the time to initialize the slaves and tcomm isthe communication time to transfer a population from oneprocessor to another. The term (e+1)� tcomm is the resultof one communication from all the slaves to the masterand e communications from the master to the slaves pergeneration.We can neglect tinit because the second term is domi-nant in genetic algorithms. We can also neglect tr in theexpressions for tc and tP4 since the recombination step justpicks the best strings from the e sorted populations. Now,tcts � 1 and tP4tc � 1e �1 + (e+1)tcommtexec �This shows that, for problems where the communication toexecution ratio is small, the cooperative algorithm using eslaves performs much better than the single node imple-mentation.IV. Task Assignment HeuristicsAn assignment of tasks to processors can be formallydescribed as a function f : T ! P from the set of tasks Tto the set of processors P . Given n tasks T1; T2:::Tn to beassigned to p processors P1; P2:::Pp, it is possible to assignthem in pn ways. Each assignment has a cost associatedwith it. The cost of an assignment is a function of thetotal execution time and the total communication time.The problem is to �nd an optimal assignment, that is, anassignment which minimizes this cost function.For a given assignment, the total execution time is de-�ned as the maximum of the sum of the execution times ofthe tasks on each processor. Similarly, the total communi-cation time is de�ned as the maximum of the sum of thecommunication costs for the tasks on each processor. Thetotal cost of the assignment is de�ned as the sum of thetotal execution time and the total communication cost.A. A Global Greedy HeuristicConsider the following greedy heuristic for the task as-signment problem : Assign tasks one by one to processors,so as to minimize the total execution time computed so far.The heuristic gives di�erent results based on the orderin which the tasks are assigned. Here, we assign tasks ac-cording to the increasing order of the task number. Severalmodi�cations can be made to the heuristic to give di�erenttask assignments. Experiments indicate that for small ex-amples this heuristic usually �nds a solution very close tothe optimal, but for larger problems, it does not work sowell. However, for large problems, we can use this heuris-tic and its modi�cations to initialize the population for thegenetic algorithm to a better starting population.B. A Local Perturbation HeuristicAfter executing the genetic algorithm, the �nal popula-tion set consists of good solutions which may cover a large2



section of the solution space. To further improve the qual-ity of the solution, a local perturbation heuristic is appliedon each member of the population set. For a given taskassignment, our perturbation heuristic moves tasks from aheavily loaded processor to a lightly loaded processor, pro-vided it does not increase the cost of the assignment. Thebest of these solutions is the new suboptimal solution, ifit is better than the suboptimal solution computed by thegenetic algorithm.V. Experimental ResultsTo be able to use the genetic algorithm approach, thesolutions in the solution space have to be represented asstrings. In our problem, for assigning n tasks to p proces-sors, we encode each task assignment as a binary stringof length n log p. Thus, each of the pn di�erent assign-ments can be represented by one string. The correspon-dence between a string and the assignment it representscan be deduced as follows. The decimal representation ofthe most signi�cant log p bits represent the processor towhich task T0 is assigned. The next signi�cant logp bitsrepresent the processor to which task T1 is assigned andso on. Finally, the least signi�cant log p bits represent theprocessor to which task Tn is assigned. Since there are2n logp, that is, pn possible strings of length n log p, thereis a 1-1 correspondence between the encoded strings andthe set of solutions to the task assignment problem. Thisencoding assumes that the number of processors is a powerof 2. This is not a major limitation because most real-lifeproblems satisfy this criterion. For problems where this isnot the case, additional processors can be added to satisfythis criterion and the execution times of the tasks on theseadditional processors can be made very large so that anyassignment of tasks to these extra processors results in ex-orbitant costs. The genetic algorithm would automaticallyweed out such assignments from the population.For this encoding, the communication to execution ratioin the cooperative algorithm is small. In fact, the commu-nication time to transfer a population from one node toanother (tcomm) is of the order �(n log p), while the execu-tion time for one generation on a given node (texec) is of theorder �(np). Consequently, based on the performance anal-ysis in section III, the task assignment problem is suitedfor distributed implementation.Experiments were performed on several task assignmentproblems, each with randomly generated task executiontimes for processors and communication costs betweentasks such that the execution costs are much larger thanthe communication costs. The heuristic solution from Sec-tion IV.A is incorporated in the initial population for both,the standard and cooperative genetic algorithm. The re-sults of the standard and cooperative genetic algorithm forthe di�erent problem sizes varying from small to mediumand large are given in Figures 1, 2 and 3 respectively. Inthese �gures, pc and pm are the cross-over and mutationprobabilities respectively. The cooperative algorithm withk slaves uses the parameters from standard experiments 1... k. The minimumknown cost of Figures 2 and 3 is found

Problem Size : 10 tasks, 4 processorsNumber of Generations : 20Greedy Heuristic Cost : 179Optimal cost : 163Population Size : 30Standard Genetic Algorithm ResultsExpt 1 Expt 2 Expt 3 Expt 4 Expt 5 Avg.pc 0.95 0.85 0.75 0.90 0.80pm 0.001 0.005 0.01 0.025 0.01Seed 0.543 0.124 0.912 0.302 0.712Cost 163 163 179 172 172 170Cooperative Genetic Algorithm Results# Slaves 2 3 4 5 6 10 Avg.Cost 163 163 163 163 163 163 163(a)Population Size : 100Standard Genetic Algorithm ResultsExpt 1 Expt 2 Expt 3 Expt 4 Expt 5 Avg.pc 0.95 0.85 0.75 0.90 0.80pm 0.001 0.005 0.01 0.025 0.01Seed 0.543 0.124 0.912 0.302 0.712Cost 163 163 163 163 163 163Cooperative Genetic Algorithm Results# Slaves 2 3 4 5 6 10 Avg.Cost 163 163 163 163 163 163 163(b)Fig. 1. Experimental results for a small-sized problemby running the cooperative algorithm for a large number ofgenerations using 10 slaves. The lower bound in Figures 2and 3 is obtained by using the algorithm described in [6].The results indicate that the cooperative genetic algo-rithm �nds the optimal solution for small problems, inde-pendent of the number of slaves and their probabilities. Formedium sized problems, a near-optimal solution is foundwithin a small number of generations. For large problems,there is no way of �nding the optimal solution and we canjudge our solutions only by the best solution known so far.The solution found by our algorithm is about 15-20%betterthan the heuristic solution. The solutiondoes not improveeven if we use the heuristics explained in section IV.B forpost-processing. To substantiate the claim that the coop-erative genetic algorithm indeed �nds better solutions thanthe standard, we are performing extensive experiments onmany large size problems. Distributed implementation isappropriate for such extensive experimentation.VI. Conclusions and Future WorkIn this paper, we presented a new genetic algorithmapproach for optimization problems. The algorithm usesa set of slaves which cooperate to solve problems e�-ciently. Analysis shows that the distributed implementa-tion is much faster than the sequential implementation ifthe ratio of the communication time to execution time ofthe algorithm for the given optimization problem is small.If the ratio is not small, we can decrease it by assigningthe work of two or more slaves to a single processor. In thetask assignment problem, this ratio is small and so, the dis-tributed implementation is computationally e�cient. Ex-3



Problem Size : 20 tasks, 8 processorsNumber of Generations : 20Greedy Heuristic Cost : 340Minimum known cost : 283Lower bound : 192Population Size : 30Standard Genetic Algorithm ResultsExpt 1 Expt 2 Expt 3 Expt 4 Expt 5 Avg.pc 0.95 0.85 0.75 0.90 0.80pm 0.001 0.005 0.01 0.025 0.01Seed 0.543 0.124 0.912 0.302 0.712Cost 334 340 321 326 326 329Cooperative Genetic Algorithm Results# Slaves 2 3 4 5 6 10 Avg.Cost 329 309 322 303 290 308 310(a)Population Size : 100Standard Genetic Algorithm ResultsExpt 1 Expt 2 Expt 3 Expt 4 Expt 5 Avg.pc 0.95 0.85 0.75 0.90 0.80pm 0.001 0.005 0.01 0.025 0.01Seed 0.543 0.124 0.912 0.302 0.712Cost 314 329 321 326 339 326Cooperative Genetic Algorithm Results# Slaves 2 3 4 5 6 10 Avg.Cost 295 314 297 297 285 286 295(b)Fig. 2. Experimental results for a medium-sized problemProblem Size : 50 tasks, 16 processorsNumber of Generations : 20Greedy Heuristic Cost : 1303Minimum known cost : 1075Lower bound : 798Population Size : 30Standard Genetic Algorithm ResultsExpt 1 Expt 2 Expt 3 Expt 4 Expt 5 Avg.pc 0.95 0.85 0.75 0.90 0.80pm 0.001 0.005 0.01 0.025 0.01Seed 0.543 0.124 0.912 0.302 0.712Cost 1243 1243 1303 1303 1303 1279Cooperative Genetic Algorithm Results# Slaves 2 3 4 5 6 10 Avg.Cost 1235 1229 1229 1192 1217 1155 1209(a)Population Size : 100Standard Genetic Algorithm ResultsExpt 1 Expt 2 Expt 3 Expt 4 Expt 5 Avg.pc 0.95 0.85 0.75 0.90 0.80pm 0.001 0.005 0.01 0.025 0.01Seed 0.543 0.124 0.912 0.302 0.712Cost 1229 1204 1243 1255 1243 1235Cooperative Genetic Algorithm Results# Slaves 2 3 4 5 6 10 Avg.Cost 1229 1192 1192 1184 1192 1184 1195(b)Fig. 3. Experimental results for a large-sized problem

periments indicate that the algorithm is insensitive to se-lection of cross-over and mutation probability. The co-operative genetic algorithm �nds the optimal solution forsmall-sized task assignment problems. For medium andlarge-sized problems, the algorithm �nds solutions whichare about 15-20% better than the greedy heuristic solution.Further, post-processing using local perturbation heuristicsdoes not improve the solution. The algorithm is 
exibleand easy to use (coding is minimal and experimentation issimple) which makes the approach applicable to other op-timization problems in distributed computer systems. Bychanging the objective function and the encoding, the co-operative genetic algorithm can be used for di�erent op-timization problems. With slight modi�cations, the algo-rithm can be applied to the dynamic task assignment prob-lem. It can also be modi�ed to solve the task assignmentproblem with variable costs. By encoding the dependencyconstraints among tasks, this algorithm can be applied todependent task assignment problem. From a given depen-dency graph, one can construct a number of variations ofthis graph and solve the multiple optimization problemsto get the best assignment. For such multiple problems,the ratio of communication to computation can be madevery small and so, the distributed implementation is verye�cient.Several modi�cations can be made to the algorithm toimprove it further. A systematic selection of the initialpopulation can greatly improve the performance. Di�erentstrategies other than Master-Slave strategy can be used bythe slaves to cooperate with other slaves. Instead of glob-ally selecting the best population, a fraction of the popu-lation can be selected and passed to the slaves. We believethat incorporating these di�erent strategies can further en-hance the proposed algorithm.References[1] D.E.Goldberg, \Genetic Algorithms in Search, Op-timization and Machine Learning," Addison-Wesley,Mass., 1989.[2] V.S.Gordon and D.Whitley, \Serial and Parallel Ge-netic Algorithms as Function Optimizers," Proc. ofthe Fifth Intl. Conf. on Genetic Algorithms, MorganKaufmann Publishers, pp. 177-183, 1993.[3] V.M.Lo, \Heuristic Algorithms for Task Assignmentin Distributed Systems," IEEE Trans. on Computers,vol. 37, pp. 1384-1397, Nov. 1988.[4] C.S.Pettey et al, \A Parallel Genetic Algorithm,"Proc. of the Second Intl. Conf. for Genetic Algorithms,Morgan Kaufmann Publishers, pp. 155-161, 1987.[5] H.S.Stone, \Multiprocessor Scheduling with the Aid ofNetwork Flow Algorithms," IEEE Trans. on SoftwareEngg., vol. 8, pp. 85-93, Jan. 1977.[6] R.Venkateswaran, Z.Obradovi�c and C.S.Raghavendra,\Cooperative Genetic Algorithm for OptimizationProblems in Distributed Computer Systems," Techni-cal Report TR-EECS-93-018, School of EECS, Wash-ington State University, 1993.4


