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Abstract. Acute inflammation is a progressive medical condition characterized
as systemic inflammatory response to an infection. If inadequately diagnosed and
treated, acute inflammation culminates in sepsis, which is the leading cause of
death in non-coronary intensive care units in the United States. In practice, clin-
icians make diagnostic and therapeutic decisions based on their experience and
understanding of the relationships between treatments and expected outcomes
of such treatments, which is often suboptimal due to limited knowledge about
patient response to therapy. To develop adequate sepsis treatment strategies, ac-
curate prediction of patient response to therapy is essential. However, complex
multi-stage nature of acute inflammation makes patient response to treatment dif-
ficult to predict. The complexity and heterogeneity of inflammatory response that
consists of different stages with significantly different properties is one of the
main reasons of unsuccessful treatments. Therefore, there is a critical need for
tools for predicting patient’s response to therapy, which can help clinicians to
design more effective therapies for this potentially fatal condition. Towards this
objective we developed a data-driven prediction model based on mixture of ex-
perts. The proposed model identifies stages (regimes) of patient state and builds
specialized predictors for each stage. In experiments conducted on 500 virtual
patients generated by a mathematical model for acute inflammation, our method
not only outperformed all baselines accuracy wise but also identified three stage-
specific experts that can play an important role in improving perception of com-
plex systems such as response to acute inflammation treatment.

1 Introduction

An inflammatory response is a complex defending mechanism of the patient’s body
against an infection. In the event of an infection, inflammatory system clears the pathogen,
begins a repair process, and leads a patient to healthy state. At the same time inflamma-
tion itself damages tissue, which is negligible in controlled inflammatory response. On
the other hand, uncontrolled inflammatory response can lead to organ failure and death.
When accompanied by an infection, the uncontrolled inflammation is defined as sepsis,
which is a common and frequently fatal condition, with 750,000 cases annually in the
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Fig. 1: Theoretical considerations of the sepsis stages and treatment effects. Time = 0
- occurrence of an infection; red dotted line - pro-inflammatory response; blue solid line
- anti-inflammatory response; black dashed horizontal line - response beyond which the
process becomes adversary; black dashed vertical line - a tip-over point beyond which
any therapy might be counterproductive; horizontal pattern (area A) - anti-inflammatory
therapy likely harmful, pro-inflammatory therapy beneficial; diagonal pattern (area B) -
likely maximal benefit from anti-inflammatory therapy; vertical pattern (area C) - anti-
inflammatory response restoring patient state, any therapy likely harmful.

United States alone [1]. Due to its complex nature, sepsis is often diagnosed too late
and the patient is then treated with broad-spectrum antibiotics and/or intravenous fluids
with dosages adjusted manually, even though more specific therapy would be far more
effective. Inadequate treatment results in a mortality rate of 30-35%, and for every hour
that the administration of appropriate therapy is delayed, the mortality rate increases by
about 7% [2].

Limited understanding and knowledge about the complex acute inflammatory re-
sponse has led to only a few effective therapies against sepsis. The single approved
anti-sepsis drug therapy was withdrawn from global markets in fall 2011 following the
failure of its worldwide trial to demonstrate improved patient outcome [3]. The com-
plexity and heterogeneity of inflammatory response that consists of different stages,
having significantly different properties, is one of the main reasons behind unsuccess-
ful treatments. Sepsis treatment requires both a strong pro-inflammatory phase for the
clearance of pathogen (Figure 1, area A) and an anti-inflammatory phase for recovery
(Figure 1, area C). A stage of an adversary influence of the pro-inflammatory response,
which is disproportionate and counterproductive, is presented in Figure 1, area B. An
inadequate treatment in either the pro-inflammatory (area A) or the immune-recovering
anti-inflammatory phase (area C) might do more harm than good, while delayed treat-
ment when immune response is counterproductive (area B) may significantly reduce the
chance of survival.

In practice, clinicians make diagnostic and therapeutic decisions based on the clini-
cian’s understanding of the relationships between treatments and expected outcomes of
such treatments, which is often suboptimal because of limited knowledge of the patient



stage and patient response to therapy. Therefore, there is a critical need for tools that
can simultaneously identify different acute inflammation stages and build specialized
patient response predictors for each of the stages. These tools can can be of significant
help to clinicians in designing the most effective optimal strategies for any stage of
acute inflammation. Appropriate predictive tools can be data-driven machine learning
models that use historical data to learn associations between observed and future mea-
surements. A key feature of machine learning models is that predictions are not based
on domain assumptions, but on historical data only.

Learning a single predictor on historical data with different stages (regimes) could
result in an overly complicated model suffering from overfitting [4]. As an alternative,
it may be more effective to learn predictors on each stage (regime) separately. Since the
regimes are not known beforehand, this idea can be implemented through the mixture of
experts method [4]. In this paper we propose a mixture of experts model for patient re-
sponse prediction on acute inflammation therapy, which simultaneously detects regimes
(stages) by gating function and learns specified predictors on identified regimes. In our
proposed design, experts and gating function are composed of feed forward neural net-
works. Such design alleviates the overfitting problem and retains modeling flexibility.

The rest of the paper is organized as follows. In Section 2 we introduce a virtual
patient model that emulates therapy response. In Section 3 we propose a predictive
model composed of mixture of experts. We evaluate the proposed model in Section 4.
Finally, conclusions are stated in Section 5.
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Fig. 2: Evolution of pathogen population (P ), pro-inflammatory mediators (N), tis-
sue damage (D), and anti-inflammatory mediators (CA) of three virtual patients with
healthy (green/solid), aseptic (blue/dashed), and septic (red/dotted) outcomes in the ab-
sence of therapy.



2 Virtual Patient Model

To significantly reduce the chance of a clinical failure and to save on the costs of clinical
trials, biomedical researchers use computer simulations of body processes (often called
virtual patients) to perform preliminary tests of hypotheses before they prove them in
real patient studies. Virtual patients are generated using a carefully determined mathe-
matical model to simulate the process of interest. A significant advantage of having a
virtual patient model for experiments is the possibility of testing different approaches
for finding adequate therapies on the same virtual patient and comparing the outcomes.
In order to follow a real-life scenario, virtual patient models are accompanied with
well-defined constraints in therapy that are in accordance with clinical practice [5].

2.1 Patient model

The mathematical model for inflammatory response to severe infection is derived in
[6]. This model has not incorporated drug effect on inflammatory response and it was
not applicable for predicting the response of acute inflammation treatment. We will
use a slightly modified mathematical model recently proposed in [5] that is capable of
simulating:

– an evolution of a pathogen (P ) that initiates the cascade of inflammation,
– dynamics of early pro-inflammatory mediators (N ),
– markers of tissue damage/dysfunction (D),
– the evolution of anti-inflammatory mediators (CA),

which are controlled by doses of pro-inflammatory (PIDOSE) and anti-inflammatory
(AIDOSE) therapies. This mathematical model is based on the system of ordinary
differential equations (ODE)

dP

dt
= kpg

(
1− P

P∞

)
− kpmsmP

µm + kmpP
− kpnf(N)P, (1)

dN

dt
=

snrR

µnr +R
− µN + PIDOSE(t), (2)

dD

dt
=

kdnf(N)6

x6dn + f(N)6
− µdD, (3)

dCA

dt
= sc +

kcnf(N + kcndD)

1 + f(N + kcndD)
− µcCA+AIDOSE(t), (4)

where

R = f(knpP + knnN + kndD), f(x) =
x

1 +
(
CA
c∞

)2 . (5)

Although conceptual, ODE is capable of modeling the complex effect of pathogen
(P ) on the patient. An increase of pathogen level P leads to the series of positive and
negative feedback reactions that are all successfully modeled by ODE. In particular, an



increase of P leads to the development of a pro-inflammatory response, which causes
an increase of N in (2) and to the development of tissue damage, which causes an
increase of D in (3). Equation (1) simulates a positive effect of inflammation where an
increase of N reduces level of pathogen P . However, (3) simulates a negative effect
of inflammation where an increase of N further damages tissue causing rapid increase
of D. An increase of D mobilizes a negative feedback in (4), or anti-inflammatory
response (CA), which lowers level of N and inhibits damage to tissue (decrease of D)
[5]. The strength of positive and negative feedbacks depends on the parameter values in
ODE. By varying parameter values we can simulate variability among patients.

Variability in the population of virtual patients is obtained by random initializa-
tion of three parameters in ODE kpg , kcn, and knd and by random initialization of
the initial conditions P0 and CA0 from uniform distribution on valid ranges (kpg ∈
[0.3, 0.6], kcn ∈ [0.03, 0.05], knd ∈ [0.015, 0.025], P0 ∈ [0, 1], CA0 ∈ [0.0938, 0.1563]).
All other parameters were fixed to referent values as in [5] except (kcnd that covaries
with kcn and knp that covaries with knd [5]). In all of the simulations, t is an hourly step
that starts from t = 0 when patient state and parameters are initialized. Then, patient
state evolves according to ODE through the simulation time of 168 hours (one week).
According to [5] there are three possible outcomes at the end of simulation time, which
are shown in Figure 2. A patient is in healthy state if P = 0, N = 0, D = 0, and
CA > 0 at the end of simulation. The aseptic death state of the patient is defined as
P = 0, N > 0, D > 0, and CA > 0. The third possible outcome is septic death, where
these four variables are non-zero.

3 Predictive model

Virtual patient state is represented by four outputs P , N , D, and CA. The goal of
the predictive model is to accurately predict future states using past states along with
past drugs’ doses as inputs. To predict four-dimensional state with a single model we
propose as in [7] splitting the predictive model into four sub-models, each of which is
responsible for prediction of one of the outputs P , N , D, and CA, keeping the same
set of inputs for each of the sub-models. If we denote yj and uj to represent patient’s
state and drugs’ doses at time point j respectively, it can be written

yj = (Pj , Nj , Dj , CAj)
T
, (6)

uj = (AIDOSEj , P IDOSEj)
T . (7)

Having observed patients’ states and control signals up to time point j, the sub-model
responsible for predicting P̂j+1 can be represented by

P̂j+1 = FP (x,ΘP ), x = (yj , . . . ,yj−npy+1,uj , . . . ,uj−npu+1), (8)

where FP is a function with unknown parameters ΘP that models the input-output
relation; npy and npu are time lags for state and control signals respectively. Sub-
models responsible for prediction of N̂j+1, D̂j+1, and ĈAj+1 have similar functional
form but each of them has its own function FN , FD, FCA with parameters ΘN , ΘD,



ΘCA respectively. Learning parameters ΘN , ΘD, ΘCA depends on the design of sub-
models. We propose mixture of experts model for each sub-model. As each sub-model
has identical functional from in following sections we denote output variables a target
t ∈ {P,N,D,CA}.

3.1 Mixture of experts

Proposed mixture of models that is composed of gated experts (described in [4]) will
address the problem of different regimes in acute inflammation progress during the ther-
apy. The basic idea of gated experts is to learn several local models (experts) on differ-
ent splits of the input space (input data) instead of using a single global model. Mixture
of models assumes that splitting of input space is unknown (hidden) but it would be
discovered during the learning procedure. It allows each input to be assigned softly to
several regimes (experts). Responsibilities of each regime for different inputs are dif-
ferent and determined as the outputs of the gating function. This allows the experts to
specialize (learn) only on the partitions of input space for which they are responsible.
Figure 3 shows the architecture of gated experts. As we can see, both the experts and
the gating network have access to all the inputs, but they do not have to share the same
sets of inputs.

Gated experts. When the data generating process changes over time (for example
different stages in inflammatory response), prediction accuracy can be significantly im-
proved by learning a number of regression models specialized for certain temporal par-
tition (stage) as compared to a single (global) model learned on whole dataset. Let us
assume that a temporal dataset is a union of K disjoint partitions Tk, k = 1, . . . ,K,
where the number of partitions K and their temporal locations are not known in ad-
vance. Under the Gaussian noise assumption, the data generating process for Tk can be
represented as

t(i) = ok(x
(i)
e ,θk) + e(i), e(i) ∼ N(0, σ2

k), for i ∈ Tk, (9)

where ok is the regression function (expert) of partition Tj , x
(i)
e and e(i) are the expert

attribute vector and the error term of data point i (x(i)
e ⊆ x(i)) respectively. Then, the

probability of generating target t(i) by expert k is

P (t(i)|x(i),θk) =
1√
2πσk

exp

(
− (t(i) − ok(x(i)

e ,θk))
2

2σ2
k

)
(10)

where parameters θk and variance σ2
k characterize expert k.

Gating function. Since we have K experts, the probability of generating target t(i) by
all experts is

P (t(i)|x) =
K∑
k=1

P (expertk|x(i))
1√
2πσk

exp

(
− (t(i) − ok(x(i)

e ,θk))
2

2σ2
k

)
, (11)
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Fig. 3: Mixture of gated experts architecture for modeling patient’s inflammation re-
sponse.

where P (expertk|x(i)) is the probability that expert k is responsible for point x(i).
Probabilities P (expertk|x(i)) are determined as outputs of gating network. The gat-

ing network contains a standard neural network (tanh activation function in hidden unit
and linear in output unit) with parameters θg and multiple outputs such that each output
is assigned to exactly one expert denoted by sk, k = 1 . . .K . The outputs of the gating
network are normalized exponentials

g
(i)
k =

exp (s
(i)
k )∑K

k=1 exp (s
(i)
k )

, (12)

which constrains gating outputs to sum to 1 providing competition among experts. The
gating outputs gk(x

(i)
g , θg) weight expert outputs ok(x

(i)
e ) such that overall expected

output value o(x(i)) (final prediction) of the model is

E
[
o(x(i))

]
=

K∑
k=1

gk(x
(i)
g )ok(x

(i)
e ,θk), (13)

where x
(i)
g is input to the gating network (x(i)

g ⊆ x(i)).

Maximum likelihood learning. In order to learn both gating network and expert pa-
rameters, we need to evaluate the likelihood of the data given the model. The assump-
tion of statistical independence of measurement errors of each data point i, i = 1 . . . N ,
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Fig. 4: Evolution over time of gating outputs (probabilities) for three specialized predic-
tors (red, green and blue) of pathogen P. Probabilities are averaged over healthy, aseptic,
and septic patients and shown respectively.
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Fig. 5: Evolution over time of gating outputs (probabilities) for three specialized predic-
tors (red, green and blue) of tissue damage D. Probabilities are averaged over healthy,
aseptic, and septic patients and shown respectively.

allows us to obtain the full likelihood by taking products of individual likelihoods in the
form

L =

N∏
i=1

P (t(i)|x(i)) =

N∏
i=1

K∑
k=1

gk(xg
(i),θg)P (t

(i)|x(i),θk)

=

N∏
i=1

K∑
k=1

gk(xg
(i),θg)

1√
2πσk

exp

(
− (t− ok(xe

(i),θk))
2

2σ2
k

)
(14)

To estimate parameters θg,θ1, . . . ,θK , σ1, . . . , σK we need to minimize the negative
logarithm of likelihood function L, which is not achievable by using a gradient descent
algorithm. In order to make optimization feasible, the problem needs to be slightly
modified such that it allows us to apply the Expectation-Maximization (EM) algorithm
[8].



Expectation Maximization (EM) algorithm. To map the problem to an EM algorithm
we construct a set of indicator (hidden) variables z(i)k , i = 1 . . . N, k = 1, . . . ,K to
indicate that given data point i is generated by expert k. Indicator variables allow us to
replace sum over experts in the likelihood expression with product

LC =

N∏
i=1

K∏
k=1

[
gk(xg

(i),θg)P (t
(i)|x(i),θk)

]z(i)
k

(15)

The problem is that we do not know the values of z(i)k but we can compute their ex-
pected values in the E-step and then update model parameters in the M-step. We will
iterate between the E and M steps until guaranteed convergence [8]. In the E-step of the
algorithm we compute expected values of z(i)k using Bayesian rule

E[z
(i)
k ] = P (z

(i)
k = 1|x, t,θ) =

P (z
(i)
k = 1|x(i))P (t(i)|x(i), z

(i)
k = 1)

P (t(i)|x(i))

=
gk(x

(i),θg)
1√

2πσk
exp

(
− (t−ok(xe

(i),θk))
2

2σ2
k

)
∑K
k=1 gk(xg

(i),θg)
1√

2πσk
exp

(
− (t−ok(xe

(i),θk))2

2σ2
k

) (16)

In the M-step we minimize the expected value of the negative logarithm of (15)

− ln(L
(M)
C ) =

N∑
i=1

K∑
k=1

−E[z
(i)
k ] ln(gk(xg

(i),θg)) +

+
1

2

N∑
i=1

K∑
k=1

E[z
(i)
k ]

[
(t− ok(xe

(i),θk))
2

σ2
k

+ ln(σ2
k) + ln(2π)

]
(17)

Minimization of (17) is done by using a gradient descent approach on the following
update equations

σ2
k =

∑N
i=1E[z

(i)
k ](t(i) − ok(xe

(i),θk))
2∑N

i=1E[z
(i)
k ]

(18)

∂L
(M)
C

∂θk
=
∂L

(M)
C

∂ok

∂ok
∂θk

= −
N∑
i=1

E[z
(i)
k ]

1

σ2
k

(t(i) − ok(xe
(i),θk))

∂ok
∂θk

(19)

∂L
(M)
C

∂θg
=
∂L

(M)
C

∂sk

∂sk
∂θg

= −
N∑
i=1

(
E[z

(i)
k ]− gk(xg

(i),θg)
) ∂sk
∂θg

(20)

where variance of the kth expert has a closed form solution. Learning procedure is
summarized in Algorithm 1.

4 Experiments

In the experiments we want to validate our hypothesis that patients response to an in-
fection and medications switches between regimes. If the hypothesis holds at least K



Algorithm 1 Learning a sub-model
Input: X , T , K, maximum number of iterations
Initialization: split input data randomly into K subsets(regimes), learn experts on the splits,
set corresponding expectations to 1.
repeat

compute expectations (16)
update variance (18)
adjust experts (19)
update gating network using (20)

until convergence or maximum number of iterations exceeded

experts (K > 1) have to survive the learning process. As we have competition of ex-
perts, initialization to a certain number of experts does not mean that this would be their
final number in our sub-model. Actually, some of them can disappear by finding corre-
sponding outputs of the gated network close to zero for all inputs. To train and validate
our sub-models, we have generated two independent sets of virtual patients.

4.1 Data sets

The critical aspect of the predictive model design is the availability of representative
training data to learn unknown model parameters. Our objective was to address a real-
life scenario in which data available for training of the predictive model come from
clinical trials done on a group of diverse patients observed in time. Accordingly, a set
of 100 virtual patients with hourly observations for one week (168 hours) was gener-
ated from ODE equations. To generate a sequence of observations for a virtual patient
we need to know model parameters, initial conditions and a drugs dosage. Initial condi-
tions and parameters are randomly generated following allowable ranges, while a drugs
dosage was carefully chosen to simulate a real-life scenario (for more details see [7]).
We validated results of gated experts on 500 hundred patients generated in the same
manner but with different initial conditions and parameters applied in ODE.

Table 1: Prediction error (RMSE) of gated experts and baselines on validation set
of 500 virtual patients generated by a mathematical model. Gated experts model is
compared to two alternatives with respect to pathogen level (mean(P ) = 0.37) and tissue
damage (mean(D) = 1.58).

Algorihm P < 0.37 P ≥ 0.37 D < 1.58 D ≥ 1.58

Gated experts 0.003 0.025 0.009 0.005
Neural network 0.033 0.222 0.080 0.181
Linear regression 0.024 0.161 0.033 0.074



4.2 Structure of gated experts

To create gated experts, we firstly need to determine the number of past patient states
and drug doses (model order) used as inputs to the predictive model. As discussed in [7],
the predictive model which uses time lag set to 1 cannot provide satisfactory results in
terms of predictive accuracies. We will follow [7] and build the predictive model using
time lag set to npy = npu = 2. We used two-layer feed forward neural networks to model
both specialized predictors and the gating function. Moreover, in order to achieve sta-
bility in predictions of both gating function and specialized predictors, we constructed
ensembles composed of 5 neural networks for each of them. We used a hyperbolic
tangent sigmoid transfer function for hidden neurons and a linear function for output
neurons in all two-layer feed forward neural networks deployed in our model. Each neu-
ral network in a particular ensemble is trained using the same training set but different
initialization of weights. Neural networks in the ensemble for the gating function had 5
hidden neurons, while neural networks in specialized predictor ensembles contained 3
hidden neurons. The gating function uses only past patient state variables and does not
depend on control, while specialized predictors use both patient state variables and past
dosages.

4.3 Results

We found in the training set that ideal number of regimes is 3 by looking at survival
experts while changing K. We validated our model on 500 patients. In order to confirm
our hypothesis of the existence of different regimes, we expect to obtain better accu-
racies of gated experts than single-regime models. We consider a neural network and
linear regression trained on the entire training set as single models for baselines. Model
accuracies are compared using root mean squared error (RMSE) defined as

RMSE =

√∑N
i=1(t

(i) − o(i)(x))2
N

(21)

The lower RMSE is, the better the predictor is. Accuracies for pathogen level (P ) and
tissue damage (D) are reported in Table 1, as they are considered more important for
application purposes than pro-inflammatory mediator (N) and and anti-inflammatory
mediator (CA). We decided to show predictor performances above and below mean of
the target variables (mean(P ) = 0.37, mean(D) = 1.58). We have seen the same trend
in accuracies for N and CA. It is noticeable that gated experts outperform the baseline
by one order of magnitude. We can notice that neural network performance is worse
than linear regression because linear regression is more robust to regime-switchings.
We also analyzed the evolution of probabilities (gating outputs) over time for three spe-
cialized predictors (red, green and blue) of pathogen P and presented them in Figure 4.
Regime #1 (red line in Figure 4) is dominant at the beginning of therapy and represents
the increasing of pathogen level P (Figure 2). In healthy patients (Figure 4) pathogen
level P declines soon after the beginning of therapy and regime #2 (blue line) becomes
dominant. As soon as tissue damage starts to decline, regime #3 becomes dominant
and stays elevated until the end of therapy. In aseptic (Figure 4) and septic (Figure 4)



patients tissue damage stays elevated, which is reflected through dominance of regime
#2 at the end of therapy. Slow increase of tissue damage in aseptic patients is reflected
through dominance of regime #3 (green in Figure 4). Similar analysis can be performed
for evolution of gating outputs over time for three specialized predictors (red, green,
and blue) of tissue damage D (Figure 5).

5 Conclusion and Future Work

We have developed a new approach for prediction of patient response to acute inflam-
mation treatment based on the use of the mixture of experts. Each patient outcome vari-
able was modeled by separate mixture (sub-model). We discovered thee regimes in each
sub-model, meaning that three experts were necessary to model each outcome variable
in patient response. Results obtained from experiments conducted on virtual patients
have undoubtedly shown that our method outperformed baselines (single models) re-
garding the accuracy. This result confirms our hypothesis of the existence of several
regimes in patient response. Also it provides evidence that potential solutions for acute
inflammation treatment can be based on the joint work of domain scientists and the data
mining community.
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