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Abstract

Recovering network connectivity structure from high-
dimensional observations is of increasing importance in
statistical learning applications. A prominent approach is
to learn a Sparse Gaussian Markov Random Field by opti-
mizing regularized maximum likelihood, where the spar-
sity is induced by imposing L; norm on the entries of a
precision matrix. In this article, we shed light on an alter-
native objective, where instead of precision, its Cholesky
factor is penalized by the L; norm. We show that such
an objective criterion possesses attractive properties that
allowed us to develop a very fast Scale-Free Networks Esti-
mation Through Cholesky factorization (SNETCH) opti-
mization algorithm based on coordinate descent, which is
highly parallelizable and can exploit an active set approach.
The approach is particularly suited for problems with struc-
tures that allow sparse Cholesky factor, an important exam-
ple being scale-free networks. Evaluation on synthetically
generated examples and high-impact applications from
a biomedical domain of up to more than 900,000 vari-
ables provides evidence that for such tasks the SNETCH
algorithm can learn the underlying structure more accu-
rately, and an order of magnitude faster than state-of-the-art

approaches based on the L penalized precision matrix.
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11 INTRODUCTION

A common theme across a wide variety of scientific domains is modeling the dependency structure
among a large number of variables in some complex system of interest. Graphical models provide a
convenient way to represent and analyze relations in such tasks. The preferred approach is to model
the joint probability distribution by learning the Markov Random Field, an undirected instance of a
Probabilistic Graphical Model.! Although representationally powerful, this approach is very compu-
tationally expensive and has intractable inference. Fortunately, additional assumptions and constraints
on model expressiveness lead to models with very convenient and attractive properties.

Multivariate Normal (MVN) distribution suits the observation statistics of many real phenomena,
and such an assumption in probabilistic models yields the Gaussian Markov Random Fields (GMRFs)
model. MVN assumption allows reliable GMRF learning from the data, by finding maximum
likelihood estimate of the parameters. When the observations are standardized to have a zero mean,
learning the GMREF is equivalent to estimating the inverse covariance matrix (also precision or
concentration matrix). Contemporary applications impose the need to mine increasingly larger high-
dimensional data sets, therefore efficiency and scalability are crucial. One general way of achieving
improvement in computational costs is exploiting the (apparent) structural regularities in the problem.
The most commonly used assumption is sparsity, which results in a number of desirable properties:
parsimony, increased generalizability, reduced computational and representational requirements.
Various methods are proposed to solve the sparse precision matrix estimation problem,” and will
be discussed in the Related Work section. Most of these approaches are based on optimizing the
regularized maximum likelihood, where L; norm is imposed directly on the entries of a precision
matrix.

However, sparsity in the precision matrix can be induced in a number of ways. In this work, we adopt
an objective function that regularizes the entries of the Cholesky Factor instead of the precision matrix
directly. Therefore, we are implicitly introducing the assumption that the Cholesky factor should be
sparse. In the Method section, we show the convenient properties of such formulation based on which
we propose an efficient coordinate descent optimization algorithm Scale-Free Networks Estimation
Through Cholesky factorization (SNETCH). The approach is highly parallelizable, and with the use of
an active set approach, can achieve substantial speedup. Another advantage of the approach is that as we
work directly with the Cholesky factor, the precision matrix it recovers will always be Positive Definite
(PD), while most other approaches need to regularly check that condition and correct for it (using
Cholesky decomposition, Armijo backtrack search, Schur complement, etc.), which is a significant
computational burden.

Another structural property often reported in complex systems is a power law degree distribution,
resulting in scale-free networks. Scale-free networks possess a number of interesting properties, but
the most interesting property regarding this approach is that their Cholesky factor can be made suitably
sparse. In the Empirical Evaluation section, we show that finding the maximum likelihood estimation
under the Laplace penalty on Cholesky factor is suitable for problems with the scale-free property.
Using synthetic examples, we discovered that our method reconstructed the structure more accurately
than the state-of-the-art approaches, QUIC* and BCDIC,? that optimize the common ||Z~!||; objec-
tive. We have also empirically evaluated speed and scalability of the proposed SNETCH approach for
large synthetic scale-free problems of up to 200,000 variables. Execution time results suggest that our
approach is more than an order of magnitude faster compared to two state-of-the-art methods for large
problems, Big & QUIC® and ML-BCDIC.!? In addition, we also show the efficiency and speedup that
may be achieved by the parallelization of our approach.
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Finally, SNETCH was consistently fastest when applied on three real data sets, the largest having
904,739 variables. We found that uncovered Gene co-regulation, DNA methylation, and Brain EEG
signal networks have scale-free properties, suggesting that our approach has a potential for broad appli-
cability in real problems.

2 | RELATED WORK

Estimation of unknown covariance X (or inverse covariance X~!) matrices is a problem of reconstruct-
ing (approximating) the actual matrix based on samples drawn from the multivariate distribution.
The sample covariance matrix (1/(N — 1)) Y(y — ) (y — ?7T is an unbiased and efficient estimator
of the covariance matrix (if the space of covariance matrices is viewed as an extrinsic convex cone
in RP*P). However, unbiased empirical covariance and inverse covariance estimation is not stable for
high-dimensional problems.

Under the additional assumptions on the underlying distribution (MVN), maximum likelihood can
be assessed, and it is the preferred approach to learning the covariance matrix (and its inversion).

2.1 | Maximum-likelihood estimation

A random vector x € IRP*! (a p-dimensional column vector of random variables) has a nondegenerate
multivariate normal distribution with a covariance matrix  only if £ € R”? is a PD matrix and the
probability density function of x is

d(x) = 2z)"? det(2)~/? exp (—%(x -z (x - u)) (1

where y € R?*! is the expected value of x. Assuming n independently and identically distributed
observations {x, x5, ..., X, } € RP*! the likelihood is a product of individual density functions.

As the maximum-likelihood estimate of the mean vector u is the “sample mean” vector x =
(xy + -+ +x,)/n, we centralize the data by subtracting it, and adopt matrix notation X = [x; —
X, Xy = X, ..., X, — x] € RP*", After dropping the constant scaling factor (27)~"P/? the likelihood can
be expressed as:

LE) x det(Z™H)" 2 exp (—%tr (XTz—lx)) )

In practice, it is easier to work with the log-likelihood, and the problem boils down to minimization
of negative log likelihood:

2= argminltr (XTZ_IX) - E/08|E_1| G
w1 2 2

subjected to PD constraint xI's1x >0, Vx € RP¥L,

It is easy to show that in this case, when a random variable has normal distribution, the sample
covariance matrix has Wishart distribution and its maximum likelihood estimate .S is: S = X X7 /n.
However, if n < p, as is a common case in practice, the sample covariance matrix is not of full rank
and its inverse is singular.
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2.2 | Penalized maximum-likelihood estimation

That is why additional assumptions are introduced, usually through prior on the parameter values,
which is just another perspective on regularization. Initially, it is observed that the precision matrix
encodes the independence structure, and that it should be sparse.

2.2.1 | L, norm on precision

Sparsity was originally enforced!'! by optimizing log-likelihood with a minimal number of nonzero
entries in the precision matrix: min||Z~!||,. Since that objective was an expensive combinatorial opti-
mization (e.g., greedy forward-backward search!?), it did not scale well to the applications and there
was necessity for more appropriate approaches.

2.2.2 | L, norm on precision

Subsequently, combinatorial L regularization was replaced with its convex relaxation in terms of L
norm on precision matrix.'? The introduced L, was suitable because it is convex, yet it still leads to
a sparse solution. The neighborhood selection approach® used LASSO'# formulation to select con-
nected variables by solving a number of decoupled problems. Initial approaches'> were computa-
tionally expensive, and suitable for only small problems. Graphical LASSO? improved efficiency by
proposing a faster coordinate descent algorithm. Other optimization approaches based on the first order
derivative followed, like a projected subgradient method,? greedy coordinate ascent’ and proximal gra-
dient (iterative thresholding algorithm).®

Among the first approaches that utilize the second order gradient information is QUIC,* which uses
second order Newton method-based coordinate descent with Armijo search. The direction of descent
is first found using the active set-based coordinate descent, which is followed by inexact line search to
find the step with the sufficient decrease based on Armijo rule. Iterates are held within a PD cone by
performing Cholesky decomposition, and finding the step size that ensures PD. Improving the QUIC
approach for higher dimensional data® avoids some computational burden while searching for the direc-
tion of descent by clever use of a conjugate gradient method. The work® also recommends avoiding
the Cholesky decomposition step, as with the increase in the problem size it becomes the most expen-
sive part. That is because for the types of graphs investigated, the fill-in of the Cholesky factors grows
nonlinearly with the problem size. Instead, positive definiteness is ensured by the Schur complement
method. The BCDIC approach® states further advances in this direction by optimizing several vari-
ables at the same time, using the block coordinate descent approach. Its extension'” goes one step
further by employing a hierarchical multilevel framework. All three large-scale covariance estimation
approaches® 10 use the fast METIS graph partitioning algorithm in order to differentiate submatrices
with higher and lower edge densities. This approach naturally fits the graphs generated through stochas-
tic block model (community networks) and Erdos—Renyi type process (random binary networks).

2.2.3 | L, norm on Cholesky factor

Another formulation of the problem, CSEPSNL, was proposed in Ref. 16 There, the L norm is applied
on entries of a Cholesky factor L (where 2~! = LLT), instead on the entries of the precision matrix
=1 itself.

In this work, we propose a novel optimization algorithm for the objective proposed in CSEPNL. We
carefully analyze the setup, and show that it is well suited for the coordinate descent. It also allows an
active set approach and belongs to a class of embarrassingly parallel algorithms, as optimization of the
columns of a Cholesky factor is decomposable (totally independent of each other). We reconsider the
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effects of Cholesky factors fill-in for high-dimensional networks. As it turns out, scale-free networks, if
ordered properly, are known to have sparse Cholesky factors. This is the main motivational force behind
our approach, as having sparse Cholesky factors available at all times (without additional calculations)
enables fast O(p) computation of a log det term and ensures positive definiteness, thus enabling us to
avoid step search and PD validation altogether. Also, as we will show, by exploiting the sparsity, a fast
and efficient coordinate descent method can be derived based on the active set approach, which is orders
of magnitude faster than the previous approaches. Furthermore, we will show in several examples that
even if the data is not generated according to the scale-free graph assumption, our method is still
applicable and its results are comparable to the previous approaches.

2.2.4 | Scale-free prior

There is also work oriented toward learning the scale-free graph structure from continuous data, mainly
by enforcing the exponential degree distribution on the learned graph, by using additional regulariza-
tion penalties.!” Scale-free structure prior on precision and a novel Metropolis—Hastings based sam-
pling method for learning the parameters has been proposed.!® A ranking-based method to dynami-
cally estimate the degree of a node, and a novel optimization method based on an alternating direction
method of multipliers has been introduced.!® Another approach based on a power law degree regu-
larization with the minorize-maximize algorithm was demonstrated.”® Although all approaches!’2%
reveal scale-free structures, methods where power law degree is enforced appear to be computationally
inefficient, and do not scale as well as methods for more general inverse covariance estimation. Here,
we do not claim that our formulation enforces scale-free structure in its solution, but just that scale-
free structure is a very suitable problem for our approach. Therefore, approaches that enforce scale-free
structure by using different regularization terms are out of the scope of this work.

Other approaches to inverse covariance estimation that impose different constraints like low-rank
structure®! and ridge type of penal®? are also not in the focus of this study.

31 METHOD

We adopt a parametrization based on Cholesky decomposition L, and generalize the scalar penalty A
into a nonnegative matrix A (in a way similarly proposed in?), where * is Hadamard product:

1
fLy= 5t (XTLLTX) - gloglLLT| + A= L, )

To derive optimization procedure, we analyze the objective (4) and follow the standard approach
to separate it into differentiable g(L) and nondifferentiable A(L) (sparsity-inducing) parts. Let us first
consider the differentiable part, where the trace is invariant to cyclic permutations, and the matrix
product and the determinant are commutative operations (the determinant of a product is equivalent to
the product of its determinants), allowing us to write:

§(1) = 2ir(LL X XT) — 2log(LIILT)) )

We can substitute empirical covariance estimate .S in the first term, and conclude that the determinant
of the Cholesky factor in the second term is the product of its diagonal elements, to obtain:

n n £ n 2
g(L) = Etr(LLTS) - Elog <,11 L})= Ezr(LLTS) —n Z log(L;,). (6)

i=1
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In the new reparametrization of the objective function, the log det term can be efficiently computed
in O(p) time. Furthermore, the data-dependent part can easily be separated into several independent
sub-objectives, which is the prerequisite for scaling up to high-dimensional data. In order to do so, L
can be observed as a sum of p “rank 1” p X p matrices L;, where each matrix contains the j,; column
of the L matrix and the rest of entries are set to zero (dropping the constant factor n):

1 v 11T S
s(L)= 3 Z‘; or(L5L"s) - Z} log(L;)). 7
j= /=

Now we can derive the expressions for the derivatives of the differentiable function g(L). There are
two separate types of variables: off-diagonal (when i = j), and diagonal (when i # j), so we will have
two sets of update equations. We continue by using the standard matrix calculus:

atr(L;L;.TS) | L’ ,aL'AT oL, . .
— oyl LT+ =wr| —LL"s)=L"S. 8
oL, 2"|oL, 7 T, oL, j o ®

Here S; denotes the ith row of matrix .S, and L j denotes the jth column vector of the matrix L. To

. . 0L; . . . .
get the expression (8) we used the fact that matrix # is actually a zero matrix with a single 1 on the
ij

ith row and jth column, and the cyclic property of the trace operator for symmetric matrices:

L, oL}
Tr —LTS =Tr| L,—S )
oL;; ToL;
Finally, we get the derivative of the smooth part of the objective function:
Y LijSuei#J
VeL); =14 s Co (10)
ij { Z:l ijSik_L_”’lz-]

Now we consider the penalty term. There is a rich body of literature for optimizing the L, penalized
convex functions. For our problem, coordinate descent with the active set approach naturally imposes
as an attractive method, since our penalty term is separable. Furthermore, the smooth part of function
g(L) can also be separated (as shown) into p independent tasks, one for each column, therefore enabling
a high degree of parallelism, since p coordinates can be updated in parallel. In order to derive update
equations, we first observe the sub-differential of 4(L), and its (i, j) component:

Aijs Lij >0
Vh(L);; =4—4>L;; <0 (11)
€[4, 451 Ly =

The sub-gradient of the whole optimization function (4) is:

Zk ijSki + S%”(Lij)iij» Lij 75 O,l 7é J
Vf(L)ij = Zk ijSkj -t /1,‘]‘71‘ =j (12)
(EkijSkl’Azj) —01#‘]
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where S(z,r) is a soft thresholding function:
S(z,r) = sign(z)max(|z| —r,0). (13)

Now that we have expressions for sub-gradient we can optimize the objective (4) by using coordinate
descent. Single variable updates can be found from optimality conditions (12). Again, we first show
the single variable update equation for off-diagonal variables (13), which is simply a solution to the
linear equation with a soft threshold:

( .
Z L Six + sign(Li) 4
e

S.. ’L;j # 0
JJ
Lt =9 Y L, Sy — sign(M)A; (14)
_ ki L =0,M > A,
ij J

Sjj
0L =0,|M| < 4,
& J J

where M = )" Li_Sy;.
ki
If L is a diagonal matrix (which is the case for the first iteration, when we initialize the algorithm

with identity matrix), update rule from Equation 14 is calculated in O(1) time (a result analogous to
4y,
one in™):

Sij—sign(S VA;:

—SU e U S > A
L}j = Sjj 1531 Y (15)
0, ISijI < /lij

Starting set of nonzero values can be obtained from an update rule (15). This set constitutes the
initial active set, and lower bounds the time complexity of our algorithm, since computing it requires
O(p?) time.

Update for diagonal entries are solutions of the following quadratic equations:

2

_ (Z Ll Sy + ,1,,) + (Z LSy + xii) +45;

r+1 ke ki

Lt = 16
i 2Sii ( )

The second solution to the quadratic equation is always discarded, since L; must be positive in
order for the £~! matrix to be PD. By looking at the update Equations (14) and (16) we notice
that if the column L; is sparse with complexity O(s;), calculating updates will also have O(s;) time
complexity.

Update Equations (14) and (16) represent an analytic solution for coordinate-wise optimiza-
tion procedure for SNETCH described in Algorithm 1. After the initialization with identity matrix,
the coordinates are iteratively updated until the convergence criteria is satisfied, that is the change
in gradient drops below the threshold e. Precision is obtained from optimized Cholesky factor
=17,
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Algorithm 1 SNETCH algorithm

1. procedure optimizeL(L,Y, \, €)
2 for each column of L do
3: Sactive — initActiveSet(Y, \)
4 while |VL;| < e do
for i € S,ctive do
L «— argmin(fi;(L;, \)) > Defined in (14), (16)
t < Abound(L;)
if t < A then

Sactive < initActiveSet(Y,t)
return L

© X 9w

3.1 | Model interpretation

Since finding sparse Cholesky does not necessarily force a sparse precision matrix, additional investi-
gation is needed to justify objective (4) and present a range of problems where it can fit into the sparse
inverse covariance estimation framework. Let us point out the two well-known facts about Cholesky
factorization. First, finding the sparsity pattern of the Cholesky factors corresponds to finding a chordal
completion of the precision matrix. Second, fill-in of the Cholesky factors largely depends on the node
ordering in the graph. Since the penalty of objective (4) tries to find the sparse chordal graph that com-
pletes (for a single chosen ordering) the precision matrix fitted to our data, this type of optimization
largely depends on the type of structure hidden in the data. It has been suggested earlier®*>>
free graphs naturally fits this setting, as they are easily triangulated. As learning the scale-free GMRFs
represent an important and still not enough explored problem, it is central in our experiments.

One of the biggest challenges is finding the right ordering of the variables, as this is known to
be an NP-complete problem.?® Several heuristics exist for solving this problem. In our experimental
evaluation, we use Approximate Minimum Degree algorithm as a substep for our optimization method,
which shows promising results. Further discussion regarding the model complexity and convexity can
be found in the Appendices A and B, respectively.

that scale-

4 | EMPIRICAL EVALUATION

To empirically test the characteristics of the proposed approach and its solution, we conducted extensive
evaluations on the synthetically generated problems of interest. In such examples, we are comparing our
SNETCH against two state-of-the-art approaches for learning sparse precision matrices of a medium
size (i.e., all data can fit the memory), QUIC* and BCDIC.®

Samples from the desired distribution were generated by first designing an appropriate sparse preci-
sion matrix, in which the structure of interest is encoded. Subsequently, the samples were drawn from
the MVN distribution with zero mean and the designed precision structure. In our experiments, several
types of graphs were simulated, each posing a different type of challenge. As in evaluation approaches
described in Refs. 4 and,8 we generated a linear chain and a random binary graph. Also, we analyzed
two other synthetical problems of interest, a graph with sparse Cholesky factors (an “ideal” assumption
for our model) and a scale-free graph, generated using the preferential attachment process.
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FIGURE 1 Synthetic examples obtained from a randomly sampled sparse Cholesky factor

TABLE 1 Performance on the random Cholesky problem
Random Cholesky factor (p=2,000; n=2,000; true nz = 8,652)

Model Time (s) Jaccard Precision Recall A nz

SNETCH 1.21 0.745 0.854 0.854 0.0818 8,654
BCDIC 9.04 0.500 0.667 0.667 0.0878 8,654
QUIC 20.2 0.501 0.668 0.668 0.0878 8,654

We start by generating a synthetic example based on our modeling assumption, that is, the Cholesky
factor of a precision matrix is sparse. Random Cholesky graph structure was obtained by randomly
assigning a number of nonzero entries in the Cholesky factor, and subsequently, a sparse precision
matrix was obtained as a product of sparse Cholesky factors. Sparsity is quantified with a number of
nonzero (“nz” in Figures and Tables) entries in precision matrix.

In Figure 1, on the left we see the sparsity patterns of true precision, and on the right, the precision
estimated by our approach. At the bottom of the figure are the respective Cholesky factors, which are
sparse by design. In Table 1, the results of all three competing algorithms are presented and it can be
seen that our SNETCH approach achieves superior performance in terms of speed and quality of the
obtained solution. The sparsity of the estimated solutions was tuned by hyperparameter A to obtain the
number of nz elements close to the underlying ground truth—true nz, but more importantly to be close
to competing approaches, for the sake of comparison.

Quality of the solution we measured using Jaccard index, Precision and Recall, all suggesting our
approach recovered true nonzero elements much better than competition (Table 1). However, in other
works, the approaches were typically evaluated under different structural assumptions. Therefore, we
also compared the performances on the most common synthetic examples: linear chain graph and
randomly assigned sparse precision matrix.

Linear chain was created by specifying appropriate patterns of graph connections in the adjacency
matrix. The adjacency matrix was subsequently turned into Laplacian and made diagonally dominant
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FIGURE 2 Synthetic example depicting linear chain sparsity structure
TABLE 2 Performance on the linear chain problem
Linear chain structure (p=2,000; n=2,000; true nz = 5,998)
Model Time (s) Jaccard Precision Recall A nz
SNETCH 0.69 1 1 1 0.2 5,998
BCDIC 5.45 1 1 1 0.2 5,998
QUIC 3.39 1 1 1 0.2 5,998
=" sorted by AMD Estimated =
« o 500| W : © 500 L.
%] %] ! : < !
< 1 < P < ;!
‘l‘l’ ] ‘fl’ 1000 i i ‘ﬁ 1000 e
N N ) N v N .
< S 1500 oim e < 1500 o
2000 2000
2000 0 1000 2000 0 1000 2000
. L' of sorted = . Estimated L'
i w 500F NP} o 5008 N {
h = L =] .
© (= i : o H
© 1000 °|‘|’ 1000 Ui T 1000 . i
N N N .
< 1500 < 1500 < 1500
2000 2000 2000
1000 2000 0 1000 2000 0 1000 2000

FIGURE 3 Synthetic example obtained by generating sparse random precision matrix

by adding a small value to the diagonal. The resulting matrix was taken as an underlying precision
matrix for coloring the samples from plain MVN distribution.

In Figure 2, it is shown that the (ordered) linear chain example also has sparse precision and sparse
Cholesky factor, and in Table 2, the results are showing that all approaches can perfectly reconstruct
the underlying structure, but SNETCH did it much faster.

The Random Precision matrix was obtained by assigning a prespecified number of nonzero elements
in the precision. A matrix is made symmetric by the addition of its transpose, and PD was assured by
adding some small positive constant to the diagonal. This is the most common way of generating
synthetic examples, and an example is shown in Figure 3.
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TABLE 3 Performance on the random precision problem

Random Precision Matrix (p=2,000; n=2,000; true nz = 6,432)

Model Time (s) Jaccard Precision Recall A nz
SNETCH 0.62 0.840 0911 0914 0.162 6,446
BCDIC 7.78 0.986 0.992 0.994 0.11 6,440
QUIC 3.24 0.986 0.991 0.994 0.11 6,444
. True 3 02'1 sorted from Data . Estimated =
Q500 9 g 500
3 3 < i
~ 1000 — 1000 — 1000 AL G
Il I
& 1500 g 1500
2000 00 2 2000
0 1000 2000 0 1000 2000 0 1000 2000
. True L' . L' from sorted = . Estimated L'
© 500 N 500 3 500
(o)) — ©
= 1000 & 1000 19 4000 i
I I Il i
N
£ 1500 g 1500 € 1500
2000 2000 2000
0 1000 2000 0 1000 2000 0 1000 2000

FIGURE 4 Synthetic example depicting scale-free type of structure

However, a Cholesky factor is dependent on ordering the variables (rows and columns), and
it can be made sparse (up to a certain point) by appropriately rearranging the order. One known
heuristic is Approximate Minimum Degree (AMD) sorting, which tends to result in sparse Cholesky
factors. Such a property is visualized in the middle plots of Figure 3, where the true precision
was sorted by AMD. After reordering, our approach was able to reconstruct the precision faster
but slightly less accurate (for the given sample size) than the competing approaches as shown in
Table 3.

Nevertheless, in practice, the most interesting structures lies somewhere in-between the two
extremes of random (no-structure) and linear chain (total-order). We will therefore, from now on, turn
our focus to such highly relevant structures.

4.0.1 | Scale-free networks

Scale-free networks have very intriguing characteristics,?’-?8 and are found in a number of real-world
phenomena, from paper citation networks to world wide web and networks that regulate processes in
living cells.?” We evaluated the appropriateness of our approach to discovery of structures with the
scale-free property.

We generated scale-free problems by the process of preferential attachment with Poisson growth.3?
The graph is started with several (pre-specified) groups of densely connected nodes (cliques), and every
new incoming node was added to the graph connecting to k of existing ones, where k was drawn from
the Poisson distribution (based on the probability proportional to the node degree).
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TABLE 4 Performance on a scale-free problem
Scale-free structure (p=2,000; n=2,000; true nz = 14,466)

Model Time (s) Jaccard Precision Recall A nz
SNETCH 0.78 0.407 0.577 0.580 0.0775 14,550
BCDIC 5.89 0.364 0.532 0.536 0.0717 14,548
QuIC 4.25 0.364 0.532 0.536 0.0717 14,550
Execution times Parallelization speedup
% 108 ML-BCDIC 1
g BIG-QUIC 101
8
o // g 5
2 10t 18 .
g 2 6
% %)
£ 4
[0}
£ 10? : 2
. . . . 0 . .
0 50,000 100,000 150,000 200,000 250,000 0 2 4 6 8 10 12
number of nodes number of workers

FIGURE 5 Left panel presents comparison of execution times for competing methods on scale-free problems of
up to 200,000 variables, performed in a single threaded setup. On the right panel is parallelization speedup that can be
achieved for SNETCH approach on the problem of 200,000

An example of precision with scale-free properties is depicted in Figure 4. On the left side is the true
underlying precision, and its Cholesky factor is sparse. As typically, in applications, the variables are
not sorted, the middle plots show how they can be appropriately sorted, by sorting the initial active set
obtained from the observed data. On the right is the structure estimated by our approach, and results
from Table 4 again point that our approach reconstructs the underlying dependencies better and faster
than the alternatives.

4.0.2 | Scalability

In all those examples, our algorithm was the fastest. The next more involved benchmark aimed to
characterize SNETCH against more scalable alternatives BIG & QUIC® and ML-BCDIC'? on much
larger problems where data is larger than the computer memory. Towards this objective, we generated
synthetic problems with the scale-free structure of various sizes: 50,000; 100,000; and 200,000
variables.

In the left panel of Figure 5, for logarithmic y-axes, it can be seen that our approach achieves exe-
cution times that are sometimes two orders of magnitude faster than the state-of-the-art competitors.
Table 5 presents the same results in greater details, and it should be noted that in all experiments
SNETCH !, BIG & QUIC, ? and ML-BCDIC 3 were executed in a single threaded setup.

!https://github.com/vladisav/SNETCH
2 http://bigdata.ices.utexas.edu/software/1035/
3 https://github.com/erantreister/Multilevel- BCDIC.m
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TABLE 5 Run time (sec) comparison for SNETCH versus BIG & QUIC and ML-BCDIC methods on synthetic
scale-free data

Scale-free SNETCH ML-BCDIC BIG & QUIC
p= 50,000 time 126.9 2,230 13,221
249,970 nz 281,260 284,260 286,696
p=100,000 time 539.4 18,031 74,425
499,930 nz 765,990 752,250 757,194
p=200,000 time 1,611.8 78,349 307,081
2,199,434 nz 2,061,680 2,070,664 2,070,740

4.0.3 | Parallelization

Moreover, as our approach is highly parallelizable, we show on the largest example how much speedup
may be achieved. The right panel of Figure 5 shows how the optimization part can be speedup for
up to 12 workers. Since each of the sub-objectives can be optimized in parallel, the linear speedup is
expected. Experimental results are in agreement with the expected degree of parallelism and even show
superlinear speedup for some configurations, which can be explained by better cache utilization and
less communication overhead, since only a small fraction of data is needed to optimize each column.
Parallelization was achieved by using the Matlab Parallel Computing Toolbox.

4.1 | Applications

Uncovering the connectivity pattern among a large number of variables is a common topic across a
number of domains, and sparse GMRF learning was used for tackling the problems from the biological
functioning of a cell, to brain connectivity patterns, up to interactions in the social networks.

In order to characterize the structural properties of some real data sets, we applied our SNETCH
approach on three high-impact biomedical applications: human gene expression during respiratory
infection,>! DNA methylation in healthy people,3? and brain electroencephalogram (EEG) signals.?3

The gene expression data set was obtained from GEO I and it constitutes 12,023 probes (features,
genes) measured in 2,886 blood samples drawn from human subjects infected with respiratory viruses
(H3N2 Influenza type H3N2, Rhinovirus and Respiratory Syncytial Virus).3! The data was standard-
ized to have a zero mean and normalized to have unit values on the diagonal of sample covariance
matrix. Extracting gene co-regulation network is of high biological interest as co-expressed genes
are functionally related, often involved in the same pathways or controlled by the same regulatory
process.>*

The DNA methylation data set is also obtained from GEO 2 and has methylation levels measured in
473,034 genomic locations, for 656 healthy humans (samples) involved in the study on the utility of
methylation markers as predictors of biological age.>” The data were transformed with logit (inverse
sigmoidal logistic) function, then standardized and normalized. Extracting DNA methylation correla-
tion network is important as methylation is one of the most stable epigenomic mechanisms through
which the environment affects the functioning on an organism.>>

The brain EEG data set is obtained from an online repository 3. It consists of 910,476 signals mea-
sured for 2 s by Emotive EPOC device. After removing 5,737 time-series that have corrupted readings

I GSE73072, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072
2 GSE40279, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40279
3 http://www.mindbigdata.com/opendb
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FIGURE 6 Degree distributions of extracted Gene co-expression Network, DNA methylation network and Brain
EEQG signal network exhibit strong scale-free property

TABLE 6 Network structure learning time

Data set Size SNETCH ML-BCDIC BIG & QUIC
Gene Expr time 130.5 342.1 1,442.9
p=12,023 nz 35,123 33,677 35,921

DNA Meth time 12,667 400,000+ 400,000+
p=473,034 nz 613,868 - -

Brain EEG time 32,803 400,000+ 400,000+
p=904,739 nz 1,090,607 - -

(constant signal), the data was standardized and normalized. Dependencies among recorded events
may provide important insight on how the brain responds to different situations.>3

For certain sparsity levels, we have obtained a gene co-regulation network of 35,123 nonzero ele-
ments, a DNA methylation correlation network consisting of 613,868 nonzero elements, and a brain
EEG correlation network of 1,090,607 elements. We have characterized their node degree patterns,
which are shown in Figure 6. It can be seen that they all have a very distinct pattern of a power law,
which on log—log scale appears as a straight line. These real examples, and a number of others, suggest
the potential for wide applicability of the proposed SNETCH approach.

Table 6 shows that our approach estimated the structure in smallest amount of time for each of the
data sets, while on two high-dimensional problems competing approaches have not finished optimiza-
tion by 400,000 s (Big & QUIC reported finishing the second iteration at 104,596 s on DNA data, and

the first iteration at 140,013 s on EEG data.)

S | DISCUSSION AND FUTURE WORK

We presented a new method for learning large-scale GMRFs, and showed that it is a well-suited tool for
problems with the scale-free structure. Comparing to previous work on large scale GMRF learning, our
method is better fitted to problems where the chordal pattern can be fitted efficiently, a property sug-
gested by others to be true for scale-free graphs. We also showed that the same method can be applied
to several other sparse problems with different types of a structure with reasonably good performance.
Results show significant speedup on several synthetical data sets. Finally, our method is applied to gene
expression, DNA methylation, and brain EEG data, where we found scale-free structures. Since sparsity
of a Cholesky factor largely depends on proper node labeling (which is known to be NP-complete prob-
lem), we proposed using the Approximate Minimum Degree algorithm as a substep in order to alleviate
this problem, which proved to be a reasonably good solution in our experiments. Further investigation
is needed in order to improve the model with more advanced node ordering strategy. Also, in our
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experiments, our first order method performed well, but implementing the presented approach into the
quadratic solver could provide better convergence rates. Our approach might be further extended for
learning a discriminative version of sparse GMRF named sparse Gaussian Conditional Random Field,
which is suited for structured regression problems.>¢
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APPENDIX A: TIME AND MEMORY COMPLEXITY ANALYSIS

Several computational improvements contribute to the speedup achieved by the SNETCH algorithm.
First, log det term can be calculated in linear time, as shown in (7). Second, feasible space coincides
with the PD cone, and therefore no additional effort needs to be taken in order to ensure positive
definiteness. Third, each column of Cholesky factors can be optimized independently, thus decompos-

ing the problem into smaller, much easier to solve subproblems. Fourth, each subproblem is sparse,
enabling us to keep only a subset of the covariance matrix in memory at a single time, as will be shown.
This sparsity is then exploited using the active set based coordinate descent approach.

While selecting the active set for each of the subproblems we rely on the following observation: If
the magnitude of the smooth part of the subgradient component (i, j) of the objective function is less
than 4, then element L;; will belong to the fixed set. This is a well-known trick when using a coordinate
descent active set approach with L; penalty, and is already used in Refs. 4 and 8. Therefore (based on
equation (14)), a simple condition can be derived for selecting the active set:

Sacriue = {i € [lp]” Z ijSkil > /1} (Al)
k

Variables not belonging to the active set will belong to the fixed set, and can be skipped when
updating. It should be noted that the diagonal elements will always be in the active set.
Let us define a set of active indices for this column in the current iteration:

St

active

={ke 1..P|L;;1 #0}. (A.2)

This set uniquely determines the variables that contribute to the active set equation (A.1) in the current
iteration ¢, since all other variables in column j are zero. Initially, our starting point is L = I, therefore
S will contain a single element S! = = {j}.
active active

We define c; as the biggest element in the .S’

wctive subset of the ith row of .§' (infinity norm):

¢ = ISilloe = max(Siy,, S soes Sit.) (A3)

where the set of indices {k,, k,, ..., k,} corresponds to the active set S’
column j.
Using the triangle inequality and the previously defined c; the following inequality can be derived:

ve in the iteration ¢ of the

A< XLyl < D ILylISy1 € Y 1Lyle; <¢; X 1Lyl (Ad)

Now we can derive the following bound: If the element L;; belongs to the active set, then the maxi-

mal element of the active subset of the ith row of the .S matrix must be larger than ¢; > ﬁ Initially,
>iIL; ;| will be equal to one (which gives us the initial active set by thresholding the empirical covari-
ance matrix .S with A*%). If the I, norm of the active subset of the ith row of empirical covariance
matrix .S is less than the derived bound, then element L; ; will not belong to the active set. This is
convenient, because we can preselect some subset of rows/columns in advance, by thresholding the .S
matrix with A,,,,0 = Témz’ where C,,, > 0 is a prespecified tolerance threshold. Since optimal value
L* is expected to be sparse, we can select a small threshold C,,; that is expected to be bigger than
>iIL; ;|, for each column independently.

If the C,,; is too big, a preselected subset of the .S matrix will be too big, and will fail to fit in the
memory, also increasing the time complexity of the optimization (which is directly proportional to the

size of this subset). For C,,; too small, a recalculation of the subset for the column will be needed, which
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takes O(p) time. Therefore, proper selection of this parameter is crucial in order for the algorithm to
be executed quickly. In case the column L; is sparse (which is true for most columns for the properly
ordered scale-free graph), small tolerance will suffice. Ideally, since most of the nodes in the graph
have a low degree, no recalculation will be needed in most cases, and a suitably small tolerance can be
used, which also results in a small active set.

An approximate algorithm can also be derived, where the subset is never recalculated, regardless
of whether the value of ), |L; ;| 1s exceeding the tolerance. In this case, optimization is equivalent
to optimization with the approximated data matrix. The amount of approximation (in the sense of a
distance induced by Frobenius norm) is bounded by the difference in the 3, |L;;| and 1 + C,;.

Pseudo-code of an overall coordinate gradient descent approach with active set update formula is
presented in Algorithm 1. The time complexity for finding the initial active set is O(p®), and the com-
plexity of the approximate minimal degree algorithm used for sorting the columns is O(p). Time needed
for optimizing a single column is O(s,s,k), where s, and s, are the cardinality of the selected set of
the column, and the cardinality of the active set of the column respectively (s, < s, << p), while k is
the number of iterations needed to converge. The total time complexity is dominated by the O(p?), but
compared to other methods for fast sparse inverse covariance estimation*8 the cost of each iteration
is significantly lower O(ps,) compared to a full sweep O(p?) over the entire matrix. Recalculations of
the selected set are done independently on demand for each column, although O(p), it is executed for
only a few of the columns, thus amortizing the cost.

Holding the whole empirical covariance matrix .S in memory would require O(p*) memory, which
is prohibitively expensive, when the dimension of the problem p is large. Therefore, only a subset of
the covariance matrix can be available at a single time, and it has to be calculated on demand. This is
handled naturally in our approach, since optimizing a single column requires only a small fraction of
elements of the full covariance matrix once the initial active set has been calculated.

APPENDIX B: CONVEXITY PROOF

The proposed objective (4) is convex. Since g(L) is separable across columns, it is sufficient to
show that optimization function for a single column is convex, which can be done by observing that
the Hessian matrix of the smooth part is equal to sum of the submatrix of the empirical covariance
matrix and a diagonal matrix with a single positive element, which is always PD:

Penalty term is also convex, as it is the standard L; norm over the optimization variables, weighted
by the nonnegative factors.?”



