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Abstract
Recovering network connectivity structure from high-

dimensional observations is of increasing importance in

statistical learning applications. A prominent approach is

to learn a Sparse Gaussian Markov Random Field by opti-

mizing regularized maximum likelihood, where the spar-

sity is induced by imposing 𝐿1 norm on the entries of a

precision matrix. In this article, we shed light on an alter-

native objective, where instead of precision, its Cholesky

factor is penalized by the 𝐿1 norm. We show that such

an objective criterion possesses attractive properties that

allowed us to develop a very fast Scale-Free Networks Esti-

mation Through Cholesky factorization (SNETCH) opti-

mization algorithm based on coordinate descent, which is

highly parallelizable and can exploit an active set approach.

The approach is particularly suited for problems with struc-

tures that allow sparse Cholesky factor, an important exam-

ple being scale-free networks. Evaluation on synthetically

generated examples and high-impact applications from

a biomedical domain of up to more than 900,000 vari-

ables provides evidence that for such tasks the SNETCH

algorithm can learn the underlying structure more accu-

rately, and an order of magnitude faster than state-of-the-art

approaches based on the 𝐿1 penalized precision matrix.

1322 © 2018 Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/int Int J Intell Syst. 2018;33:1322–1339.
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1 INTRODUCTION

A common theme across a wide variety of scientific domains is modeling the dependency structure

among a large number of variables in some complex system of interest. Graphical models provide a

convenient way to represent and analyze relations in such tasks. The preferred approach is to model

the joint probability distribution by learning the Markov Random Field, an undirected instance of a

Probabilistic Graphical Model.1 Although representationally powerful, this approach is very compu-

tationally expensive and has intractable inference. Fortunately, additional assumptions and constraints

on model expressiveness lead to models with very convenient and attractive properties.

Multivariate Normal (MVN) distribution suits the observation statistics of many real phenomena,

and such an assumption in probabilistic models yields the Gaussian Markov Random Fields (GMRFs)

model. MVN assumption allows reliable GMRF learning from the data, by finding maximum

likelihood estimate of the parameters. When the observations are standardized to have a zero mean,

learning the GMRF is equivalent to estimating the inverse covariance matrix (also precision or

concentration matrix). Contemporary applications impose the need to mine increasingly larger high-

dimensional data sets, therefore efficiency and scalability are crucial. One general way of achieving

improvement in computational costs is exploiting the (apparent) structural regularities in the problem.

The most commonly used assumption is sparsity, which results in a number of desirable properties:

parsimony, increased generalizability, reduced computational and representational requirements.

Various methods are proposed to solve the sparse precision matrix estimation problem,2–8 and will

be discussed in the Related Work section. Most of these approaches are based on optimizing the

regularized maximum likelihood, where 𝐿1 norm is imposed directly on the entries of a precision

matrix.

However, sparsity in the precision matrix can be induced in a number of ways. In this work, we adopt

an objective function that regularizes the entries of the Cholesky Factor instead of the precision matrix

directly. Therefore, we are implicitly introducing the assumption that the Cholesky factor should be

sparse. In the Method section, we show the convenient properties of such formulation based on which

we propose an efficient coordinate descent optimization algorithm Scale-Free Networks Estimation

Through Cholesky factorization (SNETCH). The approach is highly parallelizable, and with the use of

an active set approach, can achieve substantial speedup. Another advantage of the approach is that as we

work directly with the Cholesky factor, the precision matrix it recovers will always be Positive Definite

(PD), while most other approaches need to regularly check that condition and correct for it (using

Cholesky decomposition, Armijo backtrack search, Schur complement, etc.), which is a significant

computational burden.

Another structural property often reported in complex systems is a power law degree distribution,

resulting in scale-free networks. Scale-free networks possess a number of interesting properties, but

the most interesting property regarding this approach is that their Cholesky factor can be made suitably

sparse. In the Empirical Evaluation section, we show that finding the maximum likelihood estimation

under the Laplace penalty on Cholesky factor is suitable for problems with the scale-free property.

Using synthetic examples, we discovered that our method reconstructed the structure more accurately

than the state-of-the-art approaches, QUIC4 and BCDIC,8 that optimize the common ‖Σ−1‖1 objec-

tive. We have also empirically evaluated speed and scalability of the proposed SNETCH approach for

large synthetic scale-free problems of up to 200,000 variables. Execution time results suggest that our

approach is more than an order of magnitude faster compared to two state-of-the-art methods for large

problems, Big & QUIC9 and ML-BCDIC.10 In addition, we also show the efficiency and speedup that

may be achieved by the parallelization of our approach.
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Finally, SNETCH was consistently fastest when applied on three real data sets, the largest having

904,739 variables. We found that uncovered Gene co-regulation, DNA methylation, and Brain EEG

signal networks have scale-free properties, suggesting that our approach has a potential for broad appli-

cability in real problems.

2 RELATED WORK

Estimation of unknown covariance Σ (or inverse covariance Σ−1) matrices is a problem of reconstruct-

ing (approximating) the actual matrix based on samples drawn from the multivariate distribution.

The sample covariance matrix (1∕(𝑁 − 1))
∑
(𝑦 − 𝑦̂)(𝑦 − 𝑦̂)𝑇 is an unbiased and efficient estimator

of the covariance matrix (if the space of covariance matrices is viewed as an extrinsic convex cone

in 𝑅𝑝×𝑝). However, unbiased empirical covariance and inverse covariance estimation is not stable for

high-dimensional problems.

Under the additional assumptions on the underlying distribution (MVN), maximum likelihood can

be assessed, and it is the preferred approach to learning the covariance matrix (and its inversion).

2.1 Maximum-likelihood estimation
A random vector 𝑥 ∈ IR𝑝×1 (a 𝑝-dimensional column vector of random variables) has a nondegenerate

multivariate normal distribution with a covariance matrix Σ only if Σ ∈ IR𝑝×𝑝 is a PD matrix and the

probability density function of 𝑥 is

𝑑(𝑥) = (2𝜋)−𝑝∕2 det(Σ)−1∕2 exp
(
−1
2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)

)
(1)

where 𝜇 ∈ IR𝑝×1 is the expected value of 𝑥. Assuming 𝑛 independently and identically distributed

observations {𝑥1, 𝑥2, ..., 𝑥𝑛} ∈ IR𝑝×1, the likelihood is a product of individual density functions.

As the maximum-likelihood estimate of the mean vector 𝜇 is the “sample mean” vector 𝑥 =
(𝑥1 +⋯ + 𝑥𝑛)∕𝑛, we centralize the data by subtracting it, and adopt matrix notation 𝑋 = [𝑥1 −
𝑥, 𝑥2 − 𝑥, ..., 𝑥𝑛 − 𝑥] ∈ IR𝑝×𝑛. After dropping the constant scaling factor (2𝜋)−𝑛𝑝∕2 the likelihood can

be expressed as:

(Σ−1) ∝ det(Σ−1)𝑛∕2 exp
(
−1
2
𝑡𝑟
(
𝑋𝑇Σ−1𝑋

))
(2)

In practice, it is easier to work with the log-likelihood, and the problem boils down to minimization

of negative log likelihood:

Σ̂−1 = argmin
Σ−1

1
2
𝑡𝑟
(
𝑋𝑇Σ−1𝑋

)
− 𝑛

2
𝑙𝑜𝑔|Σ−1| (3)

subjected to PD constraint 𝑥𝑇Σ−1𝑥 > 0, ∀𝑥 ∈ IR𝑝×1.

It is easy to show that in this case, when a random variable has normal distribution, the sample

covariance matrix has Wishart distribution and its maximum likelihood estimate 𝑆 is: 𝑆 = 𝑋𝑋𝑇 ∕𝑛.

However, if 𝑛 < 𝑝, as is a common case in practice, the sample covariance matrix is not of full rank

and its inverse is singular.
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2.2 Penalized maximum-likelihood estimation
That is why additional assumptions are introduced, usually through prior on the parameter values,

which is just another perspective on regularization. Initially, it is observed that the precision matrix

encodes the independence structure, and that it should be sparse.

2.2.1 𝑳𝟎 norm on precision
Sparsity was originally enforced11 by optimizing log-likelihood with a minimal number of nonzero

entries in the precision matrix: 𝑚𝑖𝑛‖Σ−1‖0. Since that objective was an expensive combinatorial opti-

mization (e.g., greedy forward-backward search12), it did not scale well to the applications and there

was necessity for more appropriate approaches.

2.2.2 𝑳𝟏 norm on precision
Subsequently, combinatorial 𝐿0 regularization was replaced with its convex relaxation in terms of 𝐿1
norm on precision matrix.13 The introduced 𝐿1 was suitable because it is convex, yet it still leads to

a sparse solution. The neighborhood selection approach5 used LASSO14 formulation to select con-

nected variables by solving a number of decoupled problems. Initial approaches15 were computa-

tionally expensive, and suitable for only small problems. Graphical LASSO3 improved efficiency by

proposing a faster coordinate descent algorithm. Other optimization approaches based on the first order

derivative followed, like a projected subgradient method,2 greedy coordinate ascent7 and proximal gra-

dient (iterative thresholding algorithm).6

Among the first approaches that utilize the second order gradient information is QUIC,4 which uses

second order Newton method-based coordinate descent with Armijo search. The direction of descent

is first found using the active set-based coordinate descent, which is followed by inexact line search to

find the step with the sufficient decrease based on Armijo rule. Iterates are held within a PD cone by

performing Cholesky decomposition, and finding the step size that ensures PD. Improving the QUIC

approach for higher dimensional data9 avoids some computational burden while searching for the direc-

tion of descent by clever use of a conjugate gradient method. The work9 also recommends avoiding

the Cholesky decomposition step, as with the increase in the problem size it becomes the most expen-

sive part. That is because for the types of graphs investigated, the fill-in of the Cholesky factors grows

nonlinearly with the problem size. Instead, positive definiteness is ensured by the Schur complement

method. The BCDIC approach8 states further advances in this direction by optimizing several vari-

ables at the same time, using the block coordinate descent approach. Its extension10 goes one step

further by employing a hierarchical multilevel framework. All three large-scale covariance estimation

approaches8–10 use the fast METIS graph partitioning algorithm in order to differentiate submatrices

with higher and lower edge densities. This approach naturally fits the graphs generated through stochas-

tic block model (community networks) and Erdos–Renyi type process (random binary networks).

2.2.3 𝑳𝟏 norm on Cholesky factor
Another formulation of the problem, CSEPSNL, was proposed in Ref. 16 There, the 𝐿1 norm is applied

on entries of a Cholesky factor 𝐿 (where Σ−1 = 𝐿𝐿𝑇 ), instead on the entries of the precision matrix

Σ−1 itself.

In this work, we propose a novel optimization algorithm for the objective proposed in CSEPNL. We

carefully analyze the setup, and show that it is well suited for the coordinate descent. It also allows an

active set approach and belongs to a class of embarrassingly parallel algorithms, as optimization of the

columns of a Cholesky factor is decomposable (totally independent of each other). We reconsider the
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effects of Cholesky factors fill-in for high-dimensional networks. As it turns out, scale-free networks, if

ordered properly, are known to have sparse Cholesky factors. This is the main motivational force behind

our approach, as having sparse Cholesky factors available at all times (without additional calculations)

enables fast 𝑂(𝑝) computation of a log det term and ensures positive definiteness, thus enabling us to

avoid step search and PD validation altogether. Also, as we will show, by exploiting the sparsity, a fast

and efficient coordinate descent method can be derived based on the active set approach, which is orders

of magnitude faster than the previous approaches. Furthermore, we will show in several examples that

even if the data is not generated according to the scale-free graph assumption, our method is still

applicable and its results are comparable to the previous approaches.

2.2.4 Scale-free prior
There is also work oriented toward learning the scale-free graph structure from continuous data, mainly

by enforcing the exponential degree distribution on the learned graph, by using additional regulariza-

tion penalties.17 Scale-free structure prior on precision and a novel Metropolis–Hastings based sam-

pling method for learning the parameters has been proposed.18 A ranking-based method to dynami-

cally estimate the degree of a node, and a novel optimization method based on an alternating direction

method of multipliers has been introduced.19 Another approach based on a power law degree regu-

larization with the minorize-maximize algorithm was demonstrated.20 Although all approaches17–20

reveal scale-free structures, methods where power law degree is enforced appear to be computationally

inefficient, and do not scale as well as methods for more general inverse covariance estimation. Here,

we do not claim that our formulation enforces scale-free structure in its solution, but just that scale-

free structure is a very suitable problem for our approach. Therefore, approaches that enforce scale-free

structure by using different regularization terms are out of the scope of this work.

Other approaches to inverse covariance estimation that impose different constraints like low-rank

structure21 and ridge type of penal22 are also not in the focus of this study.

3 METHOD

We adopt a parametrization based on Cholesky decomposition 𝐿, and generalize the scalar penalty 𝜆

into a nonnegative matrix Λ (in a way similarly proposed in23), where ∗ is Hadamard product:

𝑓 (𝐿) = 1
2
𝑡𝑟
(
𝑋𝑇𝐿𝐿𝑇𝑋

)
− 𝑛

2
𝑙𝑜𝑔|𝐿𝐿𝑇 | + ‖Λ ∗ 𝐿‖1 (4)

To derive optimization procedure, we analyze the objective (4) and follow the standard approach

to separate it into differentiable 𝑔(𝐿) and nondifferentiable ℎ(𝐿) (sparsity-inducing) parts. Let us first

consider the differentiable part, where the trace is invariant to cyclic permutations, and the matrix

product and the determinant are commutative operations (the determinant of a product is equivalent to

the product of its determinants), allowing us to write:

𝑔(𝐿) = 1
2
𝑡𝑟(𝐿𝐿𝑇𝑋𝑋𝑇 ) − 𝑛

2
𝑙𝑜𝑔(|𝐿||𝐿𝑇 |) (5)

We can substitute empirical covariance estimate𝑆 in the first term, and conclude that the determinant

of the Cholesky factor in the second term is the product of its diagonal elements, to obtain:

𝑔(𝐿) = 𝑛

2
𝑡𝑟(𝐿𝐿𝑇𝑆) − 𝑛

2
𝑙𝑜𝑔

(
𝑝∏

𝑖=1
𝐿2
𝑖𝑖

)
= 𝑛

2
𝑡𝑟(𝐿𝐿𝑇𝑆) − 𝑛

𝑝∑
𝑖=1

𝑙𝑜𝑔(𝐿𝑖𝑖). (6)
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In the new reparametrization of the objective function, the log det term can be efficiently computed

in 𝑂(𝑝) time. Furthermore, the data-dependent part can easily be separated into several independent

sub-objectives, which is the prerequisite for scaling up to high-dimensional data. In order to do so, 𝐿

can be observed as a sum of 𝑝 “rank 1” 𝑝 × 𝑝 matrices 𝐿′
𝑗
, where each matrix contains the 𝑗𝑡ℎ column

of the 𝐿 matrix and the rest of entries are set to zero (dropping the constant factor 𝑛):

𝑔(𝐿) = 1
2

𝑝∑
𝑗=1

𝑡𝑟

(
𝐿′
𝑗
𝐿′
𝑗

𝑇
𝑆

)
−

𝑝∑
𝑗=1

𝑙𝑜𝑔(𝐿𝑗𝑗). (7)

Now we can derive the expressions for the derivatives of the differentiable function 𝑔(𝐿). There are

two separate types of variables: off-diagonal (when 𝑖 = 𝑗), and diagonal (when 𝑖 ≠ 𝑗), so we will have

two sets of update equations. We continue by using the standard matrix calculus:

𝜕𝑡𝑟(𝐿′
𝑗
𝐿′
𝑗

𝑇
𝑆)

𝜕𝐿𝑖𝑗

= 1
2
𝑡𝑟

⎛⎜⎜⎝
⎛⎜⎜⎝
𝜕𝐿′

𝑗

𝜕𝐿𝑖𝑗

𝐿′
𝑗

𝑇 + 𝐿′
𝑗

𝜕𝐿′
𝑗

𝑇

𝜕𝐿𝑖𝑗

⎞⎟⎟⎠𝑆
⎞⎟⎟⎠ = 𝑡𝑟

(
𝜕𝐿′

𝑗

𝜕𝐿𝑖𝑗

𝐿′
𝑗

𝑇
𝑆

)
= 𝐿𝑇

𝑗
𝑆𝑖. (8)

Here 𝑆𝑖 denotes the 𝑖th row of matrix 𝑆, and 𝐿𝑗 denotes the 𝑗th column vector of the matrix 𝐿. To

get the expression (8) we used the fact that matrix
𝜕𝐿𝑗

𝜕𝐿𝑖𝑗

is actually a zero matrix with a single 1 on the

𝑖th row and 𝑗th column, and the cyclic property of the trace operator for symmetric matrices:

𝑇 𝑟

(
𝜕𝐿𝑗

𝜕𝐿𝑖𝑗

𝐿𝑇
𝑗
𝑆

)
= 𝑇 𝑟

(
𝐿𝑗

𝜕𝐿𝑇
𝑗

𝜕𝐿𝑖𝑗

𝑆

)
(9)

Finally, we get the derivative of the smooth part of the objective function:

∇𝑔(𝐿)𝑖𝑗 =

{∑𝑝

𝑘=1 𝐿𝑘𝑗𝑆𝑖𝑘, 𝑖 ≠ 𝑗∑𝑝

𝑘=1 𝐿𝑘𝑗𝑆𝑖𝑘 −
1
𝐿𝑖𝑖

, 𝑖 = 𝑗
(10)

Now we consider the penalty term. There is a rich body of literature for optimizing the 𝐿1 penalized

convex functions. For our problem, coordinate descent with the active set approach naturally imposes

as an attractive method, since our penalty term is separable. Furthermore, the smooth part of function

𝑔(𝐿) can also be separated (as shown) into 𝑝 independent tasks, one for each column, therefore enabling

a high degree of parallelism, since 𝑝 coordinates can be updated in parallel. In order to derive update

equations, we first observe the sub-differential of ℎ(𝐿), and its (𝑖, 𝑗) component:

∇ℎ(𝐿)𝑖𝑗 =
⎧⎪⎨⎪⎩
𝜆𝑖𝑗 , 𝐿𝑖𝑗 > 0
−𝜆𝑖𝑗 , 𝐿𝑖𝑗 < 0
∈ [−𝜆𝑖𝑗 , 𝜆𝑖𝑗], 𝐿𝑖𝑗 = 0

(11)

The sub-gradient of the whole optimization function (4) is:

∇𝑓 (𝐿)𝑖𝑗 =
⎧⎪⎨⎪⎩
∑

𝑘 𝐿𝑘𝑗𝑆𝑘𝑖 + 𝑠𝑔𝑛(𝐿𝑖𝑗)𝜆𝑖𝑗 , 𝐿𝑖𝑗 ≠ 0, 𝑖 ≠ 𝑗∑
𝑘 𝐿𝑘𝑗𝑆𝑘𝑗 −

1
𝐿𝑖𝑖

+ 𝜆𝑖𝑗 , 𝑖 = 𝑗

𝑆
(∑

𝑘 𝐿𝑘𝑗𝑆𝑘𝑖, 𝜆𝑖𝑗
)
, 𝐿𝑖𝑗 = 0, 𝑖 ≠ 𝑗

(12)
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where S(z,r) is a soft thresholding function:

𝑆(𝑧, 𝑟) = 𝑠𝑖𝑔𝑛(𝑧)𝑚𝑎𝑥(|𝑧| − 𝑟, 0). (13)

Now that we have expressions for sub-gradient we can optimize the objective (4) by using coordinate

descent. Single variable updates can be found from optimality conditions (12). Again, we first show

the single variable update equation for off-diagonal variables (13), which is simply a solution to the

linear equation with a soft threshold:

𝐿𝑡+1
𝑖𝑗

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−

∑
𝑘≠𝑖

𝐿𝑡
𝑘𝑗
𝑆𝑖𝑘 + 𝑠𝑖𝑔𝑛(𝐿𝑡

𝑖𝑗
)𝜆𝑖𝑗

𝑆𝑗𝑗

, 𝐿𝑡
𝑖𝑗
≠ 0

−

∑
𝑘≠𝑖

𝐿𝑡
𝑘𝑗
𝑆𝑖𝑘 − 𝑠𝑖𝑔𝑛(𝑀)𝜆𝑖𝑗

𝑆𝑗𝑗

, 𝐿𝑡
𝑖𝑗
= 0,𝑀 ≥ 𝜆𝑖𝑗

0, 𝐿𝑡
𝑖𝑗
= 0, |𝑀| < 𝜆𝑖𝑗

(14)

where 𝑀 =
∑
𝑘≠𝑖

𝐿𝑡
𝑘𝑗
𝑆𝑖𝑘.

If 𝐿 is a diagonal matrix (which is the case for the first iteration, when we initialize the algorithm

with identity matrix), update rule from Equation 14 is calculated in 𝑂(1) time (a result analogous to

one in4):

𝐿1
𝑖𝑗
=

{
−𝑆𝑖𝑗−𝑠𝑖𝑔𝑛(𝑆𝑖𝑗 )𝜆𝑖𝑗

𝑆𝑗𝑗

, |𝑆𝑖𝑗| > 𝜆𝑖𝑗

0, |𝑆𝑖𝑗| < 𝜆𝑖𝑗

(15)

Starting set of nonzero values can be obtained from an update rule (15). This set constitutes the

initial active set, and lower bounds the time complexity of our algorithm, since computing it requires

𝑂(𝑝2) time.

Update for diagonal entries are solutions of the following quadratic equations:

𝐿𝑡+1
𝑖𝑖

=

−

(∑
𝑘≠𝑖

𝐿𝑡
𝑘𝑖
𝑆𝑖𝑘 + 𝜆𝑖𝑖

)
+

√√√√√(∑
𝑘≠𝑖

𝐿𝑡
𝑘𝑖
𝑆𝑖𝑘 + 𝜆𝑖𝑖

)2

+ 4𝑆𝑖𝑖

2𝑆𝑖𝑖

(16)

The second solution to the quadratic equation is always discarded, since 𝐿𝑖𝑖 must be positive in

order for the Σ−1 matrix to be PD. By looking at the update Equations (14) and (16) we notice

that if the column 𝐿𝑗 is sparse with complexity 𝑂(𝑠𝑗), calculating updates will also have 𝑂(𝑠𝑗) time

complexity.

Update Equations (14) and (16) represent an analytic solution for coordinate-wise optimiza-

tion procedure for SNETCH described in Algorithm 1. After the initialization with identity matrix,

the coordinates are iteratively updated until the convergence criteria is satisfied, that is the change

in gradient drops below the threshold 𝜖. Precision is obtained from optimized Cholesky factor

Σ−1
∗ = 𝐿𝑇

∗𝐿∗.
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3.1 Model interpretation
Since finding sparse Cholesky does not necessarily force a sparse precision matrix, additional investi-

gation is needed to justify objective (4) and present a range of problems where it can fit into the sparse

inverse covariance estimation framework. Let us point out the two well-known facts about Cholesky

factorization. First, finding the sparsity pattern of the Cholesky factors corresponds to finding a chordal

completion of the precision matrix. Second, fill-in of the Cholesky factors largely depends on the node

ordering in the graph. Since the penalty of objective (4) tries to find the sparse chordal graph that com-

pletes (for a single chosen ordering) the precision matrix fitted to our data, this type of optimization

largely depends on the type of structure hidden in the data. It has been suggested earlier24,25 that scale-

free graphs naturally fits this setting, as they are easily triangulated. As learning the scale-free GMRFs

represent an important and still not enough explored problem, it is central in our experiments.

One of the biggest challenges is finding the right ordering of the variables, as this is known to

be an NP-complete problem.26 Several heuristics exist for solving this problem. In our experimental

evaluation, we use Approximate Minimum Degree algorithm as a substep for our optimization method,

which shows promising results. Further discussion regarding the model complexity and convexity can

be found in the Appendices A and B, respectively.

4 EMPIRICAL EVALUATION

To empirically test the characteristics of the proposed approach and its solution, we conducted extensive

evaluations on the synthetically generated problems of interest. In such examples, we are comparing our

SNETCH against two state-of-the-art approaches for learning sparse precision matrices of a medium

size (i.e., all data can fit the memory), QUIC4 and BCDIC.8

Samples from the desired distribution were generated by first designing an appropriate sparse preci-

sion matrix, in which the structure of interest is encoded. Subsequently, the samples were drawn from

the MVN distribution with zero mean and the designed precision structure. In our experiments, several

types of graphs were simulated, each posing a different type of challenge. As in evaluation approaches

described in Refs. 4 and,8 we generated a linear chain and a random binary graph. Also, we analyzed

two other synthetical problems of interest, a graph with sparse Cholesky factors (an “ideal” assumption

for our model) and a scale-free graph, generated using the preferential attachment process.
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F I G U R E 1 Synthetic examples obtained from a randomly sampled sparse Cholesky factor

T A B L E 1 Performance on the random Cholesky problem

Random Cholesky factor (𝒑=2,000; 𝒏=2,000; true 𝒏𝒛 = 8,652)
Model Time (s) Jaccard Precision Recall 𝝀 𝒏𝒛

SNETCH 1.21 0.745 0.854 0.854 0.0818 8,654

BCDIC 9.04 0.500 0.667 0.667 0.0878 8,654

QUIC 20.2 0.501 0.668 0.668 0.0878 8,654

We start by generating a synthetic example based on our modeling assumption, that is, the Cholesky

factor of a precision matrix is sparse. Random Cholesky graph structure was obtained by randomly

assigning a number of nonzero entries in the Cholesky factor, and subsequently, a sparse precision

matrix was obtained as a product of sparse Cholesky factors. Sparsity is quantified with a number of

nonzero (“𝑛𝑧” in Figures and Tables) entries in precision matrix.

In Figure 1, on the left we see the sparsity patterns of true precision, and on the right, the precision

estimated by our approach. At the bottom of the figure are the respective Cholesky factors, which are

sparse by design. In Table 1, the results of all three competing algorithms are presented and it can be

seen that our SNETCH approach achieves superior performance in terms of speed and quality of the

obtained solution. The sparsity of the estimated solutions was tuned by hyperparameter 𝜆 to obtain the

number of 𝑛𝑧 elements close to the underlying ground truth—true 𝑛𝑧, but more importantly to be close

to competing approaches, for the sake of comparison.

Quality of the solution we measured using Jaccard index, Precision and Recall, all suggesting our

approach recovered true nonzero elements much better than competition (Table 1). However, in other

works, the approaches were typically evaluated under different structural assumptions. Therefore, we

also compared the performances on the most common synthetic examples: linear chain graph and

randomly assigned sparse precision matrix.

Linear chain was created by specifying appropriate patterns of graph connections in the adjacency

matrix. The adjacency matrix was subsequently turned into Laplacian and made diagonally dominant



JELISAVCIC ET AL. 1331

0 1000 2000

nz
 =

 5
99

8

0

500

1000

1500

2000

Σ -1 of a Chain graph

0 1000 2000

nz
 =

 3
99

9

0

500

1000

1500

2000

L' of a Chain graph

F I G U R E 2 Synthetic example depicting linear chain sparsity structure

T A B L E 2 Performance on the linear chain problem

Linear chain structure (𝒑=2,000; 𝒏=2,000; true 𝒏𝒛 = 5,998)
Model Time (s) Jaccard Precision Recall 𝝀 𝒏𝒛

SNETCH 0.69 1 1 1 0.2 5,998

BCDIC 5.45 1 1 1 0.2 5,998

QUIC 3.39 1 1 1 0.2 5,998
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F I G U R E 3 Synthetic example obtained by generating sparse random precision matrix

by adding a small value to the diagonal. The resulting matrix was taken as an underlying precision

matrix for coloring the samples from plain MVN distribution.

In Figure 2, it is shown that the (ordered) linear chain example also has sparse precision and sparse

Cholesky factor, and in Table 2, the results are showing that all approaches can perfectly reconstruct

the underlying structure, but SNETCH did it much faster.

The Random Precision matrix was obtained by assigning a prespecified number of nonzero elements

in the precision. A matrix is made symmetric by the addition of its transpose, and PD was assured by

adding some small positive constant to the diagonal. This is the most common way of generating

synthetic examples, and an example is shown in Figure 3.
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T A B L E 3 Performance on the random precision problem

Random Precision Matrix (𝒑=2,000; 𝒏=2,000; true 𝒏𝒛 = 6,432)
Model Time (s) Jaccard Precision Recall 𝝀 nz
SNETCH 0.62 0.840 0.911 0.914 0.162 6,446

BCDIC 7.78 0.986 0.992 0.994 0.11 6,440

QUIC 3.24 0.986 0.991 0.994 0.11 6,444
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F I G U R E 4 Synthetic example depicting scale-free type of structure

However, a Cholesky factor is dependent on ordering the variables (rows and columns), and

it can be made sparse (up to a certain point) by appropriately rearranging the order. One known

heuristic is Approximate Minimum Degree (AMD) sorting, which tends to result in sparse Cholesky

factors. Such a property is visualized in the middle plots of Figure 3, where the true precision

was sorted by AMD. After reordering, our approach was able to reconstruct the precision faster

but slightly less accurate (for the given sample size) than the competing approaches as shown in

Table 3.

Nevertheless, in practice, the most interesting structures lies somewhere in-between the two

extremes of random (no-structure) and linear chain (total-order). We will therefore, from now on, turn

our focus to such highly relevant structures.

4.0.1 Scale-free networks
Scale-free networks have very intriguing characteristics,27,28 and are found in a number of real-world

phenomena, from paper citation networks to world wide web and networks that regulate processes in

living cells.29 We evaluated the appropriateness of our approach to discovery of structures with the

scale-free property.

We generated scale-free problems by the process of preferential attachment with Poisson growth.30

The graph is started with several (pre-specified) groups of densely connected nodes (cliques), and every

new incoming node was added to the graph connecting to 𝑘 of existing ones, where 𝑘 was drawn from

the Poisson distribution (based on the probability proportional to the node degree).
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T A B L E 4 Performance on a scale-free problem

Scale-free structure (𝒑=2,000; 𝒏=2,000; true 𝒏𝒛 = 14,466)
Model Time (s) Jaccard Precision Recall 𝝀 𝒏𝒛

SNETCH 0.78 0.407 0.577 0.580 0.0775 14,550

BCDIC 5.89 0.364 0.532 0.536 0.0717 14,548

QUIC 4.25 0.364 0.532 0.536 0.0717 14,550
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F I G U R E 5 Left panel presents comparison of execution times for competing methods on scale-free problems of

up to 200,000 variables, performed in a single threaded setup. On the right panel is parallelization speedup that can be

achieved for SNETCH approach on the problem of 200,000

An example of precision with scale-free properties is depicted in Figure 4. On the left side is the true

underlying precision, and its Cholesky factor is sparse. As typically, in applications, the variables are

not sorted, the middle plots show how they can be appropriately sorted, by sorting the initial active set

obtained from the observed data. On the right is the structure estimated by our approach, and results

from Table 4 again point that our approach reconstructs the underlying dependencies better and faster

than the alternatives.

4.0.2 Scalability
In all those examples, our algorithm was the fastest. The next more involved benchmark aimed to

characterize SNETCH against more scalable alternatives BIG & QUIC9 and ML-BCDIC10 on much

larger problems where data is larger than the computer memory. Towards this objective, we generated

synthetic problems with the scale-free structure of various sizes: 50,000; 100,000; and 200,000

variables.

In the left panel of Figure 5, for logarithmic y-axes, it can be seen that our approach achieves exe-

cution times that are sometimes two orders of magnitude faster than the state-of-the-art competitors.

Table 5 presents the same results in greater details, and it should be noted that in all experiments

SNETCH 1, BIG & QUIC, 2 and ML-BCDIC 3 were executed in a single threaded setup.

1 https://github.com/vladisav/SNETCH

2 http://bigdata.ices.utexas.edu/software/1035/

3 https://github.com/erantreister/Multilevel-BCDIC.m

https://github.com/vladisav/SNETCH
http://bigdata.ices.utexas.edu/software/1035/
https://github.com/erantreister/Multilevel-BCDIC.m
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T A B L E 5 Run time (sec) comparison for SNETCH versus BIG & QUIC and ML-BCDIC methods on synthetic

scale-free data

Scale-free SNETCH ML-BCDIC BIG & QUIC
p= 50,000 time 126.9 2,230 13,221

249,970 𝑛𝑧 281,260 284,260 286,696

p=100,000 time 539.4 18,031 74,425

499,930 𝑛𝑧 765,990 752,250 757,194

p=200,000 time 1,611.8 78,349 307,081

2,199,434 𝑛𝑧 2,061,680 2,070,664 2,070,740

4.0.3 Parallelization
Moreover, as our approach is highly parallelizable, we show on the largest example how much speedup

may be achieved. The right panel of Figure 5 shows how the optimization part can be speedup for

up to 12 workers. Since each of the sub-objectives can be optimized in parallel, the linear speedup is

expected. Experimental results are in agreement with the expected degree of parallelism and even show

superlinear speedup for some configurations, which can be explained by better cache utilization and

less communication overhead, since only a small fraction of data is needed to optimize each column.

Parallelization was achieved by using the Matlab Parallel Computing Toolbox.

4.1 Applications
Uncovering the connectivity pattern among a large number of variables is a common topic across a

number of domains, and sparse GMRF learning was used for tackling the problems from the biological

functioning of a cell, to brain connectivity patterns, up to interactions in the social networks.

In order to characterize the structural properties of some real data sets, we applied our SNETCH

approach on three high-impact biomedical applications: human gene expression during respiratory

infection,31 DNA methylation in healthy people,32 and brain electroencephalogram (EEG) signals.33

The gene expression data set was obtained from GEO 1, and it constitutes 12,023 probes (features,

genes) measured in 2,886 blood samples drawn from human subjects infected with respiratory viruses

(H3N2 Influenza type H3N2, Rhinovirus and Respiratory Syncytial Virus).31 The data was standard-

ized to have a zero mean and normalized to have unit values on the diagonal of sample covariance

matrix. Extracting gene co-regulation network is of high biological interest as co-expressed genes

are functionally related, often involved in the same pathways or controlled by the same regulatory

process.34

The DNA methylation data set is also obtained from GEO 2 and has methylation levels measured in

473,034 genomic locations, for 656 healthy humans (samples) involved in the study on the utility of

methylation markers as predictors of biological age.32 The data were transformed with logit (inverse

sigmoidal logistic) function, then standardized and normalized. Extracting DNA methylation correla-

tion network is important as methylation is one of the most stable epigenomic mechanisms through

which the environment affects the functioning on an organism.35

The brain EEG data set is obtained from an online repository 3. It consists of 910,476 signals mea-

sured for 2 s by Emotive EPOC device. After removing 5,737 time-series that have corrupted readings

1 GSE73072, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072

2 GSE40279, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40279

3 http://www.mindbigdata.com/opendb

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40279
http://www.mindbigdata.com/opendb
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F I G U R E 6 Degree distributions of extracted Gene co-expression Network, DNA methylation network and Brain

EEG signal network exhibit strong scale-free property

T A B L E 6 Network structure learning time

Data set Size SNETCH ML-BCDIC BIG & QUIC
Gene Expr time 130.5 342.1 1,442.9

𝑝=12,023 𝑛𝑧 35,123 33,677 35,921

DNA Meth time 12,667 400,000+ 400,000+
𝑝=473,034 𝑛𝑧 613,868 – –

Brain EEG time 32,803 400,000+ 400,000+
𝑝=904,739 𝑛𝑧 1,090,607 – –

(constant signal), the data was standardized and normalized. Dependencies among recorded events

may provide important insight on how the brain responds to different situations.33

For certain sparsity levels, we have obtained a gene co-regulation network of 35,123 nonzero ele-

ments, a DNA methylation correlation network consisting of 613,868 nonzero elements, and a brain

EEG correlation network of 1,090,607 elements. We have characterized their node degree patterns,

which are shown in Figure 6. It can be seen that they all have a very distinct pattern of a power law,

which on log–log scale appears as a straight line. These real examples, and a number of others, suggest

the potential for wide applicability of the proposed SNETCH approach.

Table 6 shows that our approach estimated the structure in smallest amount of time for each of the

data sets, while on two high-dimensional problems competing approaches have not finished optimiza-

tion by 400,000 s (Big & QUIC reported finishing the second iteration at 104,596 s on DNA data, and

the first iteration at 140,013 s on EEG data.)

5 DISCUSSION AND FUTURE WORK

We presented a new method for learning large-scale GMRFs, and showed that it is a well-suited tool for

problems with the scale-free structure. Comparing to previous work on large scale GMRF learning, our

method is better fitted to problems where the chordal pattern can be fitted efficiently, a property sug-

gested by others to be true for scale-free graphs. We also showed that the same method can be applied

to several other sparse problems with different types of a structure with reasonably good performance.

Results show significant speedup on several synthetical data sets. Finally, our method is applied to gene

expression, DNA methylation, and brain EEG data, where we found scale-free structures. Since sparsity

of a Cholesky factor largely depends on proper node labeling (which is known to be NP-complete prob-

lem), we proposed using the Approximate Minimum Degree algorithm as a substep in order to alleviate

this problem, which proved to be a reasonably good solution in our experiments. Further investigation

is needed in order to improve the model with more advanced node ordering strategy. Also, in our
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experiments, our first order method performed well, but implementing the presented approach into the

quadratic solver could provide better convergence rates. Our approach might be further extended for

learning a discriminative version of sparse GMRF named sparse Gaussian Conditional Random Field,

which is suited for structured regression problems.36
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APPENDIX A: TIME AND MEMORY COMPLEXITY ANALYSIS
Several computational improvements contribute to the speedup achieved by the SNETCH algorithm.

First, log det term can be calculated in linear time, as shown in (7). Second, feasible space coincides

with the PD cone, and therefore no additional effort needs to be taken in order to ensure positive

definiteness. Third, each column of Cholesky factors can be optimized independently, thus decompos-

ing the problem into smaller, much easier to solve subproblems. Fourth, each subproblem is sparse,

enabling us to keep only a subset of the covariance matrix in memory at a single time, as will be shown.

This sparsity is then exploited using the active set based coordinate descent approach.

While selecting the active set for each of the subproblems we rely on the following observation: If

the magnitude of the smooth part of the subgradient component (𝑖, 𝑗) of the objective function is less

than 𝜆, then element 𝐿𝑖𝑗 will belong to the fixed set. This is a well-known trick when using a coordinate

descent active set approach with 𝐿1 penalty, and is already used in Refs. 4 and 8. Therefore (based on

equation (14)), a simple condition can be derived for selecting the active set:

𝑆𝑎𝑐𝑡𝑖𝑣𝑒 = {𝑖 ∈ [1..𝑝]||∑
𝑘

𝐿𝑘𝑗𝑆𝑘𝑖| > 𝜆}. (A.1)

Variables not belonging to the active set will belong to the fixed set, and can be skipped when

updating. It should be noted that the diagonal elements will always be in the active set.

Let us define a set of active indices for this column in the current iteration:

𝑆𝑡
𝑎𝑐𝑡𝑖𝑣𝑒

= {𝑘 ∈ 1..𝑃 |𝐿𝑡−1
𝑘𝑗

≠ 0}. (A.2)

This set uniquely determines the variables that contribute to the active set equation (A.1) in the current

iteration 𝑡, since all other variables in column 𝑗 are zero. Initially, our starting point is 𝐿0 = 𝐼 , therefore

𝑆1
𝑎𝑐𝑡𝑖𝑣𝑒

will contain a single element 𝑆1
𝑎𝑐𝑡𝑖𝑣𝑒

= {𝑗}.

We define 𝑐𝑖 as the biggest element in the 𝑆𝑡
𝑎𝑐𝑡𝑖𝑣𝑒

subset of the ith row of 𝑆 (infinity norm):

𝑐𝑖 = ‖𝑆𝑖𝑘‖∞ = 𝑚𝑎𝑥(𝑆𝑖𝑘1
, 𝑆𝑖𝑘2

, ..., 𝑆𝑖𝑘𝑛
) (A.3)

where the set of indices {𝑘1, 𝑘2, ..., 𝑘𝑛} corresponds to the active set 𝑆𝑡
𝑎𝑐𝑡𝑖𝑣𝑒

in the iteration 𝑡 of the

column 𝑗.

Using the triangle inequality and the previously defined 𝑐𝑖 the following inequality can be derived:

𝜆 ≤
|||∑

𝑖

𝐿𝑖𝑗𝑆𝑖𝑗| ≤ ∑
𝑖

|𝐿𝑖𝑗||𝑆𝑖𝑗| ≤ ∑
𝑖

|𝐿𝑖𝑗|𝑐𝑗 ≤ 𝑐𝑗

∑|𝐿𝑖𝑗| (A.4)

Now we can derive the following bound: If the element 𝐿𝑖𝑗 belongs to the active set, then the maxi-

mal element of the active subset of the 𝑖th row of the𝑆 matrix must be larger than 𝑐𝑗 ≥
𝜆∑

𝑖 |𝐿𝑖𝑗 | . Initially,∑
𝑖 |𝐿𝑖𝑗| will be equal to one (which gives us the initial active set by thresholding the empirical covari-

ance matrix 𝑆 with 𝜆4,8). If the 𝑙∞ norm of the active subset of the ith row of empirical covariance

matrix 𝑆 is less than the derived bound, then element 𝐿𝑖𝑗 will not belong to the active set. This is

convenient, because we can preselect some subset of rows/columns in advance, by thresholding the 𝑆

matrix with 𝜆𝑏𝑜𝑢𝑛𝑑 = 𝜆

1+𝐶𝑡𝑜𝑙

, where 𝐶𝑡𝑜𝑙 > 0 is a prespecified tolerance threshold. Since optimal value

𝐿∗ is expected to be sparse, we can select a small threshold 𝐶𝑡𝑜𝑙 that is expected to be bigger than∑
𝑖 |𝐿𝑖𝑗|, for each column independently.

If the 𝐶𝑡𝑜𝑙 is too big, a preselected subset of the 𝑆 matrix will be too big, and will fail to fit in the

memory, also increasing the time complexity of the optimization (which is directly proportional to the

size of this subset). For𝐶𝑡𝑜𝑙 too small, a recalculation of the subset for the column will be needed, which
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takes 𝑂(𝑝) time. Therefore, proper selection of this parameter is crucial in order for the algorithm to

be executed quickly. In case the column 𝐿𝑗 is sparse (which is true for most columns for the properly

ordered scale-free graph), small tolerance will suffice. Ideally, since most of the nodes in the graph

have a low degree, no recalculation will be needed in most cases, and a suitably small tolerance can be

used, which also results in a small active set.

An approximate algorithm can also be derived, where the subset is never recalculated, regardless

of whether the value of
∑

𝑖 |𝐿𝑖𝑗| is exceeding the tolerance. In this case, optimization is equivalent

to optimization with the approximated data matrix. The amount of approximation (in the sense of a

distance induced by Frobenius norm) is bounded by the difference in the
∑

𝑖 |𝐿𝑖𝑗| and 1 + 𝐶𝑡𝑜𝑙.

Pseudo-code of an overall coordinate gradient descent approach with active set update formula is

presented in Algorithm 1. The time complexity for finding the initial active set is 𝑂(𝑝2), and the com-

plexity of the approximate minimal degree algorithm used for sorting the columns is𝑂(𝑝). Time needed

for optimizing a single column is 𝑂(𝑠𝑎𝑠𝑠𝑘), where 𝑠𝑠 and 𝑠𝑎 are the cardinality of the selected set of

the column, and the cardinality of the active set of the column respectively (𝑠𝑎 < 𝑠𝑠 << 𝑝), while 𝑘 is

the number of iterations needed to converge. The total time complexity is dominated by the 𝑂(𝑝2), but

compared to other methods for fast sparse inverse covariance estimation4,8 the cost of each iteration

is significantly lower 𝑂(𝑝𝑠𝑠) compared to a full sweep 𝑂(𝑝2) over the entire matrix. Recalculations of

the selected set are done independently on demand for each column, although 𝑂(𝑝), it is executed for

only a few of the columns, thus amortizing the cost.

Holding the whole empirical covariance matrix 𝑆 in memory would require 𝑂(𝑝2) memory, which

is prohibitively expensive, when the dimension of the problem 𝑝 is large. Therefore, only a subset of

the covariance matrix can be available at a single time, and it has to be calculated on demand. This is

handled naturally in our approach, since optimizing a single column requires only a small fraction of

elements of the full covariance matrix once the initial active set has been calculated.

APPENDIX B: CONVEXITY PROOF
The proposed objective (4) is convex. Since 𝑔(𝐿) is separable across columns, it is sufficient to

show that optimization function for a single column is convex, which can be done by observing that

the Hessian matrix of the smooth part is equal to sum of the submatrix of the empirical covariance

matrix and a diagonal matrix with a single positive element, which is always PD:

𝐻𝑔(𝐿𝑗 ) = 𝑆𝑗𝑗 +𝐷𝑗𝑗 ⪰ 0 (B.1)

Penalty term is also convex, as it is the standard 𝐿1 norm over the optimization variables, weighted

by the nonnegative factors.37


