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Abstract

Zero-shot learning has tremendous application value in
complex computer vision tasks, e.g. image classification, lo-
calization, image captioning, etc., for its capability of trans-
ferring knowledge from seen data to unseen data. Many re-
cent proposed methods have shown that the formulation of
a compatibility function and its generalization are crucial
for the success of a zero-shot learning model. In this pa-
per, we formulate a softmax-based compatibility function,
and more importantly, propose a regularized empirical risk
minimization objective to optimize the function parameter
which leads to a better model generalization. In compar-
ison to eight baseline models on four benchmark datasets,
our model achieved the highest average ranking. Our model
was effective even when the training set size was small and
significantly outperforming an alternative state-of-the-art
model in generalized zero-shot recognition tasks.

1. Introduction
Recent advances in deep neural network technologies

have resulted in significant progress in large-scale systems
for recognition tasks; for example, classification [21], lo-
calization [35], image captioning [19], speech recognition
[9, 16], machine translation [3]. However, their successes
strongly depend on the availability of labeled training data,
which become costly or impossible to collect as the num-
ber of classes and complexity of the tasks increase. To ad-
dress this problem, zero-shot learning [22, 24, 27] attempts
to generalize what it has learned on a subset of all the pos-
sible classes (seen), to new classes it hasn’t seen (unseen).

Zero-shot learning is considered as a special case of
transfer learning [28]. The goal of transfer learning is to
transfer knowledge (i.e. classification model) from a source
domain to a target domain while the relation of the two do-
mains is known a priori or implicitly. In zero-shot learning,
the objective is to generalize a classification model that has
been trained on the seen labeled data (source domain) to the
unseen data (target domain). The generalization of a zero-

shot learning model is realized by leveraging the class la-
bels’ semantic representations (descriptions) which may re-
veal the similarities/dissimilarities among seen class labels
and unseen class labels. Widely used semantic representa-
tions include human annotated attributes [12, 23] and word
vectors [5, 13].

Most zero-shot learning models share a similar structure
(Figure 1). Typically, there is a feature extraction layer for
extracting features from the images (e.g. SIFT [25], HoG
[10] and pre-trained deep neural networks [32, 33]). Many
of them also employ a feature embedding layer to exploit
the latent structures of the features. Each class label is also
associated with a semantic feature vector (e.g. human an-
notated attributes [12] and word vectors [5]).

Many efficient embedding algorithms have been pro-
posed to exploit the structure of semantic space [1, 2, 18, 30,
39, 41, 42, 43]. In training, the models use the features and
the labels’ semantic vectors (or their embedded versions) to
learn a compatibility function by minimizing a regularized
empirical risk minimization objective. The classifier and the
classification rule are then derived from the compatibility
function, as seen in [1, 2, 6, 7, 13, 26, 27, 31, 34, 39, 43, 44].
Usually, in a classification task, an object is classified to a
label whose semantic vector maximizes this compatibility
function. Evidence [14, 41, 42, 44] showed that the classi-
fication accuracy could be further improved by considering
the structures in the feature space of the unseen examples.

1.1. Summary of contributions

In this paper, we propose a simple yet effective model for
zero-shot learning. Our model is simple in the sense of con-
ception and implementation, and it is effective in the sense
that it yields state-of-the-art performance without formulat-
ing sophisticated embeddings.

In our model, the comparability function is formulated
by applying a softmax function upon a bilinear function
which has been used in many existing models. The softmax-
bilinear compatibility function is simple; however, it is ca-
pable of capturing the rich information in data. The nov-
elty of our model lies in the formulation of the regularized
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Figure 1: Canonical zero-shot learning framework. While the feature extraction and semantic extraction layers are relatively
standard, a zero-shot learning model usually consists of two major components: embedding functions and a compatibility
function. In training, the model parameters are learned by solving a regularized empirical risk minimization problem based
on the seen examples. In testing, the learned parameter is then used for unseen example classification.

empirical risk minimization objective. Traditionally, neg-
ative cross entropy is used as the empirical risk measure
for softmax-based models in multi-class classification tasks;
in our model, we use a cross-entropy-inspired term as the
empirical risk measure, and more importantly, we propose
a regularization term for the output of the softmax func-
tion. This regularization tremendously improves the gener-
alization of our softmax-based model and makes it be ef-
fective for zero-shot learning tasks. The final form of the
objective function is smooth, unconstrained, and conceptu-
ally simple; therefore, the minimization can be solved by
any gradient-based algorithms. Experimental results have
shown that our model achieved very competitive accuracies
in zero-shot recognition tasks on four benchmark datasets,
in comparisons to eight state-of-the-art zero-shot learning
models. Experimental results also showed that our model
was effective even when the training data size was small.
In particular, in the generalized zero-shot recognition task,
our model significantly outperformed an alternative state-
of-the-art model.

The contribution of our work is three-fold:

• We propose a softmax-bilinear compatibility function
which is simple yet effective to capture information in
data.

• We introduce a regularization term which is specifi-
cally for the outputs of a softmax function; this regu-
larization makes the model more generalized, leading
to better performance in zero-shot recognition tasks.

• We have conducted extensive experiments, on four

benchmark datasets, to analyze the performance of the
proposed model in different settings.

The remainder of the paper is organized as follows. In
Related Work, we give the formal formulation of zero-shot
learning and brief comparisons of a few state-of-the-art
zero-shot learning models. In Proposed Model, we describe
our proposed model in great details. In Experiments, we de-
scribe the conducted experiments and analyze the results. In
Conclusion, we summarize our contributions and findings.

2. Related Work

In this section, we introduce the state-of-the-art formula-
tion of zero-shot learning. In order to have more clear and
direct comparisons, we first formally define the problem of
zero-shot learning.

2.1. Zero-shot learning problem definition

In zero-shot learning, each data point comes in the form
of a triplet, (xxxi, yyyi, zi), where xxxi ∈ X is the feature of
an object, zi ∈ C = {c1, c2, · · · , c|C|} is the class label,
and yyyi ∈ Y = {yyyc1 , yyyc2 , · · · , yyyc|C|} is the corresponding
semantic representation of the label. In training, only the
triplets with class labels in Cs ⊂ C are available (we call Cs
the seen label set, Cu the unseen label set; Cs

⋃
Cu = C and

Cs
⋂
Cu = ∅), and the objective of zero-shot learning is to

learn a generalized mapping, f : X → C, by solving the
regularized empirical risk minimization problem over the



function parameter W:

minimize
W

J(W) =
1

N

N∑
i=1

L(zi, f(xxxi;W)) + Ω(W),

(1)
where J(·) is the objective function which includes two
terms: L : R × R → R the empirical loss term and Ω(W)
the regularization term. The mapping f can be expressed
by:

f(xxx;W) = arg max
c∈C

F (φ(xxx), ϕ(yyyc);W), (2)

where φ(·) is a feature embedding function, ϕ(·) is a se-
mantic embedding function, and F (·, ·) is the compatibility
function to measure the compatibility of an object’s feature
and a label’s semantic representation.

Canonical zero-shot learning models usually consist of
two major parts: compatibility function learning [40] and
embedding function learning. Depending on the specific al-
gorithm, these two components can be learned individually
or jointly. In the following subsections, we introduce a few
related work based on their formulations in these two com-
ponents.

2.2. Compatibility functions and parameter learn-
ing objective functions

In zero-shot learning, the goal of a compatibility func-
tion, F (·, ·) is to measure the compatibility score of a fea-
ture vector and a semantic vector (i.e. F (xxx,yyyc)) or their
embedded forms (i.e. F (φ(xxx), ϕ(yyyc))). Ideally, knowing
the label of xxx is z, the compatibility function should satisfy
F (xxx,yyyz) > F (xxx,yyyc) ∀c 6= z.

A powerful and simple formulation of the compatibility
function is the bilinear form:

F (φ(xxx), ϕ(yyyc);W) = φ(xxx)Wϕ(yyyc). (3)

Some of the representative zero-shot learning models in-
clude Attribute Label Embedding (ALE) [1], Deep Visual
Semantic Embedding (DEVISE) [13], Structured Joint Em-
bedding (SJE) [2], and Embarrassingly Simple Zero-Shot
Learning (ESZSL) [31]. Among them, DEVISE, ALE and
SJE use margin-based objective function formulations to
learn the parameters; specifically, DEVISE uses a formu-
lation based on ranking SVM [17]:∑

c∈Cs
[∆(yyyc, yyyi) + F (φ(xxxi), ϕ(yyyc);W)

− F (φ(xxxi), ϕ(yyyi);W)]+, (4)

where ∆(yyyc, yyyi) equals 0 when yyyc = yyyi, and equals 1 other-
wise. ALE uses a weighted approximate ranking objective

[37]∑
c∈Cs

γr∆(xxxi,yyyi)[∆(yyyc, yyyi) + F (φ(xxxi), ϕ(yyyc);W)

− F (φ(xxxi), ϕ(yyyi);W)]+, (5)

where γk is a decreasing function of k and
r∆(xxxi, yyyi) =

∑
c∈Cs I(∆(yyyc, yyyi) + F (φ(xxxi), ϕ(yyyc);W)−

F (φ(xxxi), ϕ(yyyi);W) > 0), and SJE uses a formulation
based on structured SVM [36]

[max
c∈Cs

(∆(yyyc, yyyi) + F (φ(xxxi), ϕ(yyyc);W))

− F (φ(xxxi), ϕ(yyyi);W)]+. (6)

ESZSL adds the regularization terms, γ||Wϕ(yyy)||2Fro +
λ||φ(xxx)TW||2Fro + β||W||2Fro, to the empirical loss term,
aiming at making the compatibility function more general-
ized.

Another popular formulation of the compatibility func-
tion is

F (φ(xxx), ϕ(yyyc);W) = ||ϕ(yyyc)− h(φ(xxx);W)||22 (7)

where h(·) is a function of φ(xxx) and parameterizing on W.
A typical example is the Direct Attribute Prediction (DAP),
in which the function h(·) can be any regressors if ele-
ments in ϕ(yyyc) are continuous, and can be any classifiers
if elements in ϕ(yyyc) are binary. The Cross Modal Trans-
fer (CMT) model [34] uses a formulation of h(φ(xxx)) =
W1tanh(W2φ(xxx)), where (W1,W2) are the weights of
the two layers in a neural network. The Metric Learning for
Zero-Shot Classification (MLZSC) [6] uses a formulation
of h(φ(xxx)) = max(0, φ(xxx)TWx + bbbx), and also incorpo-
rates a metric learning term and a regularization term in the
objective function.

The Convex Semantic Embedding (CONSE) model uses
a cosine similarity as the compatibility score, namely,

F (φ(xxx), ϕ(yyyc)) = cos(φ(xxx), ϕ(yyyc)). (8)

The Semantic Similarity Embedding (SSE) [43] uses a com-
parability function

F (φ(xxx), ϕ(yyyc)) = φ(xxx)Tϕ(yyyc). (9)

Although the above two models’ compatibility functions are
simple, their true contributions lie in the formulation of the
embedding functions. The Latent Embeddings (LATEM)
[39] uses a piece-wise linear compatibility function:

F (φ(xxx), ϕ(yyyc),Wi) = max
1≤i≤K

φ(xxx)TWiϕ(yyyc), (10)

and uses the ranking SVM [17] for the loss function formu-
lation. The Synthesized Classifier for Zero-Shot Learning
(SYNC) model uses a compatibility function of the form:

F (φ(xxx), ϕ(yyyc)) = wwwTz φ(xxx) (11)



where wwwz satisfies wwwz =
∑R
r=1 scrvvvr, in which vvvr is the

classifier obtained by solving the Crammer-Singer multi-
class SVM loss function [8]. The Joint Latent Similarity
Embedding (JLSE) model [44] uses the probabilistic for-
mulation of the compatibility function:

F (φ(xxx), ϕ(yyyc)) = logp(φ(xxx)|xxx) + logp(ϕ(yyyc)|yyyc)
+ logp(∆(z, c)|φ(xxx), ϕ(yyyc)) (12)

The compatibility function of the proposed model be-
longs the bilinear category. However, a softmax function
is applied upon the bilinear term, making the compatibil-
ity function nonlinear and thus enhancing the capacity the
model. To make the softmax-based bilinear model be gen-
eralizable to zero-shot learning, we proposed to regularize
the output of the softmax function; detailed discussions can
be found in Section 3.

2.3. Embedding functions

The embedded functions, φ(·) and ϕ(·), map the features
and semantic representations to their embedded spaces (the
embedded spaces can be the same) for the purpose of ex-
ploring the latent structures of the feature space and the se-
mantic space such that the compatibility function is more
generalized across data with seen class labels and data with
unseen class labels.

The Attribute Label Embedding (ALE) [1] model learns
the embedded representation of the semantic vector by
adding the regularization term, µ

2 ||ϕ(yyyc) − yyyc||, to the
loss function (5). The Structured Joint Embedding (SJE)
model [2] learns a convex combination of products,∑K
k=1 αkWkϕk(yyyc) s.t.

∑
k αk = 1, to replace the prod-

uct, Wϕ(yyyc), in (3), when multiple views of the semantic
vector are available; the weight matrices, {Wk}Kk=1, are
solved independently using (6) in each view. The Convex
Semantic Embedding (ConSE) model [26] learns the em-
bedding using φ(xxx) =

∑T
t=1 αtϕ(yyyc

t

), where ct is the t-th
ranked likely label (e.g. c1 is the most likely label) of xxx,
and αt = p(ct|xxx)/

∑T
t=1 p(c

t|xxx). In the Semantic Simi-
larity Embedding (SSE) model [43], embedding functions,
φ(·) and ϕ(·), map the feature vectors (i.e. xxx’s) and the se-
mantic vectors (i.e. yyyc’s) into a common space, such that
φ(xxx)Tϕ(yyyc) is valid; the mapping φ(·) is learned by class
dependent transformation, and the mapping ϕ(·) is learned
by sparse coding.

Although embeddings can potentially improve the model
performance in zero-shot learning, it increases the model
complexity by introducing additional embedding function
parameters which are learned jointly or separately with the
compatibility function parameters. In the conducted exper-
iments, without embedding, the proposed model showed
competitive performance in comparison to existing models
which utilize sophisticated embeddings.

Notation Definition
N Number of training examples

Cs, Cu Seen label set and unseen label set;
Cs

⋃
Cu = C, Cs

⋂
Cu = ∅

d Dimensionality of the feature space
{xxxi}Ni=1 Feature vectors of training examples

{zi}Ni=1
Labels of training examples, i.e.
zi ∈ {c1, c2, · · · , c|Cs|}

yyyc Semantic vector of label c
Y A matrix whose c-th column, Y:c = yyyc

W,www Model parameter and its vectorized form

pppi
Softmax vector of the i-th example, i.e.,
pppi = σ(YTWTxxxi)

qqqi One-hot encoding of the label, zi

Table 1: Notations used in our method and derivations.

3. Proposed Model
Notations and symbols used in our model are summa-

rized in Table 1.

3.1. Compatibility function

In our zero-shot learning model, we propose a softmax-
based bilinear compatibility function:

F (φ(xxx), ϕ(yyyc);W ) = σ(ϕ(Y)TWTφ(xxx))c, (13)

where Y = [yyy1, yyy2, · · ·yyy|C|] is a matrix whose columns
are the semantic vectors of the label set C, σ : Rd →
R|C| is the softmax function, and we let ϕ(Y) denote
[ϕ(yyy1), ϕ(yyy2), · · · , ϕ(yyy|C|)]. Note that σ(·)c is the c-th
component of the vector σ(·). Comparing to the bilinear
compatibility function [1, 13, 2, 31], the additional softmax
layer makes the compatibility function nonlinear and thus
improves the capacity of the model.

3.2. Objective function

3.2.1 Empirical risk

The softmax function has been widely used in multi-class
logistic regression and the output layer of artificial neural
networks. Usually the negative cross entropy is used to
model the empirical risk. If we denote

ppp = σ(ϕ(Y)TWTφ(xxx)), (14)

and use qqq to denote the one-hot encoding of the correspond-
ing label of xxx, then the negative cross entropy is

−H(qqq,ppp) = −qqqT log(ppp) (15)

.



In our model, we use a cross-entropy-inspired term to
model the empirical risk. Specifically, we define the empir-
ical risk as

e(qqq,ppp) = −qqqTppp. (16)

This formulation gives us a better interpretation when we
introduce our regularizations.

3.2.2 Regularization

Regularization is particularly important for parameter opti-
mization in a zero-shot learning model because model gen-
eralization is the key to achieve strong performance in un-
seen data.

In our model, we use two regularization terms. We use
the squared Frobenius norm, ||W||2Fro, as the first regular-
ization term to regularize the parameter to prevent overfit-
ting; we use ||ppp||22 to encourage the elements in ppp to be equal
1 to enhance the generalization of the model. The balance
of the empirical risk and the regularizations is controlled by
trade-off coefficients.

Please note that, if the objective function consists only
the empirical risk term and the first regularization term,
||W||2Fro, the parameter is optimized for multi-class clas-
sification, and the model is for recognizing examples in
the seen classes, so a “peak” in ppp is desirable for pro-
moting a large margin between the matched class and un-
matched classes. However, in zero-shot learning, if the test
data contain examples in both the seen class and unseen
classes, adding the second regularization term, ||ppp||22, which
is smoothening the “peak” in ppp, helps prevent the inference
dominations of seen class (i.e., all the examples are classi-
fied to the seen classes); if the test data contain examples
of only the unseen classes, the second regularization term
helps prevent the situation that all the example are classi-
fied to the unseen classes that closest to the seen classes.

Given N triplets, {(xxxi, yyyi, zi)}Ni=1 with zi ∈ Cs, we ar-
rive at the following regularized empirical risk minimiza-
tion problem:

minimize
W

J(W) =
1

N

N∑
i=1

(−qqqTi pppi +
α

2
||pppi||22)

+
β

2
||W||2Fro, (17)

where pppi = σ(ϕ(Y)TWTφ(xxxi)), qqqi is the one-hot encod-
ing of the label zi, and the parameters α ≥ 0 and β ≥ 0 are
the coefficients of the regularization terms. Solving (17) is
equivalent to solving the following minimization problem

1Because
∑

c pc = 1 and ||ppp||22 =
∑

c p
2
c , when ||ppp||22 is minimized,

p1 = p2 = · · · pc = · · · .

which is more interpretable:

minimize
W

J(W) =
1

2N

N∑
i=1

||pppi −
1

α
qqqi||22 +

λ

2
||W||2Fro,

(18)

where λ = β/α. The first term of (18) is the cumula-
tive squared 2-norm of the difference between pppi and 1

αqqqi,
for i = 1, 2, · · · , N . Please note that, when α → 0, the
first term encourages the compatibility score of the matched
feature-semantic pair as high as possible, and thus, the re-
sultant model is a multi-class classifier of the seen classes;
when α → ∞, the first term encourages the components in
pppi are equal.

When α = 1, we arrive at the following more inter-
pretable objective function, (19), in which, the first term
models the mean squared difference between pppi and qqqi

minimize
W

J(W) =
1

2N

N∑
i=1

||pppi − qqqi||22 +
λ

2
||W||2Fro.

(19)

For simplicity, we kept α = 1 in our experiments, and tuned
λ via cross-validation.

3.3. Optimization

If there are no embedding functions being applied to the
feature vectors and semantic vectors, we can simplify pppi as:

pppi = σ(YTWTxxxi), (20)

and the c-th component of pppi is

pic =
exp(wwwT (xxxi ⊗ yyyc))∑

c′∈Cs exp(www
T (xxxi ⊗ yyyc′))

, (21)

where ⊗ is the Kronecker product operator, and we denote
vec(W) as www. Instead of solving the minimization prob-
lem over the matrix, W, we solve the problem over its vec-
torized version, www, and thus, we can rewrite the objective
function (19) as the following:

J(www) =
1

2N

N∑
i=1

||pppi − qqqi||22 +
λ

2
||www||22, (22)

noting that ||W||Fro = ||vec(W)||2. This objective func-
tion is smooth and unconstrained, and its gradient with re-
spect towww is

∇wwwJ(www) =
1

N

n∑
i=1

(∇wwwpppi)(pppi − qqqi) + λwww, (23)

where∇wwwpppi is a matrix, whose c-th column is

[∇wwwpppi]:c = ∇wwwpic
= pic(xxxi ⊗ yyyt −

∑
c′∈Cs

pic′xxxi ⊗ yyyc).
(24)



With the analytic expression of the gradient of the objec-
tive function, we can use any first order optimization algo-
rithm to solve the minimization problem.

3.4. Classification decision rule

When the optimized parameter, W∗ is obtained, the la-
bel, z of an example, xxx, is determined by:

z = arg max
c∈C

xxxTW∗yyyc. (25)

4. Experiments
4.1. Implementation

4.1.1 Parameter tuning by cross validation

We used cross-validation to tune the regularization coeffi-
cient, λ in (19). Precisely, we randomly picked two seen
classes from the training data for validation and trained the
model with different parameter values using the data of the
rest of the seen classes. We repeated the above training-
validation process 10 times and chose the parameter value
with the highest average validation accuracy. Particularly,
the values of λ were chosen from {1, 10, 100, 1000}.

4.1.2 Optimization

We used the function, fminunc in MATLAB, for optimiza-
tion. We found that the quasi-newton was the best (in terms
of speed) for the optimization algorithm option, and we
found that 30 iterations could return a good solution. All
other options were set to be the default values.

4.2. Datasets

In order to evaluate the performance of our proposed
zero-shot learning model, we have conducted experiments
on four standard benchmark datasets: Animal with At-
tributes (AwA) [20], aPascal and aYahoo (aPY) [12],
Caltech-UCSD Birds-200-2011 (CUB) [38] and SUN [29].
We downloaded the datasets from the supplementary web-
site of [43]. The features of the examples were extracted
from the VGG (Visual Geometry Group) very-deep con-
volution neural network [33]. The baseline models were
trained by the same VGG features unless otherwise speci-
fied; the splits of training and testing (seen/unseen classes)
were the same across all the methods to ensure fair com-
parisons. The summary of the four datasets are shown in
Table 2.

4.3. Experiment 1: Comparisons to baseline models

In this experiment, we compared the classification ac-
curacies of the proposed and a few state-of-the-art base-
line models on the standard seen/unseen splits of the four
datasets. The classification accuracies of the baseline meth-
ods were obtained from their original published papers or

from published papers that used them as baselines. The ac-
curacies (ranks) of all models are shown in Table 3.

From the table, we observe that none of the models
achieved the highest rank in all the datasets. This may sug-
gest that different models have different advantages, and
these advantages are more applicable in one dataset than
another. Our model achieved rank 1 out of 9 models in the
AwA dataset and rank 1 out of 7 models in the SUN dataset;
it ranked 2 out of 8 models in the CUB dataset and ranked
4 out of 6 in the aPY dataset. Overall, our proposed model
achieved the highest average rank of all the datasets.

4.4. Experiment 2: Model performance under dif-
ferent training set sizes

In Experiment 1, the zero-shot learning models were
trained by utilizing all the examples in the training data.
In this experiment, we evaluated the accuracies of our pro-
posed model when it was trained by subsets of the training
data with different sizes. The procedure was as following:

Step 1: a certain percentage of examples were selected
completely at random from each seen class to form a
sub-sampled training set.

Step 2: trained the model using the sub-sampled training
set created in Step 1.

Step 3: classified the examples in the unseen classes using
the trained model in Step 2, and recorded the accuracy.

The sub-sampling percentages were chosen from {20%,
40%, 60%, 80%}. We repeated the above procedure 5 times
for each choice of percentage and computed the mean and
standard deviation of the classification accuracies.

For comparison, the ESZSL model [31] was also trained
and evaluated by the above procedure. Please note that, in
this experiment, we only used the ESZSL model as a base-
line because 1) the ESZSL model was the closest to the pro-
posed model and it was also claimed that it’s simple and ef-
fective, 2) except the ESZSL, the baseline models required
substantial training time, while the above procedure needed
to repeat multiple times under different settings, only the
ESZSL model allowed that the experiment could be finished
in a reasonable time. The plots of the (accuracy ± standard

Dataset # examples # seen/unseen classes
AwA 30,475 40/10
aPY 15,339 20/12
CUB 11,788 150/50
SUN 14,340 707/10

Table 2: Summaries of the four benchmark datasets



Methods AwA aPY CUB SUN Average Rank
DAP [23] 57.23 (9) 38.16 (6) - 72.00 (6) 7.00
ESZSL] [31] 61.99 (7) 40.58 (5) 44.97 (3) 84.00 (2) 4.25
SJE\ [2] 61.90 (8) - 40.30 (6) - 7.00
SSE-INT [43] 71.52 (6) 44.15 (3) 30.19 (8) 82.17 (5) 5.50
SSE-ReLU [43] 76.33 (3) 46.23 (2) 30.41 (7) 82.50 (4) 4.00
SYNC [7] 72.90 (5) - 54.50 (1) 62.80 (7) 4.33
KDICA [15] 73.80 (4) - 43.70 (4) - 4.00
JLSE [44] 80.46 (2) 50.35 (1) 42.11 (5) 83.83 (3) 3.67
Ours 84.50 (1) 42.40 (4) 48.10 (2) 85.50 (1) 2.00

Table 3: Accuracies (ranks) of our approach and eight state-of-the-art methods on AwA, aPY, CUB, and SUN datasets. ’-’:
accuracy was not reported in the original paper or in any published papers; \: features were extracted by AlexNet [21]; ]:
accuracies were obtained by our own implementation of the method.
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Figure 2: Zero-shot recognition accuracies(± standard deviation) of the proposed model and ESZSL model as they were
trained by different training set sizes (in terms of percents of the full training data size).

deviation) V.S. percentage of both the models are shown in
Figure 2.

In all the datasets, as the size of training set increased, the
accuracy of our model increased. We found that, in the aPY,
AwA and CUB datasets, by using 20% of the training data,
our model achieved over 95% of the accuracy when the full
size of the training data was used. In the SUN dataset, by
using 20% of the training data, our model achieved over
90% of the accuracy when full size of the training data was
used. Our model was more sensitive to the training set size
in the SUN dataset; the reason might be because the number
of classes in the SUN dataset was large (No. of seen class
= 701 and No. of unseen class = 10), and the number of ex-
amples per class was small (20 examples per class). When
20% of the training data was used for training, there were
only 4 examples in each seen class. Therefore, as the size
of the training data increased, the accuracy of our model
increased more significantly. In contrast, ESZSL was rela-
tively insensitive to the size of the training set, but its accu-
racies were always worse than the accuracies of our model.
This might suggest that the capacity of the ESZSL model is
low, such that it can be fully trained by a very small amount
of data. However, this simple model may not be capable
to fully make use of the information provided in the train-

ing set, and thus had worse performance. We would like
to point out that the variances of the accuracies in the aPY
and SUN were large which may be due to the noise in the
features, and this is consistent to the findings in [11].

4.5. Experiment 3: Generalized zero-shot recogni-
tion

In this experiment, we used the same procedure de-
scribed in Experiment 2 to train the models; however, the
models were evaluated by their classification accuracies
over the union of the remaining seen class examples (not
used in training) and the unseen class examples. This was a
generalized zero-shot recognition task [4], which was con-
sidered to be more realistic and much more challenging.
Due to the same reasons mentioned in Experiment 2, only
the ESZSL model was used for comparison. The general-
ized zero-shot recognition accuracies of both the models are
shown in Figure 3.

We found that our model consistently outperformed ES-
ZSL in a large margin. Specifically, in the aPY dataset, our
model had an average 25% improvement over ESZSL; in
the AwA dataset, our model had an average 50% improve-
ment over ESZSL; in the CUB dataset, our model had an av-
erage 60% improvement over ESZSL; in the SUN dataset,
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Figure 3: Generalized zero-shot recognition accuracies(± standard deviation) of the proposed model and ESZSL model as
they were trained by different training set sizes (in terms of percents of the full training data size).

our model had an average 100% improvement over ESZSL.
The accuracies of both models decreased as the size of train
data increased. This was because the seen class examples
were easier to be recognized by the models, as the size of
training data increased, the number of seen class examples
in the testing set decreased, and thus the generalized recog-
nition accuracies decreased. The generalized recognition
accuracies of both the models in the SUN dataset increase
because of the significant imbalance of seen classes and un-
seen classes, and thus, the seen class examples were still
dominant in the testing set.

5. Conclusion

In this paper, we propose a simple yet effective model for
zero-shot learning. Similar to many state-of-the-art models,
we adopt the compatibility learning based approach in our
model. We find that a simple softmax-based bilinear com-
patibility function formulation can effectively capture the
information in data. More importantly, we introduce a regu-
larization term which is specifically for the outputs of a soft-
max function, and such a regularization term tremendously
improve the generalization of the model. By solving a reg-
ularized empirical risk minimization problem, we obtain a
generalized model for zero-shot recognition tasks. The per-
formance of our model was compared to 8 other baseline
models in four benchmark datasets. Particularly, our model
achieved the highest average accuracy ranking. Additional
experiments also showed that our model remained effec-
tive when the training data size was small. In the general-
ized zero-shot learning tasks, the performance of our model
was significantly better than another competitive baseline
model.
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