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Abstract.

Spatial processes may be sampled by point sampling or by aggregate sampling. If aggregate
samples are collected over a regular grid and used to represent the central point of each
aggregation area, the aggregate sampling functions as a low-pass filter and may eliminate
aliasing during spatial estimation. To assess potential accuracy improvements, a numerical
procedure for calculating the estimation error variance was developed. Analysis of point and
block sampling techniques for kriging and inverse distance interpolation showed that for the
same sampling density, block sampling provides better estimation. To achieve the same error
levels, over 30%-50% more point samples were required than block samples. Furthermore,
interpolation of block sampled data resulted in lower error variability and surfaces with more
visual appeal.



1. Introduction

Representations of most spatial processes are based on sampling at sparse and discrete
locations. Remote sensing and machine mounted sensors can provide very dense or essentially
continuous sampling, but the applicability of these procedures is still limited for most biological
and physical processes. Traditional sampling can be used to collect point samples or aggregate
samples. For point sampling, a single sample or multiple samples from a very small spatial
extent are collected per location. Sample analysis yields the true value of the underlying spatial
attribute plus any analytical error at each location [Starks, 1986]. The term aggregation sampling
is used to describe situations where samples are extracted from a larger area and averaged to
represent that area or its central point. Examples of spatial aggregation techniques include block
sampling in soil science [Webster and Burgess, 1984], throughfall sampling in hydrology [Hill et
al., 1999], marine surveys [Pennington and Volstad, 1991], and regionalized data in economics
[Anselin, 1988].

One of the primary purposes of sampling is to collect data for spatial interpolation
procedures. The correctness of an interpolated surface depends on several factors such as the
sampling design and density [Burgess et al., 1981; Olea, 1984; Rouhani, 1985; Bogaert and
Russo, 1999] and the interpolation procedure [Laslett et al., 1987; Weber and Englund, 1992].
Interpolation procedures include geostatistical-based kriging [Krige, 1963; Cressie, 1993], and
deterministic methods such as inverse distance interpolation [Isaaks and Srivastava, 1989] and
splining [Hutchinson and Gessler, 1994].

The type of sampling, point or aggregated, may also play an important role. Generally, point
sampling should provide more accurate spatial estimation near sampling locations while
aggregation sampling should allow better overall estimation at the expense of losing some of the
accuracy near sampling locations. Signal processing theory can help in analyzing this difference
more formally. If one collects aggregate samples over a regular grid and uses the data to
represent the central point of the aggregation area (hereafter referred to as block sampling), block
sampling can be regarded as point sampling of filtered underlying spatial process since the
within cell aggregation functions as a low-pass filter.

The possible benefits of low-pass filtering are explained by the sampling theorem [Proakis
and Manolakis, 1996]. In a two-dimensional case, the theorem implies that a square sampling
grid with spacing D=1/2F is sufficient for perfect reconstruction of a two-dimensional signal
with a maximum spectral bandwidth of F. In practice, the sampling theorem is only a guide,
since an ideal reconstruction procedure assumes an infinite spatial domain and so exists just in
theory. Connected with the sampling theorem is the problem of aliasing [Proakis and Manolakis,
1996]. Every frequency component of a signal above 1/2D (half the sampling frequency), also
called the cut-off frequency, converts to noise after its reconstruction. To prevent this, signals are
typically low-pass filtered (anti-aliased) prior to sampling to cancel out the part of the signal
above the cut-off frequency and prevent it from becoming noise. From this perspective, the low-
pass filtering resulting from block sampling may be desirable. Anti-aliasing filters used in signal
processing are near perfect with respect to cutting-off all components of a signal with
frequencies above 1/2D. Such filters are not applicable to block sampling since their coefficients
follow fairly complex functions while practical block sampling patterns correspond to filters with
few equal coefficients. Therefore, block sampling is a crude approximation of an optimal anti-
aliasing filter.



If the benefits of block sampling suggested by signal processing theory result in improved
spatial estimation, block sampling may be a way to reduce sample analytical costs while
maintaining prediction accuracy or to achieve better prediction accuracy without increasing
costs. Concerns over sampling and analysis costs often result in less than optimal sampling
densities, which leads to poor spatial estimates in disciplines such as agriculture [Mallarino et
al., 1999]. Thus, the objective of this paper is to determine if data aggregation can improve
spatial estimation by kriging and inverse distance interpolation as compared to traditional point
sampling. We present both estimation accuracy and economic analyses. In addition, we
examined (i) the influence of different covariogram models on spatial estimation and (ii) the
influence of sampling density on kriging and inverse distance interpolation.

The paper is organized as follows. Section 2 provides a review of spatial statistics, the
statistically based estimation procedure of kriging, and the non-statistical procedure of inverse
distance interpolation, as well as more formal treatment of point and block sampling. In Section
3, we propose a procedure for the analysis of the influence of block sampling on spatial
interpolation that includes (i) fast generation of artificial spatial layers satisfying desired
covariograms, and (ii) automatic estimation of covariograms of aggregated spatial data from
known covariograms of original spatial data. Finally, the experimental results and discussion are
presented in Section 4.

2. Preliminaries

Data points close together in space are often more alike than those that are far apart. Non-
statistical spatial estimators, such as inverse distance interpolation, implicitly use this notion of
spatial continuity and often prove very successful at predicting data values at non-sampled
locations. Alternatively, spatial statistics model spatial continuity. From these models, a
statistical spatial estimation procedure called kriging has been developed. This section
summarizes background information for spatial statistics, kriging and inverse distance
interpolation needed in the rest of the paper. Also, point and block sampling are formally
presented.

2.1. Spatial Continuity and Covariogram

In this paper it is assumed that spatial data over a given region, denoted {z(S), SLID}, are a
realization of a second-order stationary and isotropic random process, {Z(S), SLID}, where D is a
fixed subset of R covering the region. Second-order stationarity implies that Z(S) has constant
mean with covariance that satisfies

Cov( Z(s1), Z(S) ) = Czz2(s1-%2) = Czz(h), S1, & 0D, h OR?, (1)

where Czz(h) is the covariogram. In the rest of the paper we assume, without loss of generality,
that the mean of Z(S) is zero. A scaled version of the covariogram, pzz(h)=Czz(h)/Czz(0), defines
an autocorrelation function called the correlogram. The process is isotropic if the covariogram
depends only on the distance between points,

Crz(51-52) = Czz(l | s1-52 || 2) = Czz(h), S, $ 0D, h>0, 2

where h is the Euclidean distance between §; and Sp.



To guarantee the validity of statistical spatial estimation which demands positive variance of
any linear combination of random variables from Z(S), a covariogram (or correlogram) model
should be positive-definite,

Var(z}\iZ(Si)]ZZZ)\i)\jCZz(Si _Sj)ZO. (3)
i i

Covariance C(h) can be expressed as
C(h) = ¢cg 0(h)+c; @(h; R) , (4)

where @(h; R) is a positive-definite function, &(h) is a Dirac function, cg is the nugget effect,
CotCy is the sill, and R is the range. Checking positive-definiteness of covariogram (or
correlogram) models is a cumbersome procedure [Chung, 1968; Christakos, 1984], and as a
result just a few functions, @(h; R), that are known to be positive-definite are used in practice.
Some of the most popular are

— 3 .
1. Spherical: @h:R) =4t 1-5h/R+0_-5(h/R) , if 0<hs<R
0, otherwise
. (eXIO -3—hJ, if 0<h<R
2. Exponential: @h;R) =+ R 5)
0, otherwise

( 2
. exp - | it oshsR
3. Gaussian: @oh;R) =/ R2 :

0, otherwise

When common models do not properly fit observed covariance it is necessary to check the
positive-definiteness of alternative models. Using Bochner’s theorem [Bochner, 1959], it is
possible to check the positive-definiteness of Czz(h) in the spectral domain. The Fourier
transform of Czz(h) for a second-order stationary process Z(S) is defined as a real function

Szz(w) = Isz(h)e_j<w'h>dh : (6)
RZ
where (w,h) = wh+uph; in a two-dimensional case and Szz(w) is called the power spectrum of
Z(s) [Papoulis, 1991]. If the power spectrum Szz(h) is positive [Yao and Journel, 1998] Czz(h)
is positive-definite. The Fast Fourier transform (FFT) can be used as a discrete approximation of

a Fourier transform allowing computationally efficient transformations between spatial and
spectral domains [Brigham, 1988]. The FFT for a two-dimensional case is computed as

Kl_le_l

Szz(My,My) = D" D Crz(ky,ky) (expl- 2mj(kymy +k,my)], (7)
K,=0K,=0



where Czz(ky,k2) and Szz(mg,mp) are properly discretized functions Czz(h) and Szz(w).
Extending Bochner’s theorem to the discretized case [Yao and Journel, 1998], if Czz(ky,ko) is
positive definite Szz(mj,my) is a positive real function and vice-versa.

2.2. Ordinary Kriging

The problem of spatial estimation is to estimate the values of z(S), SLID, within some region
D, given the values z(S)), z(S),...Z(S), observed at n known spatial locations, where z(S) is a
realization of an underlying random process Z(S). Ordinary kriging [Krige, 1963; Matheron,
1971] is the best linear unbiased estimator under the assumptions that Z(S) is second-order
stationary with known second-order statistics. In practice, the assumption of second-order
stationarity is sometimes violated, and there are kriging approaches for these situations [Cressie,
1993]. In ordinary kriging Z(S), SLID, is expressed as a weighted sum of values from sampling
locations, Z(S),

n n
2(s) = D Aiz(s), DA =1, (8)
i=1 i=1
with the coefficients Aj chosen to minimize the error variance,

02 (so) :Var(2<so>—2(so>):Var[Z(so)—ZAiZ(si)] -
i1
=Cz7(0)+ > > AiACzz(hyj) —=2> A Czz(hig)
] i

9)

where hj; =s -5, and hjp = S — . Therefore, covariogram estimation must precede kriging. The
expression for weights Aj can be derived through the use of Lagrange multipliers [Matheron,
1971; Davis and Grivet, 1984] and is

- e'C_lc) e,

r=Clc+ =
eC e

(10)
where A is a vector of weights, e is a vector of ones, C is a covariance matrix with elements
Czz(hij), and c¢ is a vector with elements Czz(hio).

Usually, only points in a certain neighborhood of S are used in the estimation of Z(Sy)
instead of all n sample points. The benefits of this are twofold: the calculation of coefficients A is
faster without much loss in estimation accuracy, and it allows for the use of kriging if Z(S) is not
stationary but stationarity can be assumed for small regions.

2.3. Inverse Distance Interpolation

The other type of spatial estimator considered in our analysis is inverse distance
interpolation. It does not require statistical analysis and covariogram fitting, which allows for
very fast estimations at unknown locations. Although it does not achieve statistically optimal
estimation like kriging, errors from inverse distance interpolation are reported to be fairly similar
to that of kriging, and sometimes, surprisingly, even better [Weber and Englund, 1992]. These
features make the inverse distance method popular among practitioners. The estimated value at
an unknown location Sy, z(Sp), is calculated as a linear combination of values at known locations
according to (8) with weights A; calculated as
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)\i = n
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: (11)

and djg =||si —80”2 is distance between S and S, while p is an arbitrarily chosen parameter.

Observe that for p=0, the inverse distance estimator is a simple mean estimator, and for p=c it is
equivalent to the nearest neighbor estimator. In practice, p is typically chosen to be in the interval
[1/2, 2], with larger values assigning larger weight to the closest samples and with p=2 being the
most popular choice. If Z(S) is second-order stationary, equation (9) can be used to estimate the
error variance of the inverse distance estimator. Similar to ordinary kriging, use of a moving
neighborhood instead of a global one can be beneficial for inverse distance interpolation.

2.4. Point and Block Grid Sampling

In point sampling, samples are taken at the intersections of an imaginary grid laid over the
surface. We denote point sampled data as {Z(S)}, i=1,2,...n, where § is the location of sample i.
In block sampling, multiple sub-samples are taken within each block (encompassing each grid
intersection) and combined to form one aggregate sample for analysis. We denote block sampled
data as {y(S)}, i=1,2,...m, where § is the location of the center of block i.

In practical applications of point sampling, as shown in Figure 1.a, several sub-samples are
sometimes taken within a very small area around each sampling location instead of taking just
one sample. This procedure can decrease the nugget effect and, therefore, result in better spatial
estimation. Since in our analysis we assume that the nugget effect in the spatial data is zero, both
types of point sampling are equivalent. In Figure 1.b we show an example of block sampling on
a regular square grid, preferable under assumptions of second-order stationarity and isotropy
[Olea, 1984], with squared aggregation area of the side equal to the sampling distance.

Assuming a uniform block sampling pattern, block sampled data {y(S), s [J D} represent a
finite sample from the random process Y(S) obtained by low-pass filtering the original random
process Z(s),

Y(9) =Z(s) * b(s), (12)
where b(S) is a deterministic linear filter corresponding to the block sampling pattern. In general,
block sampling can correspond to continuous or discrete filtering. In continuous block sampling,
Y (S) can be expressed analytically as
Y(9 = j Z(s-s;)b(s;)ds; . (13)
siOR?
In discrete block sampling, which is of more practical interest, a small finite number of sub-

samples are averaged and therefore b(S) is a discrete function. Thus, Y(S) can then be expressed
as

V(9= Z(s-5)bs). (14)
i=1



where mg is the number of sub-samples taken within the block and 2b(s) = 1 as the sub-sample
aggregation is a simple averaging of Z(S) over a block. If all sub-samples are weighted equally,
all filter coefficients, b(S), are the same, b(S)=1/mg.

3. Calculating Estimation Error Variance

To analyze the influence of data aggregation and sampling density on spatial estimation, a
proper procedure for the calculation of estimation error variance is needed. When interpolating
point sampled data taken from an original process, Z(S), the estimation error variance, GPZ(SQ),
SUID, depends only on the applied estimation method and can be expressed as

5 A
op2(s0) = Var(z(se) - 2(s9)) (15)
which for both kriging and inverse distance interpolation can be calculated using equation (9).

The estimation error variance with block sampled data can be expressed as

052(s0) :Var(Z(s0>—?(s())):Var[Z(so)—zAi(sow(si) , (16)
i=1

where \?(So) is the spatial estimation of the filtered process Y(S), and Ai(Sy), i=1,... n, are the
coefficients obtained for the estimation of point S. Since Y(S) can be considered as a linear
unbiased estimator of Z(S) and \?(SO) is also a linear unbiased estimator of Y(Sy), from (16) it
follows that

05°(s0) = Cz2(0)=2> Ni(Sp)Czy (S =)+ D, > Ai(So (S )Cyy (Sp =S —;). (17)
i1 i=1j=1

where Czy is the cross-covariance of processes Z(S) and Y(S), and Cyy is the covariance of the
filtered process Y(S). Both Czy and Cyy can be expressed as convolutions of the covariance of
the original process Z(S) and a linear filter b(h) [Papoulis, 1991],

Czy (h) =Czz(h)Tb(=h),  Cyy (h) = Czz(h) Do(-h) Tib(h) . (18)

As can be seen, (17) resembles (9), and therefore, procedures for the calculation of Opz(so) and
GBZ(SO) are similar. The only difference is that (17) requires using Czy and Cyy, and in subsection
3.1 we discuss different methods for their calculation. Since some of our comparisons of point
and block sampling are based on generated layers, in subsection 3.2 we present an efficient
method for generating spatial layers with desired covariograms.

3.1. Calculating Cross-covariance Czy and Covariance Cyy

If b(h) is a continuous filter, equation (18) can be solved analytically using equation (13).
However, except for the case of simple radial filters, analytical solutions can be difficult to
compute. If the problem is transformed to the Fourier domain, convolution can be performed by
simple multiplication. In this approach Czy and Cyy can be calculated as

Cav(h) = F487,(@)Hy (0)), Cyy()=FHSz(0)(Hp(0)?), (19)



where Hp(w) is the Fourier transform of filter b(h), and F! represents the inverse Fourier
transform. However, this approach involves the calculation of Fourier integrals, which can also
be difficult.

Therefore, for most practical cases, numerical approximation of Czy and Cyy using equation
(14) is an acceptable solution. For the experiments presented in section 4, Czz, Czy and Cyy were
calculated along a regular grid with NXN = 161x161 points spanning an area of size (—2D,2D) x
(-2D,2D), where D is sampling distance. Applying equation (14) in the case of sparse block sub-
sampling requires O(szB) operations for Czy and O(szBZ) operations for Cyy. If the block
sub-sampling is dense, mg=O(N) and the calculation of Czy and Cyy requires O(N3) and O(N4)
operations, respectively.

In cases with dense block sub-sampling, numerical approximation of equation (19) using an
FFT can be more efficient. Since an FFT of K elements takes O(K[IbgK) operations [Brigham,
1988], O(NzlogN) operations would be needed for both Czy and Cyy, which is a significant
improvement for large N. While FFT-based covariance estimation has been successfully used to
automatically compute covariance tables from available spatial data [Yao and Journel, 1998], we
used equation (14) in our experiments for calculating both Czy and Cyy.

3.2. Fast Generation of Spatial Layers

Stationary Gaussian fields meeting a specified covariance model can be generated using a
moving averages method [Journel, 1974; Oliver, 1995]. To generate a Gaussian random field,
covariance should be expressed as the convolution of a function and its transpose,

C,z(h)=g* gT. A spatial layer, z(S), with covariance function Czz(h) and mean O can be

generated by the convolution of g with a two-dimensional stationary random field with a Dirac
covariance measure, X(S), as

z(s)=jg(s—s )x(< )ds . (20)

Generated data are usually discrete nodes on a grid, so the integral in (5) is replaced by a sum. In
this case, assigning random numbers from a Gaussian distribution to the nodes of a grid can
generate the discrete random field x(ky,K2).

The main problem with this approach is calculating g(S), and it is usually reduced into two
steps [Oliver, 1995]:

1. Calculating the Fourier transform of the covariance function denoted by S(w);
2. Calculate the inverse Fourier transform of /S @) to obtain g(s).

An analytical solution for g(S) that represents a corresponding moving average filter has been
derived in Oliver [1995] for exponential and Gaussian isotropic two-dimensional covariance
models. After this step, discretized values of g(s), denoted g(ky,k2), can be used to generate the
desired layer from x(ky,k>).

Here, we propose a computationally efficient FFT-based procedure that finds the coefficients
of a moving average filter, g(ky,K2), and allows the generation of Gaussian layers with any valid
covariance, C(h), including anisotropic ones. Given a grid distance, D, and a square of K? grid
nodes, our procedure for generating layer with desired covariance C(h) is as follows:
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1. Assign K? randomly chosen values from a Gaussian distribution with mean 0 and variance 1
to the grid thus forming X(K1,k>), k1,k, =1,2,... K. To speed up the procedure in the following
steps, K should be a power of 2.

2. Calculate the FFT of the desired and properly discretized two-dimensional covariance,
C(kq,k2), to obtain its power spectrum, S(mi,my), my,m, =1,2,... K. Since C(h) is positive-
definite, S(mj,m,) will be real and positive.

3. Find the coefficients of the discrete moving average filter, g(ki,k2), by calculating the inverse
FFT of ,/S(m,m,) .

4. Apply filter g(ky,kz) to random layer x(k1,k2) to obtain Z (ki,k2).
5. Finally, scale Z (k1,kz) to derive layer z(k,k2) with specified mean and variance.

6. Depending on the size of filter g(s), boundary points of the generated layer z(S) should be
removed, since itS spatial variability will be slightly higher than desired. Our approach was to
remove all points at distances less than desired range, R, from the edges of the generated

layer.
A comparison of the correlogram of a simulated layer and the desired correlogram (spherical
with parameters D = 5m, K = 256, and range R = 200m) is shown in Figure 2.

4. Experiments and Discussion
The following assumptions were used for all experiments:

1. The two-dimensional process describing spatial variability was second-order stationary and
isotropic.

2. The sampling grid was regular and square.

3. Both kriging and inverse distance interpolation were performed using the nearest 16 samples
to estimate the unknown location as shown in Figure 3. The use of local samples instead of
all samples is more robust to non-stationarity and is computationally faster.

4. The nugget effect was assumed to be zero. The nugget effect can be considered as the sum of
measurement error and microscale processes [Cressie, 1993], causing estimation error that
can not be avoided by any kind of interpolation. In our experiments the goal was to compare
different estimation and sampling techniques, and adding a nugget effect would distract from
the analysis.

According to these assumptions we have used equations (9) and (17) to compute the estimation
error variance, Oz(s), s [ block, for 1600 regularly spaced points within an inner square, block,
of size DxD from Figure 3, where D is the grid distance. Therefore, as mentioned in 3.1, to apply
equations (9) and (17), Czz, Czy and Cyy should be calculated along a regular grid with NxN =
161x161 points spanning an area of size (—2D,2D)X(-2D,2D). Averaging the 1600 values
allowed us to accurately estimate the average error variance for a grid block, G°. Also, using
0%(s), we were able to compare the performance of the estimators across a block.
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4.1. The Influence of Covariogram Models

First, we examined the influence of grid distance on the error variance of kriging and inverse
distance interpolation for point sampled data. Exponential, spherical and Gaussian covariograms,
all with range R=100m, nugget effect zero, and sill one were examined. Error variances were
examined for grid distances D = 20, 40,... 300m. Normalized average error variances of kriging

over a block, 52/ C,2(0), are shown in Figure 4a as a function of grid density. Observe that

instead of D we report D/R, which is invariant to scaling of D and R, and that G2/ Czz(0) isin
fact equal to 1- r2, with r? denoting the coefficient of determination of spatial estimation.

Similar normalized average error variances resulting from inverse distance interpolation
with p=2 are shown in Figure 4b. For a given D/R, the estimation error variance of the
exponential covariogram was the largest, while the estimation error variance of the Gaussian
covariogram was the smallest for both kriging and inverse distance interpolator. This is because,
for the same range, the exponential covariogram has the weakest spatial dependence and
Gaussian the strongest. It is important to observe that error variance of both kriging and inverse
distance interpolation is significant for D =R, which in practice is often assumed as an
acceptable sampling density.

4.2. Comparison at Different Sampling Densities

Error variances of kriging and inverse distance interpolators with p=0.5, 1, 2, for a
spherical covariogram, which is the model most often used in practice are compared in Figure 5.
Consistent with theory [Cressie, 1993] and given our statistical assumptions, kriging performed
better than inverse distance interpolation for all sampling densities. For inverse distance
interpolation, larger p values were better for dense sampling while p = 0.5 or 1 produced better
results than p = 2 when D/R was greater than 1.5. The use of inverse distance interpolation with
p = 2 (inverse distance squared) is very popular although these results show that the interpolated
values are very unreliable when data are undersampled which is common with real-life data.
Furthermore, the results indicate that statistical range analysis can be beneficial for determining
the proper power, p, for inverse distance interpolation.

It has been observed that in some cases, inverse distance interpolation can produce better
estimates than kriging [Weber and Englund, 1992]. Given the small difference between the best
inverse distance interpolator and kriging shown in Figure 5, it is possible that errors in
covariogram estimation might cause these observations. There is considerable literature
[Diamond and Armstrong, 1984] examining the influence of covariogram estimation using
sampled data. Generally, each error in the estimation of the true parameters of the covariogram
causes an increase in the estimation error variance. Thus, for certain grid densities and
coefficient p, the inverse distance interpolator can be the best interpolator if there are errors in
covariogram estimation caused by sparse sampled data.

4.3. Comparison of Point and Block Sampled Data at Different Grid Densities
To examine block sampling, the following aggregation patterns were considered:

1. Dense within-block sampling where a large number of sub-samples are taken equally spaced
and separated by D/40 within a whole block of size DXD. Practically, this represents almost
continuous averaging over a block.
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2. Sparse within-block sampling where just 9 sub-samples were taken within a block of size
DxD at ad-hoc locations as shown in Figure 6.

Sparse within-block sampling can potentially be applied to many sampling situations without
adding much cost as compared to point sampling, while dense within-block sub-sampling
corresponds to continuous aggregate sampling. One-dimensional transects of the spectral
characteristics of the proposed block sampling pattern assignments are shown in Figure 7. These
patterns were compared to the optimal anti-aliasing filter that cancels out all frequencies of the
underlying spatial signal above 1/2D. Frequency responses were calculated for distance
D=100m. As can be seen, neither of the aggregation patterns were successful approximations of
the optimal anti-aliasing filter.

To test the ability of the block sampling patterns to function as anti-aliasing filters, the
estimation error variance on point sampled data and both dense and sparse within-block sampled
data was compared. The estimation error variance GZ(S) was computed for 1600 regularly spaced
points, S, within a block, and the corresponding normalized average error for block sampled data
was computed using the procedure described in Section 3. The kriging error variance for
spherical, exponential and Gaussian underlying spatial processes with range R=100m using point
and block sampled data is shown in Figure 8. Results using inverse distance interpolation with p
= 2 are shown in Figure 9.

Even though the analyzed block sampling patterns are crude approximation of optimal anti-
aliasing filters, both block-sampling patterns resulted in lower prediction errors than point
sampling. Furthermore, the difference between dense within-block sampling and sparse (9 sub-
samples) within-block sampling was fairly small indicating that a sparse within-block sampling
technique may be practical.

The block size of DxD used in the experiments is the optimal size suggested by theory.
However, it might happen that size D is too large for a given application. In the following
experiment we analyzed the influence of different block sizes on estimation error. In Figure 10
we plot the estimation error variance of kriging on dense within-block sampled data with the
block size varying from zero (point sampling) to 1.4D%1.4D using a spherical covariogram and
sampling density D equal to the range R. In accordance to the theory, the best estimation was
achieved with block sizes between 0.8Dx0.8D and DXD, although all block sizes in the
examined range were superior to point sampling. Therefore, if a block size of DxD is considered
too large, asmaller block size can still result in improved estimation over point sampling.

4.4. Economic Analysis

While block sampling results in lower prediction errors as compared to point sampling,
more effort is required to collect a single block sample because multiple sub-samples must be
collected to form each block sample. Thus on a per sample basis, block sampling would be more
expensive than point sampling. However, to obtain a given error level (a horizontal line across
Figure 8 or 9), more point samples are required than block samples so the point sampling
procedure would result in higher sample analysis costs. For example, to obtain a kriging error
variance of 60% with a spherical covariogram, point samples must be collected on an 81 m grid
while block samples based on 9 sub-samples could be collected on a 95 m grid (Figure 11).
Table 1 presents the grid distances needed to achieve different levels of accuracy, together with
the ratio of the number of samples needed with point versus the two types of block sampling
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(sparse and dense) for the same accuracy computed as o = (block sampling grid distance)z/(point
sampling grid distance) .

The overall costs to obtain a given error level for the two methods is a function of analysis
costs and sample collection costs. As indicated in Table 1, to achieve a predetermined error level

within a range 52/ C,,(0) 0[0.2, 0.8], kriging requires over 30% more point samples than

block samples with sparse within-block sampling, and over 55% more point samples than block
samples with dense within-block sampling. Consequently, block sampling based on 9 sub-
samples is economically preferable if the costs of collecting the 8 additional sub-samples needed
to form one block sample are less than 30% of the analytical expenses per sample.

From the presented analysis of block sampling, it is clear that its advantage over point
sampling comes from discarding the highly variable part of the spatial information before kriging
through aggregating sub-samples within a block. It has also been indicated that the proposed
dense and sparse within-block sampling are crude approximation of the optimal anti-aliasing
filtering which would provide perfect cancellation of the highly variable part of the spatial data.
As indicated in Figure 10, aggregating soil cores within an area smaller than what was used for
block sampling also discards some highly variable information before kriging and results in an
estimation error variance between that obtained from point and optimal-sized block sampled
data. Thus, if traveling expenses are too high, a similar economic analysis can be performed to
determine the optimal aggregation area for a given application.

4.5. Sensitivity to Distance from Sampling Locations and Visualization of Kriging on Point
and Block Sampled Data

In addition to the possible economic advantages of block sampling over point sampling there
is also an important difference between the two sampling techniques in point-by-point estimation
error variance within a block. As mentioned in the introduction, point sampling provides better
estimation of points close to the sampling locations, while block sampling sacrifices some of the
accuracy at these locations to improve estimation at points that are farther away from sampling

locations. In Figure 12 we compare kriging error variances, 02(80)/ C-,(0), on point sampled

and the two types of block sampled data (dense and sparse) with a spherical covariogram along a
line AB from Figure 3. As can be seen, both types of block sampling leads to smoother kriging
error variance over the whole spatial area as compared to point sampling. Although the overall

estimation error variance, G2/ C,,(0), is a good measure of the confidence of spatial

estimation from sampled data, there are applications where the variability of estimation error can
be important such as combining data interpolated from low resolution samples with data derived
from high resolution sampling.

Finally, we show the results of a kriging experiment on a generated layer. A layer satisfying
an exponential correlogram with range 250 m, and nugget effect O was generated using the
method described in Section 3.2. These correlogram parameters were derived from data collected
for soil nitrate N measured in a potato field in southeast Idaho with the exception that the nugget
was set to 0. The simulated layer consisted of 81x81 points on a 10x10 m square grid. We
simulated point and block sampling with 9 cores at 4 different sampling densities — 40, 60, 100,
and 200 m. Ordinary kriging with a global neighborhood was performed on the sampled data.
The coefficient of determination, r<, of kriging on point sampled data and block sampled data
with 9 cores at 4 sampling densities versus the original data is reported in Table 2.
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As can be seen, kriging on block sampled data was superior to point sampled data at all four
sampling densities, as consistent with previous results. Figure 13 shows the original layer and the
layers obtained by kriging on point and sparse within-block sampled data at a sampling distance
of 100 m. Aside from the smaller interpolation error when block sampled data are used, the
estimated layer using block sampled data has better visual appeal, allowing better insight in the
spatial variability of the underlying spatial signal.

5. Conclusions

Spatial data available in practice are true or aggregated values extracted from an underlying
spatial process. Data aggregation can be considered as spatial data filtering, which allows using
the power spectrum representation obtained by Fourier transformation and an application of the
sampling theorem in the analysis of sampling influence. Experiments to examine the influence of
different covariogram models on spatial estimation and to compare kriging and inverse distance
interpolation at different sampling densities provided useful insight in the capabilities of these
spatial prediction methods. Kriging outperformed inverse distance interpolation but the margin
was not large. The study on the influence of two sampling techniques, called point and block
sampling, on kriging and inverse distance interpolation showed that block sampling provides
better estimation at the majority of sampling densities and that in applications such as soil
sampling it could be more economical than point sampling. An additional practical advantage of
block sampling not considered in this study is that it is likely to provide more accurate estimation
of the covariogram needed for kriging, resulting in a larger margin between kriging error on
point and block sampled data.

In the broader context, block sampling can be regarded as a sampling technique that
provides information on the characteristics of an underlying spatial process averaged across
regions around sampling locations within the area of interest. Our analysis shows that increasing
the aggregation region when block sampling up to a radius equal to half of the sampling distance
leads to more accurate spatial estimation than with data obtained from an equal number of point
samples. Further research is needed to determine the optimal sampling radius for various
application types using the proposed analysis procedure.
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Table 1. Normalized grid distances (grid distance / range) for point and two types of block
sampling needed to achieve different levels of kriging estimation error variance and the ratio of
the number of samples needed for point sampling versus two types of block sampling.

Normalized Estimation Grid Distance / Range a
Error Variance
Point | Sparse Block | Dense Block | Sparse Block | Dense Block
0.2 0.31 0.36 0.41 1.35 1.75
0.3 0.44 0.53 0.58 1.45 1.74
04 0.58 0.66 0.72 1.29 1.54
0.5 0.69 0.79 0.86 1.31 1.55
0.6 0.81 0.95 1.02 1.38 1.58
0.7 0.95 1.14 1.25 1.44 1.73
0.8 1.13 1.43 1.61 1.60 2.05

Table 2. Kriging estimation results on point and block sampled data for different sampling
densities for a representative soil fertility scenario.

Sampling Number of r’ for Point r? for Block
Distance Samples Sampling Sampling - 9 Cores
40 m 441 0.801 0.850
60 m 196 0.709 0.777
100 m 81 0.577 0.675
200 m 25 0.268 0.435
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Figure captions

Figure 1. White surfaces are the areas where soil cores are taken and aggregated to form a single
sample for (a) point sampling and (b) block sampling.

Figure 2. Theoretical spherical covariogram with R = 100m, co=0 and ¢;=1, and the covariogram
of a generated layer.

Figure 3. Sixteen neighboring samples were used to estimate points within a block.

Figure 4. Influence of grid distance on the error variance of (a) kriging and (b) inverse distance
interpolation with p = 2 obtained for exponential, spherical and Gaussian covariograms

Figure 5. Estimation error variance comparison of kriging and inverse distance interpolators
with p=0.5, 1 and 2 as a function of (grid distance / range).

Figure 6. Block sampling pattern for sparse within-block sampling with 9 cores.

Figure 7. Frequency responses of block sampling patterns as a function of standardized
frequency, {/2D.

Figure 8. Kriging estimation error variance on point sampled data and block sampled data
satisfying (a) spherical, (b) exponential, and (c) Gaussian correlograms.

Figure 9. Inverse distance interpolation with p =2 estimation error variance on point sampled
data and block sampled data satisfying (a) spherical, (b) exponential, and (c) Gaussian
correlograms.

Figure 10. Normalized error variance on spatial data with a spherical covariogram and sampling
distance D =R as a function of block size for dense within-block sampling.

Figure 11. Sampling grid distances necessary to achieve kriging normalized errors less than 0.6
for point and sparse block sampling. The covariogram is spherical with a range of 100 m and a
nugget effect of 0.

Figure 12. Kriging error variance for point sampled data and two types of block sampled data
(dense and sparse) along a line AB from Figure 3, at sampling density D = R.

Figure 13. (a) Original layer and kriged layer on (b) point and (c) block sampled data with
sampling frequency of 100 m.
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Figure 3.
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