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Abstract. Sepsis, an acute systemic inflammatory response syndrome
caused by severe infection, is one of the leading causes of in-hospital mor-
tality. Our recent work provides evidence that mortality rate in sepsis
patients can be significantly reduced by Hemoadsorption (HA) therapy
with duration determined by a data-driven approach. The therapy op-
timization process requires predicting high-mobility group protein B-1
concentration 24 hours in the future. However, measuring sepsis biomark-
ers is very costly, and also blood volume is limited such that the num-
ber of available temporal observations for training a regression model
is small. The challenge addressed in this study is how to balance the
trade-off of prediction accuracy versus the limited number of temporal
observations by selecting a sampling protocol (biomarker selection and
frequency of measurements) appropriately for the prediction model and
measurement noise level. In particular, to predict HMGB1 concentration
24 hours ahead when limiting the number of blood drawings before ther-
apy to three, we found that the accuracy of observing HMGB1 and three
other cytokines (Lsel, TNF-alpha, and IL10) was comparable to observ-
ing eight cytokines that are commonly used sepsis biomarkers. We found
that blood drawings 1-hour apart are preferred when measurements are
noise free, but in presence of noise, blood drawings 3 hours apart are
preferred. Comparing to the data-driven approaches, the sampling pro-
tocol obtained by using domain knowledge has a similar accuracy with
the same cost, but half of the number of blood drawings.

Keywords: health informatics, acute inflammation, therapy optimiza-
tion, limited temporal data, model predictive control.

1 Introduction and Motivation

Sepsis is a serious condition resulting from uncontrolled systematic inflamma-
tory response to some pathogen infections. This condition is characterized by fast
progression, severe symptoms and high mortality rate. In fact this is the number
one cause of in hospital death in the USA [1]. Despite the high importance of
the problem and substantial amount of researchers effort, not much progress has
been achieved in resolving it. The vast heterogeneity of clinical manifestations
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makes identification of sepsis severity challenging. Another difficulty lies in rapid
progression of the condition, where a patient goes from mild symptoms of infec-
tion to life threatening systematic inflammation condition in just several hours.
Treatment consists of administering cocktails of various antibiotics in order to
cover the spectrum of possible pathogens (usually bacteria) as much as possible.
Even this aggressive treatment often is not enough since mortally in severe sepsis
is as high as 30% and up to 70% when septic shock occurs [2].

Two main challenges arise in the problem of reducing the lethality of the
sepsis. First it is very important to devise accurate diagnostic techniques that are
also able to classify condition as early as possible. After correct diagnosis, it may
be even more important that therapy is applied timely and appropriately. Since,
in order to be effective, sepsis therapy should be aggressive, treating a person that
is healthy is almost as undesirable as not treating an ill patient. The problems of
early and accurate diagnostics have been addressed in a number of articles, such
as [4], [5] and [8]. Recently, a form of blood purification called Hemoadsorption
(HA) was proposed as a complement to antibiotic therapy. It was shown that
HA is beneficial when used in animal models of sepsis [6]. It is based on removing
certain cytokines from the blood, which are involved in mechanisms of systemic
inflammation. Systemic inflammation takes place when these biomarkers enter
a positive feedback loop with immune cells resulting in uncontrollable increase
in inflammation. This process is known as a cytokine storm and it plays major
role in number of conditions including sepsis. By cytokine reduction, HA therapy
attempts to regain control over the inflammation process and return it to normal
mode.

Given their roll in development of sepsis, observing cytokines over time is
beneficial in both diagnostic and therapeutic purposes. Recently, they were used
in the task of early classification of septic patients [8]. It is shown that applying
HA therapy can be guided according to the predicted future values of cytokines
in the Model Predictive Control framework [3]. On the other hand, there are also
some constraints on cytokines use in the task of predicting sepsis progression.
Constraints are mainly posed by limits on various resources. With current tech-
nologies fairly large volume of blood is needed to measure a particular (single)
cytokine. However, there are at least 150 different cytokines, and many of them
are involved in the inflammation process. Instead of measuring all cytokines,
in clinical applications just a few of the most informative should be identified.
Even when just a few cytokines are measured, measurement needs to be done
on a number of different chronological occasions in order to catch the temporal
dynamics of their change, which also increases demands on blood that needs to
be drawn. In reality the amount of blood that can be drawn from a subject is a
limiting factor in temporal observations of cytokines. The total amount of blood
drawn over some period of time is limited by cost, data extraction time and even
medical protocols. An additional constraint in small animals experiments (e.g
mice and rats) is that drawing too much blood can interfere with the state of
the subject since volume of the subject’s bodily fluids is small.
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In this article we are therefore addressing the problem of predicting progres-
sion of cytokines from a limited number of temporal observations. Here, we pro-
pose an approach for learning from limited temporal observations by utilizing
prior knowledge of the interconnections of biomarkers and important internal
states of sepsis progression. Using this approach, we discovered a blood draw-
ing and biomarker measuring protocol which balances the constraints, cost, and
accuracy.

The rest of the paper is organized as follows. In the second section the dy-
namical model of sepsis progression along with the process of virtual patient
generation is presented. The third section is comprised of several subsections: in
section 3.1, a detailed problem formulation of this study is provided; in section
3.2, a domain knowledge based approach is proposed; in section 3.3 and 3.4,
alternative data-driven approaches are introduced. In section 4, experiments
corresponding to different approaches are described in details, and results are
analyzed. Summary and conclusion of this study is provided in section 5.

2 Sepsis Model and Data Generation

2.1 Model of Sepsis Progression

A set of Ordinary Differential Equations (ODE) describing the evolution of se-
vere sepsis in rats is introduced in [7]. The network of interactions included
in the model consists of 19 variables and 57 parameters. Out of 19 states 11
are unobservable: CLP protocol (CLP), Bacteria (B), Anti-Inflammatory state
(AI), Pro-Inflammatory state (PI), Tissue Damage (D) and five types of Neu-
trophiles (Nr, Np, Na, Ns, Nt and Nl). Unobservable states are interconnected
through equations with each-other and with eight cytokines, which represents
variables that can really be measured. These eight observable states are the fol-
lowing plasma cytokines: tumor necrosis factor (TNF), three kinds of interleukins
(IL-1b, IL-6 and IL-10), Lselectin (Lsel), high mobility group boxl (HMGB1),
creatinine (CRT) and alanine aminotransferase (ALT). Domain knowledge was
utilized to relate particular biomarkers that serves as proxies for particular un-
observable states. Three cytokines TNF, IL-1b and IL-6 are well known as major
Pro-Inflamatory mediators. Similarly I11.-10 favors Anti-Inflamaton, while Lsel is
related to Neutrophiles. The remaining three cytokines HMGB1, CRT and ALT
are indicators of tissue damage and ODEs are devised accordingly. Most of the
parameters in the model were fitted from real experimental data, while only a
few were adopted from the literature. Experimental data were collected from a
set of 23 rats where sepsis was induced by the CLP protocol. Eight longitudinal
measurements of eight cytokines were collected at 18, 22, 48, 72, 120, 144, and
168 hours after sepsis induction.

The devised model, although coarse, serves to allow insight into plausible
mechanism that drives the progression of sepsis. Moreover it provides a tool
for performing experiments on in silico patients, which in turn can lead to new
promising hypotheses that could later be evaluated in real experiments.



40 X.H. Cao, I. Stojkovic, and Z. Obradovic

2.2 Generation of Virtual Patients

For the purpose of conducting experiments on the prediction of sepsis biomark-
ers, we used the ODE model for the generation of in silico or virtual patients.
Every virtual patient behaves according to the mentioned dynamical equation,
but each of the patients has a unique set of parameters and therefore unique
response to the CLP induction of sepsis. Sets of parameters characterizing each
patient were obtained using the following 3-step protocol: First, the valid ranges
of parameter values are adopted from [7], and parameters are randomly sampled
from those intervals. Next the 19 states model is simulated over time for chosen
set of parameters. Finally, the likelihood that the evolution of 8 observable states
follows the evolution of the real data from [7] is calculated, and if the likelihood
is high enough then the virtual patient has been accepted as valid, or rejected
otherwise. In that way, a number of virtual patients is generated for the purpose
of training, validating or testing in the conducted experiments, for which setups
and results are reported in following section.

3 Biomarkers Selection for Prediction of Sepsis Severity
from Temporal Observations

3.1 Problem Definition

To determine the proper duration of HA therapy, the severity progression of sep-
sis is assessed, based on temporal observations of relevant variables, i.e. extending
duration if sepsis severity is predicted to increase. In this paper, a cytokine called
high-mobility group protein B-1 (HMGBI) is used as the biomarker indicating
severity of sepsis. Recently, it has been shown that using HM GBI in the objective
function for model predictive control, the rescue rate was significantly improved
[3]. Therefore, our objective is to estimate the value of HMGBI in the future
(typically 24 hours ahead) before applying therapy. Simulations have shown that
18% of septic patients could be rescued with a 4-hour duration HA therapy from
the 18th hour since sepsis induction [7]. Therefore, in this problem setup, we
would like to predict the value of HMGBI1 at the 42nd hour since sepsis induc-
tion, while the start of therapy is scheduled at the 18th hour. One may think
that this is a typical time series prediction problem, because once we measure
HMGBI for 18 hours, we can deploy any regression model to make predictions.
However, in practice we cannot make observations at all historic time points. In
our application the minimum time interval between two consecutive blood draw-
ings is 1 hour. Because of this, no more than 18 blood drawings corresponding
to hourly observation are possible before the start of therapy. In practice, the
number of blood drawings is also limited by blood volume and medical regu-
lations. However, at each blood sample we could measure multiple biomarkers,
including HMGBI1. That brings up another problem; each individual measure-
ment of a biomarker is very costly, e.g. the cost of measuring 10 biomakers in a
blood sample is 10 times as costly as measuring 1 biomarker. Sepsis biomarkers
are correlated, and so measurement costs can be reduced as we can predict from
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less measurements by utilizing their relationships. In summary, the problem ad-
dressed in this study is to balance the number of blood drawings, the number of
biomarker measurements, and the prediction accuracy.

In the following 3 subsections we describe 3 methods for determining when
to do blood drawings and what biomarkers to measure. A brute-force approach
would consist of measuring 8 biomarkers hourly. Following such a protocol, in
18-hours, the number of measurement would be 144 (8 x 18=144). Considering
all 2144 combinations of biomarker measurements is infeasible. Therefore, in this
paper, we propose using a domain knowledge based approach to select biomark-
ers. This method is compared to two data-driven approaches based on feature
selection and L1 regularization.

3.2 Domain Knowledge Based Sepsis Biomarkers Selection

Numerous sepsis-related studies resulted in understanding of the basic mech-
anism of sepsis. We propose using existing domain knowledge as clues about
biomarkers that are closely related to sepsis progression. In particular, we use do-
main knowledge to identify biomarkers related to the prediction target HMGBI.

The prediction target HMBGI1 is related to tissue damage (D). From the
model description in Section 2.1, other cytokines related to D are creatinine
(CRT) and alanine aminotrasferase (ALT). Thus, we assume that measuring
CRT and ALT could provide information about changes of HMGB1 in the future.
However, since CRT, ALT and HMGBI1 are proxies for the same internal state,
the changes of these three tissue-damage-related biomarkers over time should be
similar. Therefore, in the proposed approach we decided not to measure them all,
but just select one of them to measure. In order to increase the information gain,
we propose that we should select biomarkers that are proxies to different internal
states. In other words, for each blood sample, in addition to measuring HMGB1
which is the observable biomarker that estimates tissue damage and is also the
prediction target of our interest, we propose measuring L-selectin (Lsel), which
is a proxy for peritoneal neutrophil, tumor necrosis factor-a (TNFa), which is a
proxy for systemic pro-inflammatory response, and interleukin-10 (IL10), which
is a proxy for systemic anti-inflammatory response.

A reduction from 8 cytokines to measuring 4 (Lsel, HMGB1, TNF«, and I110)
in each blood sample is not sufficient, as the problem of when to draw blood
remains. Intuitively, measurement at the 18th hour (start of the therapy) gives
us the latest status information of the patient. Therefore, we will always draw
blood and take measurements at the 18th hour. In the proposed approach we
assume that the time between two consecutive blood drawings is the same. If a
blood drawing is definite at the 18th hour, the problem becomes finding the most
suitable sampling interval of blood drawings. We restrict the number of blood
drawings/samples to three, as three is a reasonable number of blood drawings,
and it allows us to investigate a variety of different choices of blood sampling
intervals in the initial 18-hour period from infection time to the beginning of
therapy. We expect that suitable sampling intervals would vary under different
situations, such as the level of noise in the measurement data. Thus, we conduct
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experiments to see how the preferred sampling interval changes under various
conditions.

3.3 Forward Feature Selection Based Biomarkers Identification

We can also treat the problem described in Section 3.1 as a traditional feature
selection problem in machine learning. If measurements of 8 biomarkers are
available at every hour in the 18-hour history we have 144 features. To reduce
measurements we can apply a greedy forward feature selection technique. The
forward selection algorithm will try to add features to the candidate set. If the
criterion function decreases after adding a feature to the candidate set, that
feature will be included to the candidate set (Algorithm 1). In this case, the
criterion function is the average root mean squared error (RMSE) in the training
set using 5-fold cross validation, while a Linear Regression (LR) model is used
as the predictor.

input : X, feature set; f(.), criterion function
output: X., candidate set
initialization: S = oo; gain = true; X. is empty; x, is empty;
while gain = true do
gain = false;
foreach feature x in X do
add x to X;
if f(X.) < S then
S = f(X¢); gain = true; z, = ;
end
remove x from X;
end
if gain = true then
add z, to X.; remove x, from X;
end
end
Algorithm 1. Biomarkers Identification by Forward Selection

3.4 Lasso Regression Based Biomarkers Selection

The Lasso Regression Model is a Linear Regression model that includes an L; —
norm regulation term to enhance the sparsity of the coefficients (3). The values
of the coefficients are found by solving the optimization function (1). Thus,
features with non-zero coefficients are relevant to the prediction task. So, Lasso
Regression has a built-in functionality of feature selection.

min [[X5 — y[l2 + All Al (1)

where X is the augmented feature matrix, y is the target vector, 8 is the coeffi-
cient vector, and A is the regulation coefficient.
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4 Experiments and Results

The data used in our experiments were generated by using the system of equa-
tions described in Section 2.1. The value of each biomarker measurement is
between 0 and 1. In order to simulate real-life conditions, we will add various
levels of uniform noise to the generated data.

4.1 Using Domain Knowledge to Select Biomarkers

In the proposed approach based on using prior knowledge, three blood drawings
would be made; one of the three blood drawings would be always at the 18th
hour. This experiment was designed to answer the following questions: 1. What
is the most suitable time interval between two consecutive blood drawings? 2.
How do different choices of biomarkers used in the model would affect the pre-
diction accuracy? 3. How does the number of virtual patients in training affect
the accuracy? 4. How does the noise level in the data affect the accuracy. For
purposes of comparison, a linear model and a nonlinear model were used for pre-
diction. The linear model was Linear Regression (LR), and the nonlinear model
was Support Vector Regression (SVR) [10] with radial basis kernel. SVR was
implement by using the LIBSVM package [11].

RMSE of LR with No Noise, 3 Samples RMSE of SVR with No Noise, 3 Samples
Biomarkers: HMGB1, TNF, IL1, IL6, IL10, Lsel, CRT, AL1 Biomarkers: HMGB1, TNF, IL1, IL6, IL10, Lsel, CRT, AL1
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Fig.1. RMSE’s of LR and SVR model, measuring 8 biomarkers at 3 blood drawings
noise free. Results shown from models trained on 1, 2, 3, 4, 6, 8 hours interval between
blood drawings and on data from 20 to 100 subjects.

As a baseline, we compare predictions with measurements of all eight biomark-
ers in the blood drawings. The number of virtual patients in training varied from
20 to 100, with increments of 20, and the time intervals between blood drawings
were 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, and 8 hours. The prediction
error is measured by root mean squared error (RMSE) on 2,000 virtual patients.
Figure la and Figure 1b show the RMSE’s using different numbers of virtual
patients in training, and using different time intervals between blood drawings
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when number of blood drawings was 3, and with no noise present in measure-
ments. The RMSE’s of LR are lower than SVR when the time interval is small.
From the figures, we learn that if measurements are noise-free, a short time in-
terval between measuremetns (1 hour) will provide lower errors. We also learn
that the model trained on observations from 40 virtual patients performs much
better than the model trained on 20 virtual patients. However, training with
more than 40 virtual patients has not further reduce prediction error. With uni-
form noise in range of [-0.02, 0.02] present in the measurements, on Figure 2a
and Figure 2b, we learn that the RMSE’s of LR and SVR here are very similar.
In presence of noise, drawing blood with short time intervals was less accurate,
and the effect of noise on larger time intervals was less significant. Larger time
intervals between blood drawings are more robust to additive noise. In the case
of LR, large time intervals between blood drawings result in lower error.

The obtained results provide evidence that including more virtual patients in
training would not reduce errors. Therefore, in the following experiments, the
number of virtual patients in training is fixed to 100.

RMSE of LR with Noise in [-0.02,0.02], 3 Samples RMSE of SVR with Noise in [-0.02,0.02], 3 Samples

Biomarkers: HMGB1, TNF, IL1, IL6, IL10, Lsel, CRT, AL1 Biomarkers: HMGB1, TNF, IL1, IL6, IL10, Lsel, CRT, AL1
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Fig.2. RMSE’s of LR and SVR model, measuring 8 biomarkers at 3 blood drawings
with uniform measurement noise in [-0.02, 0.02] range. Results shown are from models
trained by using 1, 2, 3, 4, 6, 8 hours interval between blood drawings and on data
from 20 to 100 subjects.

Measuring all 8 biomarkers in each blood drawing is not desirable, as the total
number of measurements is 24 when taking 3 blood drawings. We would like to
obtain similar accuracy by measuring fewer biomarkers. The domain knowledge
based approach described in Section 3.2 enabled us to do so. Figure 3a shows the
RMSE'’s of the LR model trained by 3 blood drawings with noise-free, and noisy
measurements of HMGB1, TNFq, IL10, and Lsel biomarkers which are related
to different internal states that reflect severity of sepsis. In the obtained results,
RMSE’s in noise-free condition are smaller than the ones in noisy conditions;
as the noise level increases, the errors increase. For uniform noise in the [-0.02,
0.02] range errors using these 4 biomarkers are similar to the ones based on all 8



Predicting Sepsis Severity from Limited Temporal Observations 45

biomarkers (black line in Figure 2a). So, since the number of blood drawings is
the same, we could use half the number of measurements to achieve a very similar
error. The prediction error when using HMGB1, CRT, and ALT biomarkers is
shown in Figure 3b. For noise-free measurements, using these three biomarkers
can achieve low error with 1-hour time intervals between blood drawings. For
additive uniform noise in [-0.02, 0.02] the errors increases significantly, especially
when the time interval between blood drawings is 1 hour. When noise is present,
the overall errors using these three biomarkers are significantly higher than the
ones when predicting based on 4 biomarkers.

RMSE of LR with no Noise and Noise in 3 Levels, 3 Samples RMSE of LR with no Noise and Noise in 3 Levels, 3 Samples
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Fig.3. RMSE’s in LR model using 4 and 3 biomarkers measured at 3 blood drawings
on (a) and (b) respectively. Results are based on models trained on 100 subjects under
noise-free, and different noisy conditions, with sampling interval of 1, 2, 3, 4, 6, and 8
hours between blood drawings.

4.2 Using Forward Selection for Biomarkers Identification

The training set consisted of 100 virtual patients and measurements had [-0.02,
0.02] additive uniform noise. The criterion function of the selection procedure
was the average RMSE using 5-fold cross validation on the training set. The
selection procedure was repeated 20 times. Selected biomarkers are shown in
Figure 4. In all the trails, number of biomarker measurements ranges from 7
to 14, number of required blood drawings ranges from 5 to 8. After testing the
model on 2000 virtual patients in each trial, the range of RMSE is from 0.0356
to 0.0623. The minimum RMSE is achieved by 12 biomarker measurements from
7 blood drawings. The minimum RMSE is similar to the one achieved by the
domain knowledge based approach, but the number of blood drawings is more
than twice large (7 v.s 3). We found that about 21% of the biomarkers were
selected from the 18th hour; this result consistent with our intuition that recent
measurements are very informative for prediction. Other than the 18th hour,
selected biomarkers uniformly span the whole 18-hour period.
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Trial No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Choosen Cytokine in 18-hour history
White: Chosen  black: not-Chosen

Fig. 4. Biomarker selection using sequential forward feature selection method. A matrix
shows the biomarkers selected in 20 trials. The matrix dimension is 20 by 144, where
20 indicates 20 trials and 144 indicates 8 biomakers in 18 hour period (8x18=144).

4.3 Using Lasso Regression for Biomarker Selection and Sepsis
Severity Prediction

100 virtual patients with [-0.02,0.02] uniform noise were used for training. 100
different values of the regularization coefficient A were used to generate mod-
els with different numbers of non-zero coefficients. We tested 100 trained linear
models (with different non-zero coefficients) on 2,000 virtual patients, and ob-
tained the RMSE of each model. We found that the RMSE’s remain low (about
0.035) when models with 12 or more non-zero coefficients (see Figure 5).

Lasso Experiment Result
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Fig. 5. Lasso regulation for feature selection

Models with 12 non-zero coefficients have RMSE’s in range from 0.0347 to
0.0359. In the model achieves minimum RMSE, number of required blood draw-
ings is 6, and number of required biomarker measurements is 12. Although, the
minimum RMSE is similar to the one in the domain knowledge based approach,
number of blood drawings is twice larger (6 v.s 3).
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4.4 Overall Comparison of Different Approaches

The sampling protocol design objectives were low prediction error as well as
small number of blood drawings and biomarker measurements. The prediction
error (RMSE) of different approaches, their required number of blood drawings,
and number of biomarkers measurements are shown at Table 1. Uniform noise
in [-0.02, 0.02] range was added to the signal to simulate reality. The smallest
RMSE was achieved by measuring all eight observable biomarkers. However,
the error was just slightly larger when using only half of measurements selected
based on knowledge of sepsis mechanism.

Table 1. Comparison of Different Approaches under Uniform Noise in [-0.02,0.02]

Best RMSE in  No. of blood No- of
Approach . biomarker
test drawings
measurements
Data—Drlvenf Forward 0.0356 7 12
Selection
Data—Dmver}:LassD 0.0347 6 12
Regression
Domain Knowledge 8 0.0338 3 2
biomarkers
Domau_l Knowledge: 4 0.0341 3 12
biomarkers
Domain Knowledge: 3 0.0511 3 9

biomarkers

5 Summary and Conclusion

In this study, we used different approaches to characterize options for obtaining
temporal observations of biomarkers in an 18-hour period to predict the value of
HMGBI in the future 24th hour. From the data-driven approaches, we learned
that with blood drawings at proper times, 12 biomarker measurements were
sufficient to make good predictions. Additional biomarker measurements would
not improve the prediction accuracy. Inspired by the data-driven results, we came
up with an approach that utilized domain knowledge of the interconnections
of biomarkers and important internal states of sepsis progression. Using this
approach, we discovered a blood drawing and biomarker measuring protocol
which balances the constraints, cost, and accuracy.
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