DOI 10.1007/s10115-003-0123-8 led d
Knowledge and Information Systems (2004) Knowle ge an

Information Systems

Collaborative Filtering Using a Regression-Based
Approach

Slobodan Vucetic, Zoran Obradovic

Center for Information Science and Technology, Temple University, Philadelphia, PA, USA

Abstract. The task of collaborative filtering is to predict the preferences of an active user for
unseen items given preferences of other users. These preferences are typically expressed as nu-
merical ratings. In this paper, we propose a novel regression-based approach that first learns
a number of experts describing relationships in ratings between pairs of items. Based on ratings
provided by an active user for some of the items, the experts are combined by using statistical
methods to predict the user’s preferences for the remaining items. The approach was designed to
efficiently address the problem of data sparsity and prediction latency that characterise collabo-
rative filtering. Extensive experiments on Eachmovie and Jester benchmark collaborative filter-
ing data show that the proposed regression-based approach achieves improved accuracy and is
orders of magnitude faster than the popular neighbour-based alternative. The difference in accu-
racy was more evident when the number of ratings provided by an active user was small, as is
common for real-life recommendation systems. Additional benefits were observed in predicting
items with large rating variability. To provide a more detailed characterisation of the proposed
algorithm, additional experiments were performed on synthetic data with second-order statistics
similar to that of the Eachmovie data. Strong experimental evidence was obtained that the pro-
posed approach can be applied to data with a large range of sparsity scenarios and is superior
to non-personalised predictors even when ratings data are very sparse.

Keywords: Web mining; Recommendation systems; Collaborative filtering; Regression; Expert
integration

1. Introduction

In today’s society there is an increasing need for automated systems providing per-
sonalised recommendations to a user faced with a large number of choices. For
example, an increasing choice of available products is caused by companies shift-
ing towards developing customised products that meet specific needs of different

Received 28 July 2001

Revised 24 September 2002

Accepted 2 June 2003

Published online I W W — © Springer-Verlag Il ll W

B Please check
address.

2 S. Vucetic, Z. Obradovic

groups of customers (Pine 1993). The product customisation trend, coupled with E-
commerce, with which customers are not provided with an option to examine the
products off-the-shelf in a traditional sense, makes the problem of providing accurate
personalised recommendations very important. Increasing the quality of personalised
recommendations would increase customer satisfaction and loyalty, and at the same
time reduce the costs caused by product return. Another example where personalised
recommendations are extremely useful is an information overload situation with an
amount of data available through the Internet and other media greatly exceeding the
ability of a person to process it. Here, automated methods are needed to provide
a large number of users with the ability to efficiently locate and retrieve information
according to their preferences.

Personalised recommendation systems can be classified into two main categories:
content-based and collaborative filtering, although some work has also been done in
merging these two approaches to improve the quality of information filtering (Clay-
pool et al. 1999; Delgado et al. 1998). In content-based filtering, mostly used for re-
trieving relevant textual documents (Maes 1994; Salton and Buckley 1998), a search
is performed for items with content most similar to the user’s interests. The task of
collaborative filtering is to predict the preferences of an active user given a database
of preferences of other users, in which the preferences are typically expressed as nu-
merical evaluation scores. Scores can be obtained explicitly by recording votes from
each user on a subset of available items, or implicitly, by inferring from a user’s
behaviour or reactions regarding a given set of items.

Memory-based collaborative filtering algorithms maintain a database of previous
users’ preferences and perform certain calculations on a database each time a new
prediction is needed (Breese et al. 1998). The most common representatives are
neighbour-based algorithms by which a subset of users most similar to an active user
is chosen and a weighted average of their scores is used to estimate the preferences
of an active user for other items (Aggrawal et al. 1999; Greening 1997; Konstan
et al. 1997; Shardanand and Maes 1995). In contrast, model-based algorithms first
develop a description model from a database and use it to make predictions for an
active user. Published systems of this type include Bayesian clustering (Breese et
al. 1998), Bayesian networks (Pennock et al. 2000), classification-based algorithms
(Billsus and Pazzani 1998; Nakamura and Abe 1998), and algorithms for combin-
ing rankings (Freund et al. 1998). Another interesting line of research that can be
useful for both memory- and model-based collaborative filtering is extracting pref-
erence patterns from data by using latent class models (Hoffman and Puzicha 1999)
or by performing an appropriate clustering of items and users (Ungar and Foster
1998). Yet another type of collaborative filtering algorithms is based on extracting
association rules from ratings data and using them for recommendation (Lin et al.
2002). However, it seems that association rules cannot yet provide a good trade-
off between computational time, accuracy, and coverage needed for most practical
recommendation systems.

Neighbour-based collaborative filtering algorithms have been shown to be supe-
rior to model-based in terms of accuracy (Breese et al. 1998). However, their high
latency in giving predictions for active users can be a serious drawback in systems
with a large number of requests that should be processed in real-time. Often, to re-
duce computational effort, some form of clustering is used to group users with similar
preferences (Aggrawal et al. 1999; Goldberg et al. 2001; Ungar and Foster 1998).
However, this effort can result in a loss of recommendation quality. Additionally,
previous results (Herlocker et al. 1999) have shown that as the number of items eval-
uated by an active user decreases, the prediction accuracy of neighbourhood-based

Collaborative Filtering Using a Regression-Based Approach 3

algorithms deteriorates dramatically. (Demanding extensive user effort for successful
profiling can discourage a user from using the recommendation system.) Finally, it
is unlikely that two users will have exactly the same taste over all possible items,
while it is more probable that the similarity will be larger over certain subsets of
items (e.g., two users of a movie recommendation system could share opinions on
dramas while disagreeing over science fiction).

In this paper we propose a regression-based approach to collaborative filtering on
numerical ratings data that searches for similarities between items, builds a collec-
tion of experts in the form of simple linear models, and combines them efficiently
to provide preference predictions for an active user. Our approach is similar to pre-
viously proposed item-based recommendation algorithms (Karypis 2001; Linden et
al. 2001) in the way it uses correlation between item ratings to predict ratings on
unseen items. The Top-N algorithm (Karypis 2001) was designed for binary ratings
data; it uses several suitable heuristics to calculate item similarities, and sums the
similarities to provide the list of the top N items of interest to an active user. The
item-to-item similarity mappings approach (Linden et al. 2001) was designed for nu-
merical ratings data; it calculates item similarities based on an overlap of previous
users, and uses them as weights to predict ratings on unseen items from available rat-
ings of an active user. The proposed heuristic strongly weights ratings from popular
items and from recently purchased items. Unlike these algorithms that use different
heuristics to utilise item-to-item correlations in recommendation, in our regression-
based approach, we propose statistically based algorithms that are robust to different
levels of data sparsity in historical and active user ratings, and are able to provide
rapid on-line recommendations.

In Sect. 2 we provide a formal description of a recommendation problem, fol-
lowed by a description of several recommendation algorithms used for comparison
with our approach. There, we propose three simple recommendation algorithms: the
first two are not personalised, while the third uses active user ratings in a very sim-
ple manner. We also outline the neighbour-based algorithm proposed by GroupLens
(Herlocker et al. 1999) as a representative of a large class of similar algorithms such
as FireFly (Shardanand and Maes 1995) or LikeMinds (Greening 1997). In Sect. 3 we
describe and provide the motivation for the regression-based approach. We explain
several algorithms with different computational requirements, achievable accuracy,
and robustness to sparsity. We also propose several adjustments to the proposed al-
gorithms for dealing with the specifics of user ratings in realistic recommendation
scenarios. In Sect. 4 we characterise the proposed algorithms on real-life Eachmovie
and Jester data sets, as well as on synthetic data with second-order characteristics
similar to Eachmovie data. We examine their properties with respect to accuracy,
coverage, and off-line and on-line efficiency in a number of data sparsity scenarios.

2. Preliminaries
2.1. Description of the Personalised Recommendation Task

Assuming a database of I items partially evaluated by U users, we are given a U x |
matrix D with element r,; representing the evaluation score of item i by user u.
In realistic systems the matrix D is usually very sparse since users are likely to
vote just for a small subset of available items. By 1, 1y, and r,, we denote the
average score for each user, the average score for each item, and the overall average
score, respectively. Since each user does not vote for each item, by I, we denote

4 S. Vucetic, Z. Obradovic

the subset of items rated by user u. Similarly, U; denotes the subset of users that
evaluated item i. Given the evaluation scores of an active user a on items I, the
recommendation system task is to estimate scores of user a on the remaining items
L.

2.2. Simple Recommendation Algorithms

We propose three simple recommendation algorithms to establish accuracy lower
bounds on more complex recommendation systems. The first, MEAN, uses the overall
average score Iy, as a prediction of a preference of any user on any item. The second,
GENERIC, uses the average scores r,; of each item i as predictions of a new user’s
preferences. This algorithm is valid under the assumption that all users have similar
preferences. The MEAN and GENERIC algorithms do not attempt to use information
contained in scores provided by an active user.

If users have provided numerical ratings explicitly, it is likely that the subjective
nature of ratings will distort overall ratings matrix D. The most obvious consequence
of subjective ratings would be the difference in average scores between otherwise
correlated users. Therefore, the predictions of ADJUSTED_GENERIC for active user a
are obtained as predictions from GENERIC adjusted by the difference Ar, between
the average score of user a and the average generic score over the same set of
items, I,, defined as

1
Aty = o > (i — 1) (1

iel,

where |I,| is the cardinality of set I,. Hence the prediction of ADJUSTED_GENERIC
for an active user preference on item i is calculated as p, = ry; + Ary,.

2.3. Nearest-Neighbour-Based Algorithms

Nearest-neighbour algorithms are used in a number of recommendation systems. For
benchmark comparison to our proposed alternatives, we have chosen a GropLens al-
gorithm (Herlocker et al. 1999) as a representative of the class of nearest-neighbour
algorithms. In the algorithm, Pearson correlation is used to measure similarity be-
tween user u# and an active user a (Herlocker et al. 1999). Here,

Z (rai - ra*)(rui - ru*)
iel,NI
Wau = L P (2)
O0aOy

where o, and o, are standard deviations of scores calculated over I, NI,. The score
pai of user a for item i is predicted as a weighted sum of the votes of other users
as

Z Wa,u(rui - ru*)

uel;

> Wau

uel;

Pai = Tax + (3)

If two users have a small number of co-rated items, it is probable that their Pearson
correlation estimates will be high simply by chance. Existence of such false neigh-
bours can significantly deteriorate the accuracy. Significance weighting (Herlocker et

Collaborative Filtering Using a Regression-Based Approach 5

al. 1999) was proposed to reduce the weights if the number of co-rated items, n, is
smaller than some predetermined number N. If this is the case, the obtained weight
is multiplied by n/N. Neighbourhood selection was introduced to retain only a small
subset of the most similar users for prediction (Herlocker et al. 1999). Predicting an
item i is done effectively by retaining K of the most similar users from U;. The
reported benefits were twofold: the computational time needed for each prediction
was reduced and slight improvements in accuracy were observed. We implemented
both modifications in a neighbour-based algorithm used for comparison with the pro-
posed regression-based algorithms. We denote the neighbour-based algorithm with
these modifications as NEIGHBOUR(N, K), where N and K are adjustable signifi-
cance and selection parameters of the algorithm.

To perform a prediction for a new user, Pearson correlations over U existing
users should be calculated first using (2), which scales as O(UI), where I is the total
number of items. Reducing to the K most similar users for each item to be predicted
and applying (3) still scales as O(UI).

Also, the whole database D of size O(UI) should be maintained in memory during
the on-line prediction process.

2.4. Performance Measures

We use the coverage, Mean Absolute Error (MAE), and ROC sensitivity to compare
examined recommendation algorithms. The coverage is calculated as the percentage
of items from a test set for which a given algorithm has been able to predict. The
MAE of predicted scores is a statistical accuracy measure used for collaborative
filtering algorithms, while the ROC sensitivity is a measure of the diagnostic power
of prediction algorithms (Herlocker et al. 1999).

3. Regression-Based Recommendation Algorithms

Assuming a database D consisting of a large number of users voting for all items and
given unlimited computational and storage resources, a recommendation task could
be solved by standard classification (binary ratings) or regression (numerical ratings)
methods. In particular, given scores r, of an active user on items from I, the problem
of predicting its score on item i could be solved by learning a nonlinear mapping
8lai Rl — R from a database D, where 814 1s a function that predicts the score
on item i given scores on items from I,, and then using gy, ;(r,) for prediction. An
active user can provide ratings for any of 2! possible subsets of items (including
scenarios with |I,| = 0, |I,| = I). Therefore, to be able to provide recommendations
for any I, it is sufficient to learn Z/ﬁ:o (llc) (I — k) functions gy,;, where I, € I
and i ¢ I,. Note that if i € I, there is no need for prediction since p, = r,. We
denote such a recommendation algorithm as NAIVE.

Real-life recommendation problems pose challenges that cannot be easily ad-

dressed by a NAIVE algorithm. First, learning Zé:o <]I<> (I — k) functions can be

computationally unfeasible even for small item sets. Second, assuming the fraction
p of users rated any of items, the training set for learning the function gr,; would
contain on the order of U-pM«*! examples, where U is the number of users in the
data set. Even for a large pool of 10° users and for a very dense ratings matrix with

6 S. Vucetic, Z. Obradovic

p = 0.1, training sets with |I,| > 5 for learning g1,; would practically be empty. As
a result, practical recommendation algorithms should approximate NAIVE by provid-
ing accurate predictions even for sparse rating matrices and should scale well with
their size.

To address the sparseness problem, our regression-based approach to collaborative
filtering uses a first-order approximation of nonlinear mappings gr. ;. The first-order
approximation to predicting the score p,; of active user a on item i based on its
scores on I, can be expressed as

Pai = Y Wi+ fiiltaj).)

J€la

where f;; is a function that predicts the score on item i based on a vote on item j,
and w;; is the corresponding weight. So, assuming a method for choosing the weights
wj,; is known, learning /(/ — 1) one-dimensional predictors f;;, i, j=1,.. 1,1 # j,
is sufficient for solving the approximated recommendation problem.

From a different standpoint, the function f;; can be considered an expert for
predicting the score on item i, given a score on item j. If an active user voted for
items from I,, there are |I,| available experts for predicting the ratings of each item
from I\I,. The recommendation problem can now be approached as the identification
of an optimal combination of experts. To make the solution computationally efficient,
we model the experts f;; as linear functions:

fii(x) =xoj; + Bjis (5)

where «;; and B;; are the only two parameters to be estimated for each expert. The
two parameters could be estimated by using ordinary least squares as

Z (Tui _r*i)(ruj - r*j)

uel; ﬁUj

Z (rui - r*i)z

uel; ﬁUj

aj; = s Bji =T — Ty (6)

Note that if the ratings satisfy a multivariate Gaussian distribution, (4) leads to the
minimisation of the mean squared error when using the linear predictors f;; obtained
from (6) and when properly choosing the weights w;; (Newbold and Granger 1974).
(These weights are obtained by using (9), as described below.)

3.1. Experts Integration

Once I(I—1) linear experts are learned, they should be combined to give recommen-
dations. An integration method based on simple averaging and two statistically based
integration methods are proposed in this section.

Averaging

In simple averaging, all |I,| experts in (4) are given the same weight, w;; = 1/ [I,].
Since some of the experts can be slightly better than the generic predictor, they can
only deteriorate prediction by decreasing the contribution of good experts. Therefore,
we propose simple averaging with thresholding where only good experts are retained.

Collaborative Filtering Using a Regression-Based Approach 7

In the AVERAGING(#) algorithm, we reject all experts whose R-squared value defined
as

R, =1—MSE;;/o} (7)
is below 0, where

1
MSE;; = Eu,ny, {(Fuj - fj,i(ruj))z} = W Z (ruj — fj,i(i”uj))2
i J

MEU,‘ﬂUj

®)

is the mean squared error (MSE) of expert f;;, and where oiz = VarU[nU/. {r,} is
the variance of the scores for item i. Note that for large 6 all |I,| experts could
be rejected, which would result in a low coverage of recommendations. In practice,
when such a case occurs, a generic prediction could be generated to preserve the
complete coverage. Since AVERAGING(A = 0) averages the predictions of all avail-
able experts, it is comparable to the prediction approach of the Top-N item-based
algorithm (Karypis 2001). Thus, it will be useful for making comparisons with the
remaining algorithms proposed in this section.

Determining Optimal Weights

Back in 1969, Bates and Granger (Bates and Granger 1969) suggested that a linear
combination of individual predictions can produce results that are superior to any of
the individual predictions. For the problem of combining linear experts, the optimal
solution can be derived by minimising the error variance of the linear combination
of experts from (4). To predict the score on item i, i € I\I,, the optimal weights w;;
(the ones that minimise the MSE) can be found by using the I x I covariance matrix
C; of prediction errors with elements {C;};«, j, k = 1, ... I, defined as {C;};; =
EUimUijk[ej,i-ek,i], where e ; is the error of expert fj;, €;; = {rui — f},i(ru;)}. Note
that {Ci}j!j = MSE]',,‘.

To calculate the optimal weights that minimise the MSE of prediction on item i
using |I,| experts f;;, j € [I|, one should first select the [I | x [I,| matrix C;(I,)
from elements of the covariance matrix C; as {C;(I.)};x = {Cil,()Lw> J>» K =
1, ..., ||, where I,(j) is the j-th element of the item set I,. Then, the optimal
weights, such that) jer, Wi = 1, can be calculated as (Newbold and Granger 1974)

I _
e,
WL().i = Ll

2=t {Ci(I")_l}j,k .

We call this optimal weighting procedure OPTIMAL_AVERAGING. Problems associ-
ated with applying (9) include estimating C;, calculating the inverse of C;(I,) when
experts are highly correlated, and computing this sufficiently fast. To estimate {C;} x,
a subset of users that voted for items i, j, and k should be found and the errors
of fj; and fi; should be calculated on this subset. Since a training database could
be very sparse, the number of such triples could be too small to properly estimate
{Ci}jk, even for seemingly large databases. As a consequence, an estimated matrix
C; could be ill-conditioned or even non-invertible.

The second problem, discussed in Merz and Pazzani (1999), is that an inverse of
C;(I,) could be unstable for highly correlated experts. Since individual experts could

©)

8 S. Vucetic, Z. Obradovic

Table 1. Influence on the optimal weights assignment of the error covariance {C;}; 2 between experts with
error variances {C;}1 1 =1 and {C;},> = 1.1.

{Citia 0 05 09 095 0.99 1
Wl’,‘/WQ’i 1.1 1.2 2.0 3.0 11.0 o

often be slightly to moderately better than the generic predictor, they could be highly
correlated. The third problem is computational cost, since the optimal approach re-
quires the calculation of an inverse of C;(I,), which generally takes O(II,,|3) time.
Since |I,| = O() and |I\I,| = O(I), producing predictions for |I\I,| items by an
active user with OPTIMAL_AVERAGING would take 0(14) time. In the following, we
propose a computationally efficient approximation of this approach that is robust to
sparse data.

Determining Suboptimal Weights Efficiently

One of the main consequences of highly correlated experts is that, when applying (9),
two almost identical experts could receive very different weights, the larger being
assigned to the slightly more accurate one. To illustrate this, in Table 1 we show the
ratio of weights obtained from (9) for two experts with error variances {C;};; =1
and {C;}2» = 1.1, when their error covariance {C;},, is varied from 0 to 1. As
seen, increasing {C;} o results in assigning a much higher weight to a slightly better
expert with error variance {C;}; ;. Similar effect could be obtained using (9) by
decreasing both {C;};; and {C;}. by a constant K smaller than {C;}; ; and setting
{Ci}12 = 0. It can be shown that for the scenario with only two experts, using
a constant K= {C;} » results in the optimal weights. We use this idea for obtaining
suboptimal weights computationally fast.

The proposed weighting method is based on an estimate of the average error
correlation between linear experts over the whole ratings matrix. If we assume that
fji and fi; are unbiased predictors for item i, the correlation p;’k between these
predictors can be estimated from

Ev,nu,nu, [(Firug) = fii(ru)?] =
Ev,nunug [(Fi0rug) = rui) = (i (ru) — rui))*] =
{Ci}j.j — 2{Ci}jk + {Citik (10)
as
; {{C}).j + {Cikex — Ev,nv,nu (i — fui)?]}

Pk = 2 MG} AC ik

Therefore, to calculate p;’k, only users voting for items i, j, and k are considered.
Due to the sparsity of the ratings matrix, the number of such users could be very
small. To address this problem, we approximate (11) by using Ey;nu, [(Sii— fk,i)z]
instead of Ey;nu;nu, [(f.i — fi. i)?]. It should be noted that such an approximation is
valid only under the assumption that the data distribution is identical over U;NU;NUy
and U; N Uy, which may not be true.

For an efficient expert weighting procedure, instead of estimating all I? covari-
ances {C;} i, j, k =1, ... I, required by OPTIMAL_AVERAGING, we estimate

(1)

Collaborative Filtering Using a Regression-Based Approach 9

Table 2. Pseudocode for the ROBUST_AVERAGING algorithm.

TRAINING PHASE

Given ratings database D
1. Construct I(I-1) experts f;;, i, j =1, ...1,i # j, using (5) and (6) and calculate
the corresponding MSE; ; using (8)
2. Estimate values p’] « for several randomly chosen triples (i, j, k) using (11) and
average them to obtain pay.
PREDICTION PHASE
For each active user with provided ratings 14, j € L:
For each item i € I\I,;:
1. Calculate suboptimal weights w;;, j € I, using (14)
2. Predict rating p,; on item i using (4)

values p’] « only for several randomly chosen triples (i, j, k) using (11) and average
them to obtain pay. We then calculate a diagonal covariance matrix C; defined as

C;k = diag(Ci) — PAV IIljln({C,}]]) . ID, (12)

where ID is an identity matrix and diag(C;) is a diagonal matrix with diagonal elem-
ents {C;};;, j =1, ... L. Therefore, the diagonal elements of C} can be calculated
as

{Ci})j = MSEj; — pav - min(MSEy) , 13)

where MSE;; is calculated from (8). The constructed diagonal matrix C} is used
instead of C; to derive suboptimal expert weights from (9). Since C; is a diagonal
matrix, the corresponding weights are easily calculated as

v = G
MY AC

kel

for jely; w;; =0, for jel,. (14)

We denote the proposed algorithm as ROBUST_AVERAGING and provide its pseu-
docode in Table 2.

Note that the weights obtained by using (14) are guaranteed to be positive. Ob-
serve also that computing the weights wj,i, j € I,, requires just O(|]I,|) = O)
time, and so giving predictions for all unseen items by an active user would require
only O(I%) time.

More About the Complexity of Regression-Based Algorithms

In Table 3 we summarise the performance of different regression-based algorithms
with respect to their speed (off-line and on-line) and robustness to data sparsity (ef-
fective data size). The off-line speed of NAIVE is clearly impractical in any realistic
scenario, since it is exponential with the number of items: for each of O(I2") func-
tions gy, ,, O(UI) time is required for learning. Moreover, the effective number of
examples for learning gy, decreases exponentially with [I,|. OPTIMAL_AVERAGING
is inferior to AVERAGING and ROBUST_AVERAGING, both in terms of speed and

10 S. Vucetic, Z. Obradovic

Table 3. Performance summary for different recommendation algorithms. The off-line speed relates to the
model-building phase, the on-line speed corresponds to predicting the rating of an active user on a single item,
and the effective data size measures the expected number of examples available during the model-building
phase if a fraction p of users votes for each item.

Algorithm Off-line speed Effective data size* On-line speed
NAIVE O(UI2 - 21 U . pllal+! O(Lal)
OPTIMAL_AVERAGING O(UP) U.-p’ O(I1, %)
ROBUST_AVERAGING 5 5

AVERAGING our) U-p O(IL 1)
GENERIC (0](8))) U-p o(1)

* For NAIVE it corresponds to the effective data size available for learning function g,

sparsity robustness. This is due to the need to examine each triple of items when es-
timating the error covariance matrices {C;}, i = 1, ... I, in the training phase, and to
invert the corresponding covariance matrix in the prediction phase. The advantage of
ROBUST_AVERAGING comes from the approximation made in (12). Clearly, the sim-
ple GENERIC algorithm is the fastest and most robust to rating sparsity. From these
results one should be able to properly decide on the most appropriate recommenda-
tion algorithm with respect to given data and available computational resources.

The algorithms AVERAGING and ROBUST_AVERAGING require O(]I,|I) time for
predicting all non-rated items of an active user, which is an advantage over the
O(UI) time needed by the NEIGHBOUR algorithm, since |I,| is usually significantly
smaller than the number of users. While the on-line speed of AVERAGING and RoO-
BUST_AVERAGING is clearly superior, they require learning I(I—-1) linear models,
where O(U) time is required for each. However, O(UI?) time could be acceptable
since it is done off-line. Additionally, ROBUST_AVERAGING requires saving two lin-
ear parameters and an estimate of the error variance for each expert, which requires
storing 3I(I—1) variables. For most applications this memory requirement compares
favourably to memory requirement of neighbour-based algorithms which scales as
o(ul).

3.2. Regression-Based Algorithm With Adjustment

One of the problems with subjective ratings is that two users with similar prefer-
ences can have significantly different average scores for the same subset of items.
This notion has been used in ADJUSTED_GENERIC and NEIGHBOUR algorithms to
directly adjust the predictions according to each active user’s mean score. Here, to
improve the prediction accuracy of the ROBUST_AVERAGING algorithm, we propose
an adjustment similar to the one used in ADJUSTED_GENERIC. Let us examine two
extreme cases to show that the difference Ar, from (1) cannot be applied directly
to ROBUST_AVERAGING. The first is the case of an extremely accurate expert f;;
that can predict the score for item i with MSE;; close to O (in such a case, o;;
is close to +1). This prediction does not need to be adjusted by Ar,, since such
a linear expert already includes this adjustment. The second is the case of poor ex-
perts that are generic predictors with MSE;; close to O’iz (in such a case, a;; is
close to 0). In this case the adjustment is needed, and Ar, should be added to the
prediction. Any realistic combination of experts will be between these two extremes

Collaborative Filtering Using a Regression-Based Approach 11

with 0 < MSE;; < o7. Therefore, some value smaller than Ar, should be used for
adjustment depending on the quality of individual experts.

In accordance with the previous discussion, we propose to predict a score of an
active user for item i (last line of Table 2) as

Pa,i = A1y + Z Wi fj,i(raj — Ar,) . (15)

J€la

Therefore, Ar, is first subtracted from each active user’s vote, such modified ratings
are used for prediction and, finally, predictions are adjusted by adding Ar,. Since
fj.i is a linear function, note that the effective level of adjustment in (15) is Ar,(1 —
> wj;a;j;). This expression is non-negative since) w;; = 1, a;; < 1. We denote
this algorithm as ADJ_ROBUST_AVERAGING.

3.3. Pessimistic Adjustment for Active Users with Small Item Sets

The practical difficulty when applying ADJUSTED_GENERIC and ADJ_ROBUST_
AVERAGING occurs for small |I,|. Namely, if an active user votes just for a few
items, the statistical significance of an estimate Ar, will be low. In this case it
would be advisable to use a pessimistic estimate dr, instead of Ar, from (1) so that
this value will tend to zero if the number of scores is low while it will tend to r,
if the number of scores is high.

Given the ratings r,; of an active user on i € I, and the corresponding generic
ratings r,;, the problem of estimating Ar, can be approached as a regression on
a data-generating process:

Iy = Ara+r*i+8i, SNN(O, 2)1 (]6)

where & = [g1, €3, ...8|[a|]T is a noise term with a Gaussian distribution having a co-
variance matrix X of size |I,| x |I,| with elements CovU[nU/. (rui, 14j). Note that cal-
culating ¥ involves ratings, while calculating C; from (9) involves prediction errors.
This data-generating process is validated by the assumption that the score of an ac-
tive user on item i could be approximated by a generic prediction incremented by an
adjustment term and an error term that represents the variance of scores of previous
users on item i. The covariance matrix X represents the fact that scores on different
items can have different levels of variance and that scores on different items can
be correlated. For example, if an active user rates highly correlated items, the con-
fidence in adjustment Ar, is smaller than if it rates uncorrelated items. Also, if an
active user votes for two items with different rating variances, a higher weight in
calculation of Ar, should be given to a rating with a lower variance.

Adjustment Ar, from (16) and its variance can be estimated by the generalised
least squares algorithm (Griffiths et al. 1993) as

S, -1

Ar, = Ty 11 , Var(Ar,) = (17

rz-11’

where 1 is a vector of ones, r, is a vector with elements {r,;, i € I,}, and r, is a vec-
tor with elements {r,;,i € I,}. From (17), a pessimistic adjustment dr, is calculated
as

Oty = Arg — sign(Arg) - t, 1,11 - / Var(Ar,), y €[0.5,1], (18)

12 S. Vucetic, Z. Obradovic

where 1, , is a t-statistic with confidence y and with n degrees of freedom. It should
be noted that the confidence parameter y determines the difference between ér, and
Ar,. At the extremes, if y = 0.5 then §r, = Ar,, while if y =1 then §r, = 0. Note
also that if covariance matrix X is diagonal with constant elements o, Var(Ar,) =
o2/ L.

Since a calculation of Var(Ar,) involves inverting the matrix ¥ with O(|I,|*) time
complexity, in the performed experiments we simplified the calculation of Var(Ar,)
by using a matrix ¥ with non-diagonal elements set to zero. We denote the algo-
rithms that use the pessimistic adjustment 8r, with confidence y instead of r, as
ADJUSTED_GENERIC (y) and ADJ_ROBUST_AVERAGING (y).

4. Experimental Evaluation
4.1. Data Sets
Eachmovie Data

The EachMovie data set (McJones 1997) is a publicly available collaborative filtering
benchmark database collected during an 18-month period between 1996-1997. It
contains ratings from 72916 users on 1628 movies with a total of 2456 676 ratings.
Therefore, the matrix is very sparse with only 2.07% rated elements. User ratings
were collected on a numeric 6-point scale between 0 and 1, but to make the results
more comprehensible we rescaled ratings to integers {0, 1, ..., 5}.

Jester Data

The Jester data set (Goldberg et al. 2001) is a collection of ratings from an on-
line joke recommendation system (http://shadow.ieor.berkeley.edu/humor). The data
contain anonymous ratings data from 21800 users on a subset of 100 jokes organ-
ised in a matrix of dimensions 21 800 x 100, with the ratings ranging from —10 to
+10. We scaled all ratings to a range [0, 1] in the experiments. The data set is very
dense, with an average of 46 ratings per user, where all users rated 10 jokes from
the so-called gauge set Iy = {5,7,8,13,15, 16,17, 18, 19, 20}.

Synthetic Data

We also generated two synthetic data sets to characterise proposed recommendation
algorithms in a controlled setting. Both data sets were generated as random samples
drawn from a multivariate Gaussian distribution with zero mean, variance one, and
a covariance matrix P resembling that of the Eachmovie data. The matrix P was
generated using the fact that P = ATA is positive definite (and therefore a valid
covariance matrix) for an arbitrarily chosen A. By properly choosing A, the matrix
P was generated to resemble the desired second-order statistics.

4.2. Evaluation Protocols

In the first set of experiments on the Eachmovie and Jester data, we randomly se-
lected five scores from each active user for testing, while the rest were used as the

Collaborative Filtering Using a Regression-Based Approach 13

Table 4. Performance of different algorithms with the Al/But5 protocol on the Eachmovie data.

Algorithm MAE ROC4,3.5) Coverage Elapsed
accuracy [%] time [s]
MEAN 1.054 - - -
GENERIC 0.925 0.652 100 1.1
ADJUSTED_GENERIC 0.853 0.697 100 2.9
NEIGHBOUR(K =280, N =50) 0.848 0.698 99.9 38,056
AVERAGING(A = 0) 0.883 0.681 100
AVERAGING(A = 0.06) 0.850 0.702 98.1 68
AVERAGING(# = 0.1) 0.842 0.706 84.5
ROBUST_AVERAGING(p = 0.9) 0.843 0.705 100
ROBUST_AVERAGING(p = 0.95) 0.841 0.707 100 70
ROBUST_AVERAGING(p = 0.99) 0.841 0.707 100
ADJ_ROBUST_AVERAGING(p = 0.9) 0.814 0.718 100
ADJ_ROBUST_AVERAGING(p = 0.95) 0.812 0.720 100 73
ADJ_ROBUST_AVERAGING(p = 0.99) 0.812 0.720 100

set of training scores I,. We call this protocol AllButS5. In accordance with Breese
et al. (1998) we performed another set of experiments allowing a smaller number
of active user scores. Here, we randomly selected 2, 5, or 10 votes from each ac-
tive user as the observed scores, and then predicted the remaining scores. The three
protocols were named Given2, Given5, and Givenl0. Such a small number of scores
given by an active user is more likely to be an environment for realistic recom-
mendation systems. Finally, Jester and Synthetic data have the feature that all users
rated a constant subset of items. By GaugeN we denote a protocol in which a given
subset of N items is reserved for training, while the remaining items are reserved
for prediction.

4.3. Experiments on Eachmovie Data

To perform a number of experiments, and to allow for a fair comparison between
different algorithms, we used only a subset of the whole database. In our experi-
ments the first 10000 users represented the training set, and the following 10000
users represented a set of active users. From both sets all users with less than 20
scores were filtered out as well as all the movies receiving less than 50 scores in
the training set. This resulted in 3422 users in the training set and 4790 active users
with 503 retained movies. The reduction of the number of users allowed a fairly
fast evaluation of the benchmark neighbour-based system, while a lower number of
movies allowed relatively fast learning of 503x502 linear experts needed for the
regression-based algorithms (trained in 8 hours on a 700 MHz NT-based computer
with 256 MB memory). Finally, to decrease the influence of unreliable experts, we
replaced each expert f;; trained using less than 30 examples (with |U; NU;| < 30)
with a generic predictor for item i.

The algorithms considered in evaluations included MEAN, GENERIC, ADJ_GENE-
RIC, NEIGHBOUR, AVERAGING, ROBUST_AVERAGING, and ROBUST_AVERAGING.
Due to data sparsity and based on Table 3, NAIVE and OPTIMAL_AVERAGING were
not considered. Out of several considered choices of parameters K and N for NEIGH-
BOUR, we report on the best performing neighbour-based algorithm achieved with
K =80 and N=50.

14 S. Vucetic, Z. Obradovic

Table 5. MAE as a function of the number of votes of an active user for the AllBut5 protocol on the Eachmovie
data.

Algorithm Number of Votes

15-25 25-50 50-100 >100
MEAN 1.056 1.048 1.043 1.089
GENERIC 0.922 0910 0.929 0.954
ADJUSTED_GENERIC 0.866 0.848 0.851 0.853
NEIGHBOUR(K =80, N =50) 0.881 0.844 0.842 0.856
ROBUST_AVERAGING(p = 0.95) 0.852 0.831 0.841 0.849

ADJ_ROBUST_AVERAGING(p = 0.95) 0.827 0.807 0.810 0.807

In Table 4 we report the results for different recommendation algorithms with
the AllBut5 protocol. As can be seen, NEIGHBOUR had almost complete coverage,
but with an accuracy just slightly better than the ADJUSTED_GENERIC algorithm.
AVERAGING algorithms showed large sensitivity to the threshold, with & = 0.06
offering the best compromise between accuracy and coverage.

The accuracy for 6 = 0.10 was highest, but with a coverage of only 84.5 %,
while it was lowest for & = 0, which corresponds to the Top-N item-based algorithms
(Karypis 2001).

For the ROBUST_AVERAGING algorithm, it was determined that the average cor-
relation between experts was slightly larger than 0.95. This value was used as the
default value for (12). For illustration, we also report the results for p = 0.9 and
p = 0.99. It can be seen that the values p = 0.95 and 0.99 gave similar results,
while p = 0.9 was slightly inferior. Since the coverage of ROBUST_AVERAGING
was 100 %, it can be concluded that, overall, it was slightly more successful than the
ADJUSTED_GENERIC, NEIGHBOUR, and AVERAGING algorithms. ADJ_ROBUST_
AVERAGING was clearly superior to the other algorithms, indicating that the intro-
duced adjustment can significantly boost the prediction accuracy. It should be noted
that a similar adjustment can be incorporated to the AVERAGING algorithm and that
similar accuracy improvements can be expected.

In Table 4 we also used ROC(0; = 4, 6, = 3.5) to report the classification
accuracy. There, each item with a score of 4 or 5 was regarded as a “good” item,
and each prediction above 3.5 was regarded as a recommendation. ROC(6; = 4,
0, = 3.5) is therefore the accuracy of correctly predicting a “good” movie based
on the given threshold of 3.5. From Table 4 it can be concluded that the MAE and
ROC(4,3.5) performance measures are almost identical with respect to comparing
different algorithms. Therefore, in the remaining analysis we report only the MAE
accuracy.

As explained in the previous two sections, regression-based algorithms have su-
perior on-line speed to neighbour-based algorithms. Our implementation of these al-
gorithms in Matlab on a 700 MHz NT-based computer with 256 MB memory showed
that when performing 5x4790 predictions, ADJ_ROBUST_AVERAGING was 520
times faster than NEIGHBOUR, and ADJ_ROBUST_AVERAGING was 25 times
slower than ADJUSTED_GENERIC (Table 4). Although we do not claim our imple-
mentation is optimal, these results validate the analysis of on-line speed of neighbour-
based and the proposed regression-based algorithms from Sect. 3.4. Similar per-
formance results were obtained in the remaining experiments on the Eachmovie and
Jester data, so the computational speed results will not be included in the following
analysis.

Collaborative Filtering Using a Regression-Based Approach 15

Table 6. MAE of different protocols on the Eachmovie data. The parameter y* represents the choice that,
for a given protocol, resulted in the highest recommendation accuracy.

Algorithm AllBut5 Givenl0 Given5 Given2
MEAN 1.054 1.066 1.066 1.067
GENERIC 0.925 0.935 0.935 0.937
ADJUSTED_GENERIC 0.853 0.883 0.925 1.023
ADJUSTED_GENERIC(y™) 0.853 0.877 0.895 0.928
y* 0.6 0.7 0.8 0.9
NEIGHBOUR(K =80, N =50) 0.848 0.912 0.991 1.195
ROBUST_AVERAGING(p = 0.95) 0.842 0.882 0.896 0.930
ADJ_ROBUST_AVERAGING(p = 0.95) 0.812 0.868 0.917 1.043
ADJ_ROBUST_AVERAGING(p = 0.95, y*) 0.812 0.860 0.883 0.930
p* 0.6 0.7 0.8 0.9

In Table 5 we show the performance of the MAE of the MEAN, GENERIC,
ADJUSTED_GENERIC, NEIGHBOUR, and ADJ_ROBUST_AVERAGING algorithms for
four categories of users depending on the number of provided ratings |I,| for the All-
But5 protocol. As can be seen, while NEIGHBOUR was very sensitive to |I,|, having
the lowest accuracy for the active users giving less than 25 votes, ADJ_ROBUST_
AVERAGING was just moderately sensitive, indicating that it can be successfully used
even for users providing a relatively small number of votes.

To examine further the robustness of different algorithms to the realistic scenario
of small |I,|, a comparison of four different protocols is reported in Table 6, where
the AllBut5 results are taken from Table 4. As can be seen, the regression-based
approach was very robust to the number of scores given by an active user, compar-
ing favourably to the NEIGHBOUR algorithm, whose accuracy decreased significantly
when the number of votes by an active user was less than 10. However, it is evi-
dent that the performances of ADJUSTED_GENERIC and ADJ_ROBUST_AVERAGING
without the pessimistic adjustment (Sect. 3.3) also deteriorated for the Given5 and
Given?2 protocols. This was to be expected since estimates of adjustment Ar, using
only two or five scores have extremely low confidence. Applying the pessimistic
adjustment allowed a significant accuracy improvement for the Given5 and Given2
protocols. For each protocol, we show the accuracy achieved with the best choice of
y confidence levels within an interval [0.5, 1]. As can be seen, the y coefficient could
be optimised with respect to the number of available votes; as the number of ratings
given by an active user increased, the optimal value of y coefficient decreased.

To characterise further the ADJ_ROBUST_AVERAGING algorithm, we compared
its MAE with the MAE of the GENERIC algorithm for each of the 503 examined
movies with the AllBut5 protocol. The MAE of GENERIC is a measure of users’
disagreement in rating a given movie. In the Eachmovie data it ranges from 0.6 to
1.4. By using linear regression, we obtained the relationship

MAE(ADJ_ROBUST_AVERAGING) = 0.10 + 0.76 - MAE(GENERIC), (19)

indicating the benefits of ADJ_ROBUST_AVERAGING for the recommendation of
movies for which there is a large disagreement among users. For example, from (19)
it can be seen that for MAE(GENERIC) = 0.6, ADJ_ROBUST_AVERAGING is about
7 % more accurate, while for controversial movies with MAE(GENERIC) = 1.4,

16 S. Vucetic, Z. Obradovic

Table 7. MAE for the Gaugel0, AllBut5, Givenl0, Given5, and Given2 protocols in the Jester data.

Algorithm Gaugel0 AllBut5 Givenl0 Given5 Given2
MEAN 0.217 0.222 0.219 0.219 0.219
GENERIC 0.203 0.208 0.205 0.205 0.205
ADIJUSTED_GENERIC(y = 0.7) 0.189 0.179 0.180 0.185 0.195
NEIGHBOUR(K =80, N =50) 0.188 0.179 0.186 0.201 0.218
ROBUST_AVERAGING(p = 0.95) 0.194 0.195 0.191 0.192 0.194
ADJ_ROBUST_AVERAGING(p = 0.95, y = 0.7) 0.188 0.178 0.177 0.182 0.195
OLS 0.186 - - - -
Neural Networks 0.186 - - - -

ADJ_ROBUST_AVERAGING is about 17 % more accurate then the generic recom-
mendation.

4.4. Experiments on Jester Data

Similar to experiments on the Eachmovie data, we reserved 5000 randomly chosen
users for the training set and another 5000 users for the set of active users. There
was no need to prune either jokes or users. The fact that all users voted for all
gauge jokes Iguge allowed direct use of regression algorithms to learn 90 predictors
of scores for non-gauge jokes. Therefore, for the Gaugel0 protocol, in addition to
recommendation algorithms used in the Eachmovie experiments, we were able to
use Ordinary Least Squares (OLS) and Neural Networks (NN) as predictors, and
thus estimate the upper bound on the recommendation accuracy achievable with the
Jester data. 90 neural networks used in the experiments had 10 inputs, 5 hidden
nodes and 1 output, and were trained using resilient backpropagation (Riedmiller
and Braun 1993). For ADJUSTED_GENERIC and ADJ_ROBUST_AVERAGING, we
used pessimistic adjustment with a confidence level of y = 0.7, since this value
appeared to be the best overall choice in the Eachmovie experiments.

In Table 7 we first show accuracy results of different algorithms with the Gaugel0
protocol. The first observation is that the margin between the MEAN predictor and
the best available predictor was similar to the difference observed in the Eachmovie
experiments. However, the difference between a powerful neural network predictor
and ADJUSTED_GENERIC was almost negligible. ADJ_ROBUST_AVERAGING, the
superior recommendation algorithm in the Eachmovie experiments, and NEIGHBOUR
also had comparable performances of MAE = 0.188. Such surprising results could
be explained by the fact that the projection of gauge ratings on their two largest
principal directions does not exhibit clustering structure and that the correlation be-
tween gauge ratings is extremely small. This property indicates the lack of grouping
of user tastes into more distinguishing groups based on the gauge set of jokes that
is an underlying assumption for collaborative filtering.

We performed additional experiments with the Given2, Given5, Givenl0O, and
AllBut5 protocols, and we also present the results in Table 7. For all protocols
except Given2, ADJ_ROBUST_AVERAGING achieved results better than ROBUST_
AVERAGING, NEIGHBOUR, and ADJUSTED_GENERIC. An interesting result is that
the MAE was significantly lower for the GivenlO than for the GaugelO protocol.
This indicates that a better choice for gauge jokes could be possible in order to im-
prove the recommendation accuracy of the proposed regression-based algorithms on
the Jester data.

Collaborative Filtering Using a Regression-Based Approach 17

Table 8. Recommendation errors of different algorithms with the Gauge2, Gauge5, GaugelO protocols on
the D and D; data. The first number in each cell is the MSE, while the number in parentheses is the MAE.

Algorithm Dy D,
Gauge2 Gauge5 GaugelO Gauge?2 Gauge5 GaugelO
1.00 1.00 1.00 1.00 1.00 1.00
GENERIC 0.80) (0.80) (0.80) 0.80) (0.80) (0.80)
1.12 1.08 1.04 1.00 0.94 0.89
ADJUSTED_GENERIC(y = 0.7) 084 (083 (081 080) (0.77) (0.76)
0.93 0.92 091 0.93 091 0.90
AVERAGING(® = 0) ©77) 77 (076) 077 (076) 0.76)
0.92 0.86 0.83 0.92 0.87 0.85
ROBUST_AVERAGING(p = 0.95) 0.76) (0.74) 0.72) 0.76) (0.74) (0.73)
OPTIMAL AVERAGING 0.92 0.78 0.57 0.92 0.83 0.70
- 076) (071 (0.58) 076) (0.72) (0.67)
oLS 0.90 0.75 052 091 0.81 0.67
076) (0.69) (0.55) 0.76) (071 (0.65)

4.5. Characterisation of Regression-Based Algorithms on Synthetic Data

While experiments on the real-life Eachmovie and Jester data provided very useful
insight into the properties of different recommendation algorithms, we performed
additional experiments on synthetic data to provide a more detailed characterisation
in a controlled setting.

From the Eachmovie data, it was determined that E[pg] = 0.17 and Std[pg] =
0.16, where pg denotes a correlation between movie ratings in the Eachmovie data.
For the first synthetic data set D, we generated 10000 training (TR1) and 10000 test
(TS1) examples from a 20-dimensional Gaussian distribution with a mean of zero,
variance of one, and covariance matrix P; such that E[pp;] = 0.21 and Std[pp]
= 0.01. Matrix P, was generated as P| = ATA,, where A; was a 20 x 20 matrix
with elements randomly taken from a Gaussian distribution with a mean of zero and
variance of one.

Therefore, D; contained approximately the same number of positively and neg-
atively correlated variables, while the variability of correlations was slightly larger
than in the Eachmovie data. For the second synthetic data set D,, we generated
10000 training (TR2) and 10000 test (TS2) examples from a 40-dimensional Gaus-
sian distribution with a mean of zero, variance of one, and covariance matrix P, such
that E[pp2] = 0.15 and Std[pp>] = 0.16. Matrix P, was generated as P, = ATA,
where A, was a 40 x 40 matrix with elements randomly taken from a Gaussian dis-
tribution with a mean of 0.45 and variance of one. Therefore, D, highly resembled
the Eachmovie data with respect to their second-order statistics.

Repeating the above procedure 100 times, we randomly generated 100 different
data sets D; and D,. We experimented with GaugeN protocols, with N =2, 5, and
10, such that from each generated set we reserved the first N columns as gauge
items while the column N + 1 was to be predicted.

Experiments on Data Without Missing Values

In the first set of experiments (Table 8), we examined the GENERIC, ADJUSTED_
GENERIC(y = 0.7), AVERAGING(# = 0), ROBUST_AVERAGING(p = 0.95), Op-
TIMAL_AVERAGING, and Ordinary Least Squares (OLS) algorithms with Gauge2,

18 S. Vucetic, Z. Obradovic

Gauge5, and GaugelO protocols on 100 different D; and D, data sets. We report
on the MAE and MSE that were averaged over the 100 experiments. Note that the
training data in both D; and D, were without missing values. This allowed the use
of OLS predictors to obtain the upper bound on the accuracy, since OLS is the best
unbiased predictor on the generated multidimensional Gaussian data. From Table 8§,
in the following we summarise the main findings.

The accuracy of ROBUST_AVERAGING increased with the number of ratings |I,|
for both D; and D, data. While its accuracy was very close to OLS and OPTI-
MAL_AVERAGING for [I,| = 2, the improvement in accuracy with the increase in |I,|
(L] = 5, 10) was significantly smaller than for OLS and OPTIMAL_AVERAGING.
Therefore, if ratings data is sufficiently dense and computational resources allow,
OLS or OPTIMAL_AVERAGING should be preferred over ROBUST_AVERAGING.

The accuracy of OPTIMAL_AVERAGING was comparable to that of OLS in all
experiments. Since using OLS for recommendation assumes building O(2!) predic-
tors, OPTIMAL_AVERAGING should be preferred over OLS. The accuracy of Av-
ERAGING(O = 0) was poorer than that of ROBUST_AVERAGING in all experiments.
Therefore, while using the same set of experts, the robust approximation in (12) is
superior to simple expert averaging. This is an indication that the Top-N algorithm
(Karypis 2001) could be improved by introducing similar weighted averaging.

In our experiments, ADJUSTED_GENERIC was more accurate than GENERIC
on D,, and was comparable in accuracy to ROBUST_AVERAGING. This can be at-
tributed to the fact that most correlations between ratings in D, are positive. Con-
sequently, the accuracy of ADJUSTED_GENERIC on D; was worse than that of
GENERIC. Therefore, if ratings are mostly positively correlated, ADJUSTED_
GENERIC could be considered as a rapid and moderately accurate recommendation
algorithm.

The MSE measure indicates much a larger difference in accuracy between dif-
ferent algorithms than the MAE measure. This result could be another explanation
for the seemingly small difference in accuracy between different algorithms obtained
on the Eachmovie and Jester data. We adopted the MAE accuracy since it is more
commonly used in the literature for the evaluation of collaborative filtering algo-
rithms.

Experiments on Data With Missing Values

The main property of data in collaborative filtering is a large proportion of missing
ratings, and any evaluation of algorithms needs to consider the problem of sparsity
robustness. We examined GENERIC, ROBUST_AVERAGING(p = 0.95), OPTIMAL_
AVERAGING, and OLS for the Gauge5 protocol with respect to their robustness to
missing data. To perform the experiments, the D; data was used to produce ratings
data with missing values, where only a fraction p of randomly chosen ratings was
retained for each item from Dj.

In Table 9 we present the dependence of the algorithm accuracy on the fraction
p of available ratings in the training set. The results were consistent with the per-
formance analysis provided with Table 3. As can be seen, depending on the level
of rating sparsity, different algorithms should be preferred; as the sparsity increases
the most appropriate algorithms follow the sequence OLS, OPTIMAL_AVERAGING,
ROBUST_AVERAGING(p = 0.95), and, finally, GENERIC. The proposed regression-
based algorithms, therefore, can be considered appropriate for a relatively large range
of rating sparsity scenarios.

Collaborative Filtering Using a Regression-Based Approach 19

Table 9. Recommendation accuracy of different algorithms with the Gauge5 protocol on the D; data with
missing ratings. Only the MAE measure is reported. Empty entries correspond to the inability to provide
predictions caused by data sparsity (see Table 2).

Algorithm Fraction of ratings in training data, p

1 0.5 0.2 0.1 0.05 0.01
GENERIC 0.80 0.80 0.80 080 0.80 0.80
ROBUST_AVERAGING(p = 0.95) 074 074 074 074 0.75 -
OPTIMAL_AVERAGING 0.71 071 0.72 1.00 - -
OLS 0.69 0.70 - - - -

While OLS is the most accurate for dense data with p = {0.5, 1}, the fact that the
corresponding training data can be chosen only from users that voted for all gauge
items and the target item makes it unusable for a higher level of sparsity. Moreover,
even if OLS predictors were available, they could be used only with active users that
voted for all gauge items. This happens quite infrequently in realistic scenarios with
large item sets. OPTIMAL_AVERAGING showed a somewhat smaller sensitivity to
sparseness (able to work at p = 0.2) while achieving comparable accuracy to OLS.
Since ROBUST_AVERAGING is trained using only pairs of items, it is very robust to
sparseness (worked even for p = 0.05) with significant advantages in accuracy over
the GENERIC predictor. Finally, if data sparsity is extremely high (p = 0.01), only
generic predictions can be provided. It is worth noting that the results in Table 9 were
obtained on data sets with 10000 users, and that Table 3 should be used as a guide
in choosing the appropriate recommendation algorithm for a given application.

5. Discussion

Automated collaborative filtering is a key technique for providing customisation of
E-commerce sites. Various neighbour-based recommendation methods are popular
choices for collaborative filtering. However, their latency can be a serious drawback
for scaling up to a large number of requests that must be processed in real-time.
In this paper we propose a regression-based approach to collaborative filtering that
searches for similarities between items, builds a collection of experts, and combines
them in an appropriate way to give predictions for a new user. We examined a num-
ber of procedures varying in speed, accuracy, and sparsity robustness.

Experiments on two benchmark databases (Eachmovie and Jester data) and on
synthetic data suggest that ADJ_ROBUST_AVERAGING provides the maximal cov-
erage and comparable to significantly better accuracy, while it is several orders of
magnitude faster than the neighbour-based alternative. Furthermore, while the accu-
racy of neighbour-based algorithms is very sensitive to the number of votes given by
an active user, our approach is more accurate than the generic predictor even when
this number is very small (two to five votes). However, it is worth noting that a fairly
simple ADJUSTED_GENERIC algorithm appeared to be very robust and difficult to
outperform by both neighbour and regression-based algorithms despite its simplicity.

The choice of recommendation algorithm should depend on the size and sparsity
of the data, on the number of votes by an active user, and on the speed and mem-
ory requirements. We showed that the proposed regression-based algorithms seem to
be an appropriate choice for a large range of recommendation scenarios satisfying
Up? > 1, where U is the number of previous users, and p is the fraction of ratings
available for a given item.

20 S. Vucetic, Z. Obradovic

To further improve the on-line speed and memory requirements of the regression-
based algorithms, deleting experts with poor predicting capabilities can be an ac-
ceptable alternative. If there are no available experts to predict on a given item, the
maximum coverage could be saved by using simpler models such as ADJUSTED_
GENERIC. With such an approach, the accuracy would not significantly deteriorate,
since deleted experts are not much better than the mean predictor. The error variance
of each expert estimated as part of the regression-based algorithms could be used for
guided on-line recommendation systems in which, based on the previous votes, an
active user is asked to vote on the items that would maximally decrease the overall
prediction error. Deriving an optimal procedure for guided voting is the topic of our
future research.

In an attempt to characterise and evaluate the regression-based algorithms, we
compared them with the state-of-the-art neighbour-based recommendation algorithm.
In some cases we were also able to make comparisons with standard machine-
learning algorithms for regression — ordinary least squares and neural networks —
which served for establishing upper bounds on the achievable recommendation ac-
curacy. In addition, we proposed three simple algorithms that served as benchmarks
for establishing a lower bound on the recommendation accuracy. A comprehensive
evaluation of the regression-based approach with an even larger number of proposed
recommendation systems would, without doubt, be highly desirable. However, in
practice, an objective comparison is difficult to achieve due to proprietary limita-
tions of collaborative filtering software and the large diversity of specific problems
that were addressed. A serious effort toward a comparative evaluation of a larger
number of existing recommendation systems would be extremely important for fur-
ther advances in the area of collaborative filtering.

Acknowledgements. We thank Steve Glassman from Compaq SRC for providing us with ac-
cess to the Eachmovie data set. We also thank Ken Goldberg from UC Berkeley for sharing
with us his Jester data set. Suggestions from anonymous reviewers that resulted in significantly
improved presentation are greatly appreciated.

References

Aggrawal CC, Wolf JL, Wu K, Yu PS (1999) Horting hatches an egg: a new graph-theoretic approach to
collaborative filtering. In: Proceedings, ACM Knowledge Discovery in Databases Conference. pp 201—
212

Bates JM, Granger CWJ (1969) The combination of forecasts. Oper Res Q 20:451-468

Billsus D, Pazzani MJ (1998) Learning collaborative information filters. In: Proceedings, Fifteenth Interna-
tional Conference on Machine Learning. pp 46-54

Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative fil-
tering. In: Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence.
pp 43-52

Claypool M, Gokhale A, Miranda T, Murnikov P, Netes D, Sartin M (1999) Combining content-based and
collaborative filters in an online newspaper. In: Proceedings, ACM SIGIR Workshop on Recommender
Systems

Delgado J, Ishii N, Ura T (1998) Content-based collaborative information filtering: actively learning to
classify and recommend documents. In: Klush M, Weiss G (eds) Cooperative Agents II, Proceed-
ings/CIA’98, LNAI Series Vol 1435. Springer-Verlag, pp 206-215
B Please provide publication location. ll

Freund Y, Iyer R, Schapire R, Singer Y (1998) An efficient boosting algorithm for combining preferences. In:
Shavlik J (ed) Proceedings of the Fifteenth International Conference in Machine Learning. pp 170-178

Goldberg K, Roeder T, Gupta D, Perkins, K (2001) Eigentaste: a constant-time collaborative filtering algo-
rithm. Inf Retrieval 4(2):133-151

Collaborative Filtering Using a Regression-Based Approach 21

Greening D (1997) Building customer trust with accurate product recommendations. LikeMinds White Paper
LMWSWP-210-6966

Griffiths WE, Hill RC, Judge GG (1993) Learning and Practicing Econometrics. John Wiley & Sons

Herlocker JL, Konstan JA, Borchers A, Riedl J (1999) An algorithmic framework for performing collabo-
rative filtering. In: Proceedings, 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. pp 230-237

Hoffman T, Puzicha J (1999) Latent class models for collaborative filtering. In: Proceedings of the 16th
International Joint Conference on Artificial Intelligence

Karypis G (2001) Evaluation of item-based Top-N recommendation algorithms. In: Proceedings of the 10th
Conference of Information and Knowledge Management

Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J (1997) GroupLens: applying collabo-
rative filtering to Usenet news. Commun ACM 40(3):77-87

Lin WY, Alvarez SA, Ruiz C (2002) Efficient adaptive-support association rule mining for recommender
systems. Data Min Knowl Discovery 6(1):83-105

Linden GD, Jacobi JA, Benson EA (2001) Collaborative recommendations using item-to-item similarity map-
pings. US Patent 6 266 649

Maes P (1994) Agents that reduce work and information overload. Commun ACM 37(7):30-40

Mclones P (1997) EachMovie collaborative filtering data set. DEC Systems Research Center,
http://www.research.digital.com/SRC/eachmovie/

Merz CJ, Pazzani MJ (1999) A principal components approach to combining regression estimates. Mach
Learn 36(1-2):9-32

Nakamura A, Abe N (1998) Collaborative filtering using weighted majority prediction algorithms. In: Pro-
ceedings, 15th International Conference on Machine Learning. pp 395-403

Newbold P, Granger CWJ (1974) Experience with forecasting univariate time series and the combination of
forecasts. J R Stat Soc Ser A 137:131-146

Pennock DM, Horvitz E, Lawrence S, Giles LC (2000) Collaborative filtering by personality diagnosis: a hy-
brid memory- and model-based approach. In: Proceedings, 16th Conference on Uncertainty in Artificial
Intelligence. pp 473480

Pine BJ (1993) Mass Customization. Harvard Business School Press, Boston, MA

Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP
algorithm. In: Proceedings, IEEE International Conference on Neural Networks. pp 586-591

Salton G, Buckley C (1998) Term-weighting approaches in automatic text retrieval. Inf Process Manage
24(5):513-523

Shardanand U, Maes P (1995) Social information filtering: algorithms for automating “word of mouth”. In:
Proceedings Computer Human Interaction Conference. pp 210-217

Ungar LH, Foster DP (1998) Clustering methods for collaborative filtering. In: Proceedings, Workshop on
Recommendation Systems. AAAI Press, Menlo Park CA

22 S. Vucetic, Z. Obradovic

Author Biographies

Slobodan Vucetic is an Assistant Professor in the Department of Computer
and Information Sciences at Temple University, Philadephia. He received his
BS and MS in Electrical Engineering from the University of Novi Sad in 1994
and 1997, respectively, and his PhD in Electrical Engineering from Washing-
ton State University in 2001. His research interests are in data mining, ma-
chine learning, and bioinformatics.

Zoran Obradovic is the Director of the Center for Information Science and
Technology and a Professor of Computer and Information Sciences at Temple
University. His research interests focus on solving challenging scientific data-
mining problems for efficient knowledge discovery in large databases. Funded
by NSF, NIH, DOE, and industry, during the last decade he has contributed to
about 150 refereed articles on these and related topics and to several academic
and commercial software systems.

Correspondence and offprint requests to: Slobodan Vucetic, Center for Information Science and Technology,
Temple University, Philadelphia, PA 19122, USA. Email: vucetic@ist.temple.edu

