
Learning a Dynamic-based Representation for
Multivariate Biomarker Time Series Classifications

Xi Hang Cao, Chao Han and Zoran Obradovic
Center for Data Analytics and Biomedical Informatics

Computer & Information Science Department, Temple University
Philadelphia, USA

{xi.hang.cao, chao.han, zoran.obradovic}@temple.edu

Abstract—Time series in healthcare practices and biomedical
research are typically multivariate, i.e. multiple biomarkers are
observed simultaneously at a time. However, they tend to be
short, noisy, unaligned, irregularly sampled, partially observed,
and with only limited samples. These imperfections pose a
challenge for mining information from data. In this work, we
propose to use dynamic-based representations to present such
imperfect multivariate time series. Specifically, we propose an
approach to learn a corresponding Linear Dynamical System
(LDS) for a multivariate time series example and use the set
of system parameters as a representation for that example.
Such a representation is able to capture interactions of different
variables and provide a unified view of multivariate time series
with different lengths, different missingness mechanisms, and
different starting points. Other techniques are then used to mine
useful information and perform learning tasks based on the new
representation. For example, we use support vector machine
classification models with LDS kernels in time series classification
tasks. To evaluate the effectiveness of the proposed approach,
we conducted experiments on both synthetic data sets and real-
life datasets. The results in synthetic datasets demonstrated that
the proposed approach could correctly learn the similarities of
underlying linear dynamical systems. Our real-life data sets
included human influenza A (H3N2), Rhinovirus (HRV), and
respiratory syncytial virus (RSV) gene expression time series.
The accuracies in the leave-one-out symptomatic/asymptomatic
diagnostic tasks showed that our approach outperformed three
baseline algorithms. Moreover, in experiments where various
levels of imperfections were imposed on the H3N2 dataset, the
accuracies of other baseline methods degraded significantly, but
the accuracy of our approach remained high.

Index Terms—Time series analysis, Kernel method, Represen-
tation learning, Biomarker analysis, Unevenly spaced, Unaligned

I. BACKGROUND

A. Time series data in biomedical research

Data mining and machine learning techniques have great
potential to improve healthcare quality by allowing effective
knowledge extraction from observed data. Among different
forms of data, time series data are very important for both
medical research and clinical practice. A multivariate time
series (MTS) is a sequence of observations on multiple
variables in time. An efficient data mining model for time
series analysis would capture the dynamics of the ongoing
disease progression and interactions among biological system
components and thus lead to an accurate forecasting of health
state changes [1]. More advanced methodologies can reveal

hidden phenomena in the biological/physiological mechanism
of a subject and provide the insights for proper treatments [2].

B. Imperfections in biomedical time series data

To evaluate the health of a patient, we need to measure quan-
tities related to the patient’s physiological states in time. Some
of the measurements can be made frequently; for example,
heart rate, blood pressure, oxygen level, ECG, EEG, etc. Other
measurements are made infrequently, for not only the cost but
also the burdens to patients. Examples of these measurements
include laboratory tests, CT images, MR Images, gene expres-
sions etc. Many techniques (e.g. Fourier transform, Wavelet
transform, etc. [3]) have been developed to analyze frequently
made measurements where data points are sufficient, there
are no missing values, and samples are regularly spaced. In
most cases, these techniques are not applicable to time series
measurements with imperfections; i.e. short, noisy, unaligned,
irregularly sampled, partially observed, and with limited sam-
ples. A typical example of an imperfect time series is the
blood cell count (e.g. white blood cell, cytokine, etc.) time
series. Usually, blood cell counts are measured through time;
however, they are measured infrequently, such that typically, a
very limited number of samples are available. In addition, such
measurements are often noisy due to uncontrollable factors.
Sample contamination and other human errors may also cause
missing measurements of some biomarkers, so the data are
partially observed (only a subset of variables is observed
at a time point). Clinical measurements are usually made
by humans (nurses), so the data are irregularly spaced. The
onset of the disease is often unknown, so the time series
data are usually unaligned. In emergency situations, decisions
should be made in a short time, so the time series may be
very short. However, these clinical data are closely related to
patients’ health states; therefore, developing methodologies to
efficiently analyze them could tremendously help healthcare
practitioners to better serve patients.

C. Using a linear dynamical system to represent a multivari-
ate time series

In this section, we introduce briefly the basics of a linear
dynamical system (LDS) and how a multivariate time series
(MTS) can be represented by an LDS.



In our work, we consider the LDS in the following form:

ẋxx(t) = Axxx(t), (1)

where t ∈ R denotes time, xxx(t) ∈ Rd denotes an d-
dimensional state vector, A ∈ Rd×d is the dynamic matrix,
and ẋxx(t) is the derivative of the state vector with respect to
time. If an MTS consists of samples taken from the state tra-
jectories generated by an LDS, then we can create a connection
between the MTS and LDS. Therefore, we can represent an
MTS by the parameters of its corresponding LDS. We argue
that we can use the initial condition, xxx0, and dynamics matrix,
A, to represent an MTS, for the trajectories of the states are
intrinsically determined by these two parameters. In the case
that the MTS’s are not aligned, the initial conditions of the
LDS are unknown, and we can then use the dynamics matrix,
A, to represent an MTS. For example, in the time series
classification tasks in our conducted experiments, we firstly
learned an LDS (represented by a parameter set {xxx0, A}) from
each MTS example, and then used the learned parameters as
representations for model training and inference.

D. Contributions

In this work, we propose a method to learn informative
representations from imperfect MTS’s. The proposed method
is able to overcome several important challenges of the MTS
data in biomedical/healthcare researches and applications.

Contribution 1: the proposed approach learns an efficient
representation from an MTS which is short and with a limited
number of irregularly spaced samples. Many physiological
variables, such as heart rate, blood pressure, and electrocar-
diogram, can be measured by specific devices. Measurements
of these variables can be made noninvasively by machines
at small costs; therefore, samples of the variables are usually
acquired regularly and frequently. However, there are variables
that are also very costly and need to be acquired by humans;
as a result, only a limited number of samples are available.
Moreover, these samples are irregularly spaced due to the
schedule of the humans. Existing widely adapted time series
analysis techniques usually require the samples of the variables
to be acquired frequently and regularly. Inspired by [4], which
showed that stable signals can be recovered from incomplete
and inaccurate measurements, the proposed method employs
an optimization-based approach to learn a continuous-time,
time-invariant linear dynamical system to fit an MTS which
has irregularly spaced samples; in addition, the LDS is regu-
larized by both smoothness and ridge loss to ensure that the
learned model overcomes the problem of overfitting.

Contribution 2: The proposed approach learns an efficient
representation from an MTS with noisy, partially observed,
and unaligned samples. Because of the limitations of the ac-
quisition techniques and laboratory equipments, measurements
tend to be noisy; in addition, contaminations and human errors
may cause missing measurements, so the variables at a time
point may be partially observed. The multivariate time series
of different subjects/patients are usually unaligned; this is
because the onsets of the conditions are usually unknown,

hospitalization times are different, and observation lengths
are different. The proposed approach uses Prediction Error
Methods (PEM) to fit the state trajectories of an LDS to
the MTS and simultaneously estimate the initial condition
(first observation of the time series), which is corrupted by
noise. There are many interpolation methods proposed to
estimate the missing values in time series data; however, if
the underlying missing mechanism is unknown, interpolations
would introduce bias. In our method, when fitting the state
trajectories to an MTS, we only consider the available values,
thus, this approach does not suffer from the bias introduced by
interpolations. We assume that the LDS’s are time-invariant;
therefore, even though the onsets of the conditions are un-
known, the LDS’s still represent the dynamics of the time
series; also, because of the time-invariances of the LDS’s, the
observation lengths of the time series will have no impact
on the learning. Because an LDS can be represented by a
dynamics matrix, and the dimensions of the dynamics matrix
are determined by the number of variables in the time series;
therefore, an LDS is a unified representation of time series
with various lengths.

II. RELATED WORK

A. Related work in learning LDS

Linear dynamical systems have been extensively used in var-
ious fields, including engineering, medicine, economics, etc.
Learning an LDS from data is a long-lasting research topic. An
Expectation-Maximization approach was proposed to learn the
parameters of an LDS from data, and the relationships among
LDS, factor analysis, and hidden Markov models were studied
[5], [6]. Subspace methods were proposed to learn the LDS
parameters by fitting the state observations [7], [8]. However,
the above methods assume that the states are completely
observed (no missing observations) and samples are regularly
spaced; moreover, when the observation durations are short,
the parameters learned using the above methods are susceptible
to overfitting. Recently, regularization frameworks were pro-
posed to address this problem. A framework was developed
to regularize the largest eigenvalue of the dynamics matrix
A and learn the parameters using a spectral algorithm [9].
More recently, an L1-regularization framework [10], a low-
rank regularization framework [11], and a matrix factorization
based framework with regularizations [12] were also proposed.
While these frameworks overcome the overfitting problem and
are able to learn an LDS efficiently from fully observed state
trajectory samples, they do not explicitly handle the situations
in which states are partially observed. Moreover, since they are
based on the formulation of a discrete-time LDS, they require
that the state trajectory samples are regularly spaced. In this
work, we proposed a learning algorithm to learn the dynamics
matrix, A, and the initial condition, xxx0, from an imperfect
MTS (i.e. state trajectory samples), based on the formulation
of a continuous-time LDS. Therefore, our learning algorithm
does not require that the observations are regularly spaced.



B. Related work in learning representation from MTS’s

Learning representations from data is crucial for many ma-
chine learning tasks [13]. Time series representation learning
does not only aim to reduce the storage of a large amount
of time series data, but more importantly, it aims to extract
informative features for classification, prediction, or clustering.
The Discrete Fourier Transform (DFT) is one of the most well-
known representations for time series. The first few coeffi-
cients of the DFT were proposed to represent a time series and
showed promising results in searching and indexing time series
in databases [14]. The Discrete Wavelet Transform (DWT) is
proposed as a good alternative to the DFT [15], for the DWT
is able to capture both the global and local shapes. However,
these two representations require a rigorous sampling rate and
completed observations. Piecewise Aggregate Approximation
(PAA) [16] is an efficient representation for long-duration time
series. Symbolic Aggregate Approximation (SAX) [17] is a
representation based on PAA; it is obtained by discretizing
the PAA coefficients of a time series into some predefined
symbols. The aim of both PAA and SAX is to reduce the
length of a long time series, so they are not applicable to
short time series. The concept of shapelet and a time series
representation called shapelet transform were proposed [18].
A generalized shapelet-based method on multivariate time
series showed advantages in early classification tasks [19].
The shapelet-based representations are able to capture the
class-specific local features of time series; however, they are
not applicable to a time series that is partially observed or
irregularly sampled. Discrete-time Linear Dynamical Systems
(DTLDS’s) were proposed as kernels for a Support Vector
Machine classifier in the tasks of MTS classification, and
demonstrated that DTLDS’s were efficient as representations
for MTS’s [20]; however, the learned DTLDS’s were suscepti-
ble to overfitting due to the lack of regularization, and are only
applicable to MTS’s with fixed lengths, due to the constraints
in the learning algorithm.

III. METHODS

In this section, we describe our approach to learn an LDS
from an imperfect multivariate time series and use the LDS-
based representation for the multivariate time series classifi-
cation problem using a kernel support vector machine.

A. Notations

In this paper, scalars are denoted by lowercase alphabets
(e.g., t). Vectors are represented by boldface alphabets (e.g.,
xxx). Matrices are represented by boldface uppercase alphabets
(e.g., A). The (i, j)th element of a matrix, A, is denoted by its
lowercase alphabet with a subscript, namely aij . The identity
matrix is denoted by I with suitable dimensions in equations.
We list the main symbols in Table I.

B. Learning an LDS from an imperfect MTS

The LDS in the form of (1) is also known as the first
order continuous-time autoregressive (AR) model. A general
framework to estimate the higher-order continuous-time AR

Notation Definition

m
The number of time points in a time series
is m+ 1

ti
i = 0, 1, 2, · · · ,m, the time stamp of the
i-th time point

d
The Number of biomarkers measured at a
time

h A small time increment
ni The number of h’s in between t0 and ti

xxx(ti) ∈ Rd The i-th biomarker measurement vector in
a time series

x̂xx(ti) ∈ Rd The approximation of xxx(ti)

oooi ∈ {0, 1}d
The encoding of observed measurement at
the i-th time point

xxx0 ∈ Rd Initial condition of a time series
A ∈ Rd×d Dynamics matrix
Oi ∈ Rd×d A diagonal matrix with oooi as the diagonal

TABLE I: Notations and definitions

model was proposed in [21]; however, this framework lacked
regularizations, so the learned model is highly susceptible to
overfitting; more importantly, this general framework is not
applicable to the imperfect MTS for which our algorithm is
proposed.

Using the Euler forward method, (1) can be approximated
by

xxx(t+ h)− xxx(t)

h
= Axxx(t), (2)

where h is a small time increment. The state vector h units
ahead of current time t is approximated by

xxx(t+ h) = (I + hA)xxx(t). (3)

Let’s say in an MTS, there are m + 1 samples
{xxx(t0),xxx(t1), ...,xxx(tm)} which are taken from the state trajec-
tories of an LDS at time point {t0, t1, t2, ..., tm}. xxx(ti) ∈ Rd
is a state vector consists of d biomarker measurements at time
ti. Because h is small, we can approximate the future time
point as the current time point with integer multiples of h’s
ahead. Namely,

ti ' t0 + ni · h, i = 1, 2, ...,m

where {ni|ni = d(ti − t0)/he, i = 1, 2, ...,m} are positive
integers. If the initial state vector is known, then the state
vector at time ti can be approximated by

x̂xx(ti) = xxx(t0 + ni · h) = (I + hA)nixxx(t0) (4)

and the squared error of the ith approximation and the sample
can be computed as

‖eeei‖2 = ‖x̂xx(ti)− xxx(ti)‖22
= ‖(I + hA)nixxx(t0)− xxx(ti)‖22,

(5)

where ‖ · ‖2 is a vector L2-norm.



C. Learning the dynamics matrix from complete and accurate
measurements

To learn the dynamics matrix, A ∈ Rd×d, we adopt the
framework of regularized risk minimization [22]. Namely, we
formulate an optimization problem in which the objective con-
sists of an error term and regularization terms. The dynamics
matrix is learned by minimizing such an objective; as shown
in (6).

minimize
A

J(A) = Je(A) + Jr(A) + Js(A); (6)

where

Je(A) =
1

2m

m∑
i=1

‖(I + hA)nixxx0 − xxx(ti)‖22, (7)

Jr(A) =
λ1
2d2
‖A‖2F , (8)

Js(A) =
λ2h

2nm

nm−1∑
j=1

‖(I + hA)j+1xxx0 − (I + hA)jxxx0‖22. (9)

The error term, denoted by Je, is the sum of squared errors
(5) normalized by the number of time points, m. There are
two regularization terms in the objective: the term Jr denotes
the ridge loss (Frobenius norm) of the dynamics matrix;
minimizing such a loss aims to prevent the overfitting of the
model [23]; the term Js aims to ensure that the approximated
time series are smooth [24]. Theoretically, we can apply any
appropriate regularization terms (e.g. matrix 2-norm/spectral
norm in [9] and nuclear norm in [11]) in this optimization
formulation; however, in the considerations of computational
efficiency and simplicity, we use the above regularizations
which are differentiable, so that we can employ gradient
descent optimization methods to solve the problem.

The limitations of this formulation are that: 1) it assumes all
the measurements are accurate, especially the initial measure-
ment; 2) it assumes all the measurements are complete, which
means all the variables must be observed in a measurement.
However, in many cases, these two assumptions are too strong;
therefore, we have to further extend the model to accommodate
the cases in which the MTS is noisy and partially observed.

D. Learning an LDS from noisy MTS measurements

If measurements are noisy, we have to formulate the objec-
tive function differently. In an LDS, the initial condition of the
variables is extremely important because it is always one of
the multipliers for approximating the time points, as shown in
(4). Therefore, in order to learn the dynamics matrix, we need
to also learn the initial state. To learn the initial state and the
dynamics matrix simultaneously, we formulate the objective
function of the optimization as follows:

minimize
xxx0,A

J(xxx0,A) = Je(xxx0,A) + Jr(A)

+ Js(xxx0,A) + Ji(xxx0).
(10)

The first three terms, Je(xxx0,A), Jr(A), and Js(xxx0,A), in
this formulation are the same as defined in (7), (8), and (9).
However, under the formulation in (6), we are only interested

in solving the dynamics matrix, A, so Je(A) and Js(A) were
functions of variable A alone. In a more realistic formulation,
(10), we are interested in both xxx0 and A, and thus Je(xxx0,A)
and Js(xxx0,A) are functions of both variables, xxx0 and A. We
use the regularization term,

Ji(xxx0) =
λ3
2d
‖xxx0 − xxx(t0)‖22 (11)

to ensure that the optimized intitial observation is closed to
the measurement.

E. Learning an LDS from partially observed MTS measure-
ments

When only a subset of variables are observed, the error term
in the objective function can be written as:

Je(xxx0,A) =
1

2m

m∑
i=1

‖Oieeei‖22

=
1

2m

m∑
i=1

‖Oi[(I + hA)nixxx0 − xxx(ti)]‖22,
(12)

where Oi = diag(oooi) is a diagonal matrix, and oooi =
[oi1, oi2, ...] indicates whether the biomarkers are observed at
time point, ti; namely,

oij =

{
1, if at time point i, the jth biomarker is observed
0, otherwise.

F. Solving the optimization problem

It is challenging to simultaneously find xxx0 and A to
minimize the objective function, especially when the objective
function involves their products, as shown in (7). In order
to solve this optimization problem, we employ an iterative
strategy. Specifically, the algorithm minimizes the objective
function, and finds the minimizers iteratively: in one iteration,
the algorithm treats xxx0 as known, and solves for the optimal
A; in the following iteration, the algorithm treats A as known
and solves for the optimal xxx0. In each iteration, we can solve
the sub-problem efficiently using a gradient descent approach.

Using the identities described in [25] and [26], results in the
first-order differentiation of each term in the objective function
w.r.t. A, while treating xxx0 was a constant:

∂Je
∂A

=
1

m

m∑
i=1

Oi[f1(A, h, ni)− f1(A, h, 0)] (13)

× f2(A, h, ni);

∂Jr
∂A

=
λ1
d2
vec(A)T ; (14)

∂Js
∂A

=
λ2h

nm

nm−1∑
i=1

[f1(A, h, i+ 1)− f1(A, h, i)] (15)

× [f2(A, h, i+ 1)− f2(A, h, i)];



where

f1(A, h, n) = ((I + hA)nxxx0)T (xxxT0 ⊗ I); (16)

f2(A, h, n) =

n∑
k=1

(
n

k

)
hk

k∑
j=1

(AT )k−j ⊗ Aj−1. (17)

Here, the symbol I represents the identity matrix with the same
size of A, vec(·) is the vectorization operator on a matrix, and
the symbol ⊗ represents the Kronecker product operator.

While treating A as a constant, the first differentiation of
the objective function terms w.r.t. the initial condition, xxx0, are

∂Je
∂xxx0

=
1

m

m∑
i=1

Oi[(I + hA)nixxx0 − xxx(ti)]
T (I + hA)ni (18)

∂Js
∂xxx0

=
λ2h

nm

nm−1∑
j=1

xxxT0 [(I + hA)j+1 − (I + hA)j ]T (19)

× [(I + hA)j+1 − (I + hA)j ]xxx0
∂Ji
∂xxx0

=
λ3
d

(xxx0 − xxx(t0))T (20)

The iterative procedure to learn A and xxx0 from an imper-
fect MTS is summarized in Procedure 1. The regularization
parameters are user-specified. In our experiments, we simply
set {λ1, λ2, λ3} as {1, 1, 1}. The objective function is
non-convex; therefore, the solution may not be at the global
minima. For MTS classification tasks, where a parameter
set is learned from an MTS example, in order to have fair
comparisons between dynamic matrices learned from MTS
examples, we do not recommend to initialize xxx0 and A
randomly. In our experiments, we initialized the dynamics
matrix as a zero-matrix and initialize the initial condition as the
initial sample. In the optimization procedure, we need to set
parameters {η, Tol, Niter}, where η is the update step size,
Tol is the optimality tolerance, and Niter is the maximum
iteration number. In our experiments, we empirically found
that setting η = 10−2 allowed a good balance of convergence
and convergent rate, and setting {Tol,Niter} = {10−4, 20}
allowed a good balance of computational time and optimality.

G. Classifying LDS’s via a Kernel method

After learning the dynamics matrices and the initial con-
ditions of all imperfect MTS examples in the data set, we
would like to use them as representations of the MTSs for
classification tasks. In previous studies, various metrics were
developed to quantify the similarities/dissimilarities of two
dynamical systems. Examples include the Martin distance [27]
and subspace angles [28]. In this study, we adapted the kernel-
based framework proposed in [29] as the basis of our LDS
classification model, as this framework is a generalization of
the previous two examples and can be directly integrated into
a support vector machine classifier.

A kernel of two LDS’s, (xxx0,A) and (xxx′0,A
′), can be defined

Procedure 1 Iteratively learning A and xxx0 from an Imperfect
MTS
Input:

1: An MTS with time stamp set {t0, t1, · · · , tm} and state
vectors {xxx(t0),xxx(t1), · · · ,xxx(tm)}

2: A small time increment h . A user-decide variable
3: η, Tol and Niter . Step size, tolerance and max iteration

number
Output:

1: Estimated initial state vector, xxx0
2: Estimated dynamics matrix, A

Procedure:

1: initialize A, and initialize xxx0 as xxx(t0)
2: Jold ← J(xxx0,A) as definted in (10)
3: compute {n1, n2, · · · , ni, · · · , nm}, where ni = (ti −
t0)/h

4: Counter1 ← 0
5: repeat
6: counter1 + +

// Use BCGD Aglorithm and treat xxx0 as a constant
7: counter2 ← 0
8: repeat
9: counter2 + +

10: compute ∂Je
∂A using (13)

11: compute ∂Jr
∂A using (14)

12: compute ∂Js
∂A using (15)

13: ∂J
∂A ←

∂Je
∂A + ∂Jr

∂A + ∂Js
∂A

14: A← A− η ∂J∂A
15: until ‖ ∂J∂A‖ < Tol or counter2 > Niter

// Use BCGD Aglorithm and treat A as a constant
16: counter2 ← 0
17: repeat
18: counter2 + +
19: compute ∂Je

∂xxx0
using (18)

20: compute ∂Js
∂xxx0

using (19)
21: compute ∂Ji

∂xxx0
using (20)

22: ∂J
∂xxx0
← ∂Je

∂xxx0
+ ∂Jr

∂xxx0
+ ∂Js

∂xxx0

23: xxx0 ← xxx0 − η ∂J∂xxx0

24: until ‖ ∂J∂xxx0
‖ < Tol or counter2 > Niter

25: Jnew ← J(xxx0,A)
26: ∆J ← Jold − Jnow
27: Jold ← Jnew
28: until ‖∆J‖ < Tol or counter1 > Niter
29: Return xxx0 and A

as

k((xxx0,A)), (xxx′0,A
′))

:= xxxT0

[∫ ∞
0

exp(At)TWexp(A′t)µ(t)dt

]
xxx′0,

(21)

where exp(At) is a matrix exponential, matrix W is a positive
semi-definate matrix which is used to weight the different
variables in the MTS’s, and the function µ(t) is a discount



function. This kernel can be seen as a special inner product
of the trajectories of the two LDS’s.

In our study, since we do not have any prior knowledge
of the weights of the states in an LDS, we assume the states
are equally weighted; therefore, without loss of generality, we
replace matrix W with an identity matrix I. The definition
of the discount function, µ(t), is problem specific. In general,
there are two popular choices, one is the Dirac delta function,
µ(t) = δ(t − τ), and the other one is the exponential decay
function, µ(t) = e−λt.

When µ(t) = δ(t − τ), the kernel is reduced to the inner
product of the state vectors at time, τ . Namely, the kernel
defined in (21), with W replaced by I, is reduced to

k((xxx0,A)), (xxx′0,A
′))

:= xxxT0 exp(Aτ)T exp(A′τ)xxx′0.
(22)

This kernel is useful if we know the MTS’s (or LDS’s) are
the most distinguishable at time, τ , a priori. In our case,
we used the exponential decay function, in which there is no
discount at time zero, and the discount become large as the
time series progress. Using the exponential decay function, the
kernel defined in (21), with W replaced by I, can be written
as

k((xxx0,A), (xxx′0,A
′))

:= xxxT0

[∫ ∞
0

exp(At)T exp(A′t)e−λtdt

]
xxx′0,

(23)

where λ is a hyper-parameter, which controls how fast the
discount increases. However, there is a restriction on the value
of λ; that is λ > 2Λ, where Λ = max(‖A‖2, ‖A′‖2). The
symbol ‖·‖2 represents the L-2 norm operation, and when the
operand is a matrix, it is also called the spectral norm, which
is the largest singular value of the matrix. Such a restriction
on λ could ensure the convergence of the integral.

Even though the integral in (23) converges, it is hard to
compute because of the infinite sum. To simplify the integral,
we first let

M =

∫ ∞
0

exp(At)T exp(A′t)e−λtdt, (24)

and then, by assuming both A and A′ are non-singular and
using integration by parts, we arrived at

M =

∫ ∞
0

exp(At)T exp(A′t)e−λtdt

=(AT )−1e−λt(exp(At))T exp(A′t)
∣∣∞
0

−
∫ ∞
0

(AT )−1e−λtexp(At)T exp(A′t)(A′ − λI)dt

=(AT )−1

− (AT )−1
[∫ ∞

0

e−λtexp(At)T exp(A′t)dt

]
(A′ − λI)

=(AT )−1 − (AT )−1M(A′ − λI).

By multiplying both sides by (AT )−1 and arranging the terms,

we obtained an equation of M:

ATM + MA′ − λM = −I. (25)

Solving for M is an easier task; by vectorizing both sides
of (25) and organizing the terms, we obtain

[I⊗AT + (A′)T ⊗ I− λI′]vec(M) = −vec(I),

where I′ is an identity matrix whose number of column is the
same as the dimensionality of vec(M). Then we can solve
vec(M) as

vec(M) = [λI′ − I⊗AT − (A′)T ⊗ I]−1vec(I). (26)

Combining (26), (24), and the vectorized (23), we get

k((xxx0,A)), (xxx′0,A
′)) = vec(xxxT0 Mxxx′0)

=[xxx′0 ⊗ xxx0]T [λI′ − I⊗AT − (A′)T ⊗ I]−1vec(I)
(27)

We would like to point out that the first equality in (27) holds
true because k((xxx0,A), (xxx′0,A

′)) is a scalar, and its vector-
ization is a scalar. Comparing to (23), (27) is computable, but
we need to inverse the matrix, λI′ − I⊗AT − (A′)T ⊗ I. At
the first sight, one may think the matrix inversion could cost
high computation overhead; however, this matrix has a sparse
and block diagonal structure, so we can exploit the structure
and compute its inverse rather cheaply.

In the cases where the MTS’s are not aligned, namely, the
initial states of the LDS’s were observed at different times
among individual MTS’s after the onset, the terms xxx0 and xxx′0
in (27) seem to become meaningless. Therefore, we can define
the kernel between dynamics matrices by

k(A,A′) = tr(M) (28)

With this computable kernel defined, we can employ the
support vector machine model for classification.

IV. EXPERIMENTS AND RESULTS

To evaluate our approach, we have conducted experiments
on both synthetic and real-life data.

A. Experiments on synthetic MTS data

The purpose of the experiments on synthetic MTS data
is to check whether the dynamics matrices learned by our
approach can preserve the similarities of the underlying LDS’s.
Based on the state trajectory generation procedure, we had two
experiments.

Sub-Experiment 1: noisy initial states
In this experiment, we generated the state trajectories based

on the following procedure:
1) Randomly generate K LDS’s; i.e. K tuples of (xxx0, A),

where xxx0 ∈ R5 and A ∈ R5×5.
2) Add random noise to a initial state and generate state

trajectories using Euler forward method (eq. 4), and
repeat L times for each (xxx0,A) tuple.

For ease of visualization, we set K = 3 and L = 10 in
our experiments; therefore, there are 3 different LDS’s, and
each LDS is used to generate 10 trajectories with noisy initial



states. MTS’s were obtained by sampling the trajectories at 20
equally spaced time points. At the end, we have 30 MTS’s with
20 time points and equal lengths. We applied our algorithm
on the MTS’s to learn the dynamics matrices. The pairwise
similarity of dynamics matrices, simA, is computed by (29).

simA(i, j) = ‖Ai −Aj‖F (29)

Based on the pairwise similarities, we projected the learned
dynamics matrices on a 2D space using multidimensional
scaling [30]. Each object in the 2D space represents a learned
dynamics matrix, thus, ideally, dynamics matrices learned
from the MTS’s sampled from the same LDS (with noisy
initial states) should form a cluster. For comparison, we also
computed the pairwise similarity of the generated trajectories,
simxxx, by using (30)

simxxx(i, j) =
∑
k

‖xxxi(tk)− xxxj(tk)‖2 (30)

Although the dynamics matrices were the same, trajectories
generated from two noisy initial states varied significantly, as
shown in Figure 1a and 1b, in which Example 1 and Example
2 are trajectories generated from the same LDS, with the same
dynamics matrix but noisy initial states. These variations of
trajectories are also shown in the trajectory similarity plot, as
shown in Figure 1c), in which the symbol of Example 1 and
the symbol of Example 2 are far apart. Despite the variations in
the trajectories, the learned dynamics matrices preserved the
similarities of the LDS’s, as shown in Figure 1d), in which
the symbol of Example 1 and the symbol of Example 2 are
close. Therefore, our learning approach is able to learn the
underlying LDS despite the initial states being noisy.

Sub-Experiment 2: noisy dynamics matrices
This experiment was similar to the above experiment; how-

ever, in the trajectory generation procedure, instead of making
the initial states noisy, we made the dynamics matrices noisy.
Using the same parameter settings (i.e. K = 3 and L = 10),
we generated 30 trajectories and thus 30 MTS’s. Dynamics
matrices were learned from the generated MTS’s.

Trajectories generated from the same LDS with noisy
dynamics matrices also varied, as shown in Figure 2a and
2b, in which, Example 1 and Example 2 are trajectories
generated from the same LDS, with the same initial states
but noisy dynamics matrices. The trajectories generated with
noisy dynamics matrix may vary significantly, as shown in
Figure 2c, in which Example 1 and Example 2 are far apart.
But the dynamics matrices learned by our algorithm preserved
the similarities much better, as shown in Figure 2d, in which
the clusters of the 3 LDS’s are very distinct.

B. Experiments on real-life datasets

1) Datasets and baselines: To evaluate the efficiency of
using LDS’s as representations of imperfect MTS’s, we con-
ducted experiments on three human blood gene expression
time series datasets, influenza A (H3N2), Rhinovirus (HRV),
and respiratory syncytial virus (RSV) [31]. The number of
MTS’s in the H3N2, HRV, and RSV datasets were 17, 20, and

20, respectively. At each time point of the MTS, expression
levels of multiple genes were measured. The number of genes
in each dataset was originally over 10,000. In our experiments,
in each dataset, we only included the genes suggested by a
previous study [31]; therefore, the number of genes included
in the H3N2, HRV, and RSV datasets were 23, 26, and 24,
respectively. Each MTS in the datasets has a different number
of time points (i.e., the number of temporal gene expression
measurements was different from subject to subject). In the
H3N2 dataset, most of the subjects had 16 temporal gene
expression measurements, and thus there were 16 time points
available in the MTS’s of those subjects; a small number of
subjects in the H3N2 dataset had 15 time points available in
their MTS’s. The numbers of temporal gene expressions in
the subjects in the HRV dataset varied significantly, ranging
from 7 to 14. The numbers of temporal gene expressions in
the subjects in the RSV dataset varied even more significantly,
ranging from 6 to 21. In the MTS’s of the H3N2 dataset, every
two consecutive gene expressions were spaced by 1 time unit.
However, the gene expressions in MTS’s of the HRV and
RSV datasets were not equally spaced. The interval of two
consecutive gene expressions may be separated as much as 7
units and as little as 1 unit in the HRV dataset. The interval of
two consecutive gene expressions may be separated as much as
10 units and as little as 1 unit in the RSV dataset. A summary
of the datasets is given in Table II. MTS’s in the H3N2 dataset
are close to “perfect”; namely, most of them have the same
lengths, and samples are regularly spaced. In contrast, the RSV
dataset is a good demonstration of an imperfect MTS dataset,
in which both lengths and sampling intervals of the MTS’s
vary significantly. Within each dataset, we formulated a binary
classification task to determine whether an MTS was from an
individual with symptomatic acute respiratory infection or an
individual with no infection.

TABLE II: Summary of 3 datasets

H3N2 HRV RSV
Number of genes 23 26 24

Number of MTS’s (pos/neg) 9/8 10/10 9/11
Number of time points (range) 15-16 7-14 6-21

Sampling interval (range) 1 1-7 1-10

For comparison, in our experiments, we also included three
baseline representations/methods:
• stat + SVM Using statistical summaries of temporal

samples as time series features has been proven effective
in biomedical applications [32]. In our experiments, for
each variable in an MTS instance, we computed four
statistical measures (mean, standard deviation, maximum,
minimum) to summarize the time series. That is, if there
are n variables, in this approach, an MTS is represented
by a 4n-dimensional feature vector. After the features
were generated, we used a support vector machine (SVM)
model as the classifier. The kernels used in the SVM
model were linear, radial basis function, and polynomial



(a) (b)

(c) (d)

Fig. 1: Examples of trajectories generated by the same LDS with noisy initial conditions and similarity plots of generated
trajectories and learned dynamics matrices. a) and b) two example trajectories generated by the same LDS with noisy initial
states; the same color indicates the same state. c) and d) similarity plots of generated trajectories and learned dynamics matrices;
the same color indicates the trajectories generated from the same LDS.

of order 3. The best result among the different kernels
will be reported. The hyperparameter in the model was
determined by a nested leave-one-out cross-validation in
the training set.

• PAA + 1NN Piecewise Aggregate Approximation (PPA)
[16] is an efficient representation for long time series. In
our experiment, for each (MTS) instance, we applied PAA
on each variable, and then concatenated all the variables
as a feature vector. The feature vectors of all the instances
have the same dimensionalities. After the transformation,
we used 1-nearest-neighbor as the classification model.

• DTLDS-kernel SVM In our experiments, we imple-
mented this baseline based on [20], in which a singular
value decomposition based approach is used to learn a
discrete time linear dynamical system (DTLDS) from an
MTS with regularly spaced samples. Then a classification
was performed on an SVM classifier by constructing a
kernel using learned DTLDS’s. This method is similar
to our proposed method; however, it is not applicable
to time series with imperfectness; therefore, in order to
use this method on the MTS’s used in the experiments,
interpolation and(or) truncation of the time series were
necessary. More details are given in the following section
about data preprocessing.

C. Data preprocessing

Different genes are expressed in different scales; therefore,
we needed to normalize the MTS before learning and mod-
eling. In our experiments, we scaled each gene in all MTS
into the (0,1) interval [33]. In some of the baseline models
(i.e. PAA + 1NN and DTLDS-kernel SVM), gene expressions
are required to be measured regularly; therefore, for MTS’s
with irregularly spaced measurements, we performed linear
interpolations. In addition, in PAA + 1NN and LDS-kernel
SVM models, MTS’s are required to be of equal length. In
our experiments, we truncated the MTS’s in a dataset to the
length of the shortest MTS in that dataset.

D. Experiments on using all available data in the datasets

In this experiment, we ran all the baseline methods and the
proposed method on all three datasets and used all available
time points in each dataset. Due to the limited number of
MTS in each dataset (Table II), in our experiments, the results
were obtained by using leave-one-out cross-validations. The
prediction accuracy of each representation and model is shown
in Table III.

All the representations/methods performed equally ex-
tremely well on H3N2. That is not surprising because instances
in that dataset are of very high quality (see Table II): the
lengths of the MTS’s are almost equal, samples are acquired
in regular intervals, and all MTS’s have a decent number of



(a) (b)

(c) (d)

Fig. 2: Examples of trajectories generated by the same LDS with noisy dynamics matrices and similarity plots of generated
trajectories and learned dynamics matrices. a) and b) two example trajectories generated by the same LDS with noisy initial
states; the same color indicates the same state. c) and d) similarity plots of generated trajectories and learned dynamics matrices;
the same color indicates the trajectories generated from the same LDS.

TABLE III: Leave-one-out cross validation accuracies on 3
binary classification tasks. Best performances are in bold

H3N2 HRV RSV
PAA + 1NN 1.000 0.800 0.750
stat + SVM 1.000 0.850 0.750

DTLDS-kernel SVM 1.000 0.750 0.650
proposed 1.000 1.000 0.800

time points. In contrast, the accuracies on HRV and RSV were
negatively affected by the imperfectness of MTS’s, such that
all the baseline methods could not achieve as high accuracy as
on H3N2. Our proposed method has the best accuracies across
all datasets. It is worth pointing out that even in an imperfect
MTS HRV dataset, our proposed method still achieved 100%
accuracy, while the second best accuracy was only 85%.

E. Experiments on the H3N2 dataset with imposed imperfect-
ness

When using all available time points in the H3N2 dataset,
all the models achieved perfect classification accuracies. In the
following experiments, we manually imposed imperfectness
into the H3N2 dataset to characterize the performance of four
methods when affected by various levels of defects seen in
real-life applications.

MTS’s with missing time points In this experiment, we
removed completely at random approximately 20%, 40%,
60%, and 80% of the time points from the original MTS’s.
Because each MTS in the dataset has 15 to 16 time points,
after the removal, there were 13, 10, 7, and 4 time points
left. We repeated the removal process for 5 times, and each
time, different time points were removed. By doing this,
we can emulate imperfectness such as irregular sampling
intervals and potentially unaligned MTS’s. Then we applied
the classification methods on the imperfect MTS’s. The mean
accuracies of each method and their standard deviations as the
percentage missing increases are shown at Figure 3.

From Figure 3, we notice that the DTLDS-kernel SVM
was affected the most by irregular sampling intervals. The
performances of PAA+1NN and stat+SVM were affected min-
imally, as they both kept 100% accuracy when up to 40% of
time points were missing, and their accuracies only degraded
around 5% when 80% of time points were missing. Our
proposed method achieved 100% accuracy even when 80%
of data were missing.

MTS’s with truncations In this experiment, we imposed
imperfectness by randomly truncating the leading and ending
time points from individual MTS’s; specifically, we randomly
truncated 25%, 50%, and 75% time points at the beginning,
at the end, or both (at the beginning and the end) from the
original MTS’s. By doing this, we obtained MTS’s which



Fig. 3: Means and standard deviations of each methods as the
percentage of missing time points increases from 20% to 80%.
The vertical line indicates one standard deviation.

are unaligned, short, and with a limited number of samples.
After the truncation, each MTS had 12, 8, and 4 regularly
spaced time points. We repeated the truncation process 5
times, and at each time, different portions of the leading and
ending time points would be truncated. The mean accuracies
of each method and their standard deviations as the percentage
truncation increases are shown at Figure 4.

Fig. 4: Means and standard deviations of each methods as the
percentage truncating increases from 20% to 80%. The vertical
line indicates one standard deviation.

In contrast to the previous experiment, the accuracies of all
the methods were affected more in this experiment, although
the MTS’s had roughly the same number of time points. When
time points were removed uniformly and randomly, the length
of an MTS might not be reduced; however, in this experiment,
we did not only reduce the number of time points in an
MTS but also reduced its length. Therefore, methods such
as PAA+1NN and stat+ SVM , which are highly dependent
on the trend and the values (usually the minimal/maximum
values) at the beginning/end of a process, were hurt more
by this kind of data deficiency. Our proposed method kept
its perfect classification accuracy until the percentage of
truncating exceed 50%. The proposed method was able to
continue performing well because the learned LDS’s were able
to capture the unique characteristics of the dynamics in the

MTS’s from different classes.

V. CONCLUSION

In this paper, we proposed a method to learn continuous-
time LDS’s from MTS’s with various forms of imperfectness;
i.e. limited time points, irregular sampling intervals, unaligned,
noisy, partially observed, and short spanned. By adopting a
powerful LDS kernel formulation, we employed a support
vector machine model for classification tasks. Empirical results
on three diagnostic tasks with different levels of imperfectness
provided evidence that our proposed method is effective and
able to outperform alternative methods.

VI. ACKNOWLEDGMENT

This study is partially supported by the Defense Advanced
Research Projects Agency (DARPA) and the Army Research
Office (ARO) under Contract no. DARPA-THOR-W911NF-
16-C-0050.

REFERENCES

[1] N. Omranian, B. Mueller-Roeber, and Z. Nikoloski, “Segmentation of
biological multivariate time-series data,” Scientific reports, vol. 5, 2015.

[2] A. D. Henn, S. Wu, X. Qiu, M. Ruda, M. Stover, H. Yang, Z. Liu,
S. L. Welle, J. Holden-Wiltse, H. Wu et al., “High-resolution temporal
response patterns to influenza vaccine reveal a distinct human plasma
cell gene signature,” Scientific reports, vol. 3, 2013.

[3] R. M. Rangayyan, Biomedical signal analysis. New Jersey: John Wiley
& Sons, 2015, vol. 33.

[4] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on pure and
applied mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[5] Z. Ghahramani and G. E. Hinton, “Parameter estimation for linear
dynamical systems,” University of Toronto technical report CRGTR962,
vol. 6, no. CRG-TR-96-2, pp. 1–6, 1996.

[6] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing
and forecasting using the em algorithm,” Journal of time series analysis,
vol. 3, no. 4, pp. 253–264, 1982.

[7] T. Katayama, Subspace methods for system identification. New York:
Springer Science & Business Media, 2006.

[8] P. Van Overschee and B. De Moor, Subspace identification for linear
systems: Theory—Implementation—Applications. New York: Springer
Science & Business Media, 2012.

[9] B. Boots, G. J. Gordon, and S. M. Siddiqi, “A constraint generation
approach to learning stable linear dynamical systems,” in Advances in
Neural Information Processing Systems, 2007, pp. 1329–1336.

[10] N. Städler, S. Mukherjee et al., “Penalized estimation in high-
dimensional hidden markov models with state-specific graphical mod-
els,” The Annals of Applied Statistics, vol. 7, no. 4, pp. 2157–2179,
2013.

[11] Z. Liu and M. Hauskrecht, “A regularized linear dynamical system
framework for multivariate time series analysis,” in Proceedings of
the... AAAI Conference on Artificial Intelligence. AAAI Conference on
Artificial Intelligence, vol. 2015. NIH Public Access, 2015, p. 1798.

[12] ——, “Learning linear dynamical systems from multivariate time series:
A matrix factorization based framework.”

[13] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A re-
view and new perspectives,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[14] R. Agrawal, C. Faloutsos, and A. Swami, Efficient similarity search in
sequence databases. New York: Springer, 1993.

[15] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by
wavelets,” in Data Engineering, 1999. Proceedings., 15th International
Conference on. IEEE, 1999, pp. 126–133.

[16] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
reduction for fast similarity search in large time series databases,”
Knowledge and information Systems, vol. 3, no. 3, pp. 263–286, 2001.



[17] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. ACM, 2003, pp. 2–11.

[18] L. Ye and E. Keogh, “Time series shapelets: a new primitive for
data mining,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009, pp.
947–956.

[19] M. F. Ghalwash and Z. Obradovic, “Early classification of multivariate
temporal observations by extraction of interpretable shapelets,” BMC
bioinformatics, vol. 13, no. 1, p. 1, 2012.

[20] K. M. Borgwardt, S. Vishwanathan, and H.-P. Kriegel, “Class prediction
from time series gene expression profiles using dynamical systems
kernels.” in Pacific symposium on biocomputing, vol. 11, 2006, pp. 547–
558.

[21] A. Harvey and J. H. Stock, “The estimation of higher-order continuous
time autoregressive models,” Econometric Theory, vol. 1, no. 01, pp.
97–117, 1985.

[22] K. P. Murphy, Machine learning: a probabilistic perspective. Cam-
bridge, Boston: MIT press, 2012.

[23] V. N. Vapnik and V. Vapnik, Statistical learning theory. New York:
Wiley New York, 1998, vol. 1.

[24] J. D. Hamilton, Time series analysis. Princeton: Princeton university
press, 1994, vol. 2.

[25] J. Gallier, Geometric methods and applications: for computer science
and engineering. New York: Springer Science & Business Media, 2011,
vol. 38.

[26] B. Chen and P. A. Zadrozny, “Analytic derivatives of the matrix
exponential for estimation of linear continuous-time models,” Journal
of Economic Dynamics and Control, vol. 25, no. 12, pp. 1867–1879,
2001.

[27] R. J. Martin, “A metric for arma processes,” IEEE Transactions on Signal
Processing, vol. 48, no. 4, pp. 1164–1170, 2000.

[28] K. De Cock and B. De Moor, “Subspace angles between arma models,”
Systems & Control Letters, vol. 46, no. 4, pp. 265–270, 2002.

[29] S. Vishwanathan, A. J. Smola, and R. Vidal, “Binet-cauchy kernels on
dynamical systems and its application to the analysis of dynamic scenes,”
International Journal of Computer Vision, vol. 73, no. 1, pp. 95–119,
2007.

[30] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory and
applications. New York: Springer Science & Business Media, 2005.

[31] A. K. Zaas, M. Chen, J. Varkey, T. Veldman, A. O. Hero, J. Lucas,
Y. Huang, R. Turner, A. Gilbert, R. Lambkin-Williams et al., “Gene
expression signatures diagnose influenza and other symptomatic respi-
ratory viral infections in humans,” Cell host & microbe, vol. 6, no. 3,
pp. 207–217, 2009.

[32] K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, “A targeted
real-time early warning score (trewscore) for septic shock,” Science
Translational Medicine, vol. 7, no. 299, pp. 299ra122–299ra122, 2015.

[33] X. H. Cao and Z. Obradovic, “A robust data scaling algorithm for gene
expression classification,” in Bioinformatics and Bioengineering (BIBE),
2015 IEEE 15th International Conference on. IEEE, 2015, pp. 1–4.


